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Preface

Using effectively the operating system is very important for anyone working
with computers. It can be the difference between performing most tasks by hand,

and asking the computer to perform them.
Traditionally, Operating Systems courses used UNIX to do this. However,

today there is no such thing as UNIX. Linux is a huge system, full of inconsisten-
cies, with programs that do multiple tasks and do not perform them well. Linux
manual pages just cannot be read.

These lecture notes use Plan 9 from Bell Labs to teach a first (practical!)
course on operating systems. The system is easy to use for programmers, and is an
excellent example of high-quality system design and software development. Study-
ing its code reveals how simplicity can be more effective than contortions made by
other systems.

The first Operating Systems course at Rey Juan Carlos University is focused
on practice. Because in theory, theory is like practice, but in practice it is not.
What is important is for you to use the system, and to learn to solve problems.
Theory will come later to fill the gaps and try to give more insight about what a
system does and how can it be used.

The whole text assumes that you have been already exposed to computer, and
used at least a computer running Windows. This is so common that it makes no
sense to drop this assumption. Furthermore, we assume that you already know how
to write programs. This is indeed the case for the lecture this text is written for.
One last assumption is that you attended a basic computer architecture course, and
you know at least basic concepts. There is a quick review appendix in case you
need to refresh your memory.

Throughout the text, the boldface font is used when a new concept is intro-
duced. This will help you to make quick reviews and to double check that you
know the concepts. All important concepts are listed in the index, at the end of the
book. The constant width teletype font is used to refer to machine data,
including functions, programs, and symbol names. In many cases, text in constant
width font reproduces a session with the system (e.g., typing some commands and
showing their output). The text written by the user (and not by the computer) is
slightly slanted, but still in constant width. Note the difference with respect to
the font used for text written by a program, which is not slanted. Italics are
used to emphasize things and to refer to the system manual, like in intro(1).
Regarding numeric values, we use the C notation to represent hexadecimal and
octal numeric bases.



Unlike most other textbooks for operating systems courses, bibliographic refer-
ences are kept to the bare minimum. We cite a particular text when we think that it
may be worth reading to continue learning about something said in this book. So,
do not quickly dismiss references. We encourage you to read them, to learn more.
There are not so many ones. If you want to get a thorough set of references for
something discussed in the test, we suggest looking at a more classical operating
systems textbook, like for example [1].

It is important to note that this book is not a reference for using an operating
system nor a reference for Plan 9 from Bell Labs. The user’s manual that comes
installed within the system is the proper reference to use. These lecture notes just
shows you how things work, by using them. Once you have gone through the
course, you are expected to search and use the user’s manual as a reference.

One final note of caution. This text is to be read with a computer side by side.
The only way to learn to use a system is by actually using it. Reading this without
doing so is meaningless.

I am grateful go to other colleagues who suffered or helped in one way or
another to write this book. First, authors of Plan 9 from Bell Labs made an awe-
some system, worth describing for an Operating Systems Course. It cannot be
overemphasized how much help the authors of Plan 9 provide to anyone asking
questions in the 9fans list. For what is worth, I have to say that I am deeply grate-
ful to people like Rob Pike, Dave Presotto, Jim McKie, Russ Cox, and many oth-
ers. In particular, Russ Cox seems to be a program listening for questions at
9fans, at least his response time suggests that. I have learned a lot from you all
(or I tried). Other colleagues from Rey Juan Carlos University helped me as well.
Pedro de las Heras was eager to get new drafts for this manuscript. Sergio Arévalo
was an unlimited supply of useful comments and fixes for improving this book,
specially for using it as a textbook. José Centeno was scared to hell after reading
our initial description of computer networks, and helped to reach a much better
description.

Francisco J. Ballesteros
Laboratorio de Sistemas,
Rey Juan Carlos University of Madrid
Madrid, Spain
2006
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1 ! Getting started
______
1.1. What is an Operating System?
The operating system is the software that lets you use the computer. What this
means depends on the user’s perspective. For example, for my mother, the operat-
ing system would include not just Windows, but most programs in the computer as
well. For a programmer, many applications are not considered part of the system.
However, he would consider compilers, libraries, and other programming tools as
part of it. For a systems programmer, the software considered part of the system
might be even more constrained. We will get back to this later.

This book aims to teach you how to effectively use the system (in many
cases, we say just "system# to refer to the operating system). This means using the
functions it provides, and the programs and languages that come with it to let the
machine do the job. The difference between ignoring how to ask the system to do
things and knowing how to do it, is the difference between requiring hours or days
to accomplish many tasks and being able to do it in minutes. You have to make
your choice. If you want to read a textbook that describes the theory and abstract
concepts related to operating systems, you may refer to [7].

So, what is an operating system? It is just a set of programs that lets you use
the computer. The point is that hardware is complex and is far from the concepts
you use as a programmer. There are many different types of processors, hardware
devices for Input/Output (I/O), and other artifacts. If you had to write software to
drive all the ones you want to use, you would not have time to write your own
application software. The concept is therefore similar to a software library. Indeed,
operating systems begun as libraries used by people to write programs for a
machine.

When you power up the computer, the operating system program is loaded
into memory. This program is called the kernel. Once initialized, the system pro-
gram is prepared to run user programs and permits them use the hardware by call-
ing into it. From this point on, you can think about the system as a library. There
are three main benefits that justify using an operating system:
1 You don’t have to write the operating system software yourself, you can

reuse it.
2 You can forget about details related to how the hardware works, because this

library provides more abstract data types to package services provided by the
hardware.

3 You can forget about how to manage and share the hardware among different
programs in the same computer, because this library has been implemented
for use with multiple programs simultaneously.

Most of the programs you wrote in the past used disks, displays, keyboards, and
other devices. You did not have to write the software to drive these devices, which
is nice. This argument is so strong that nothing more should have to be said to con-
vince you. It is true that most programmers underestimate the effort made by others
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and overestimate what they can do by themselves. But surely you would not apply
this to all the software necessary to let you use the hardware.

Abstract data types are also a convenience to write software. For example,
you wrote programs using files. However, your hard disk knows nothing about
files. Your hard disk knows how to store blocks of bytes. Even more, it only knows
about blocks of the same size. However, you prefer to use names for a piece of per-
sistent data in your disk, that you imagine as contiguous storage nicely packaged in
a file. The operating system invents the file data type, and provides you with
operations to handle objects of this type. Even the file’s name is an invention of
the system.

This is so important, that even the "hardware# does this. Consider the disk.
The interface used by the operating system to access the disk is usually a set of reg-
isters that permits transferring blocks of bytes from the disk to main memory and
vice-versa. The system thinks that blocks are contiguous storage identified by an
index, and therefore, it thinks that the disk is an array of blocks. However, this is
far from being the truth. Running in the circuitry of a hard disk there is a plethora
of software inventing this lie. These days, nobody (but for those working for the
disk manufacturer) knows really what happens inside your disk. Many of them use
complex geometries to achieve better performance. Most disks have also memory
used to cache entire tracks. What old textbooks say about disks is no longer true.
However, the operating system still works because it is using its familiar disk
abstraction.

Using abstract data types instead of the raw hardware has another benefit:
portability. If the hardware changes, but the data type you use remains the same,
your program would still work. Did your programs using files still work when used
on a different disk?

Note that the hardware may change either because you replace it with more
modern one, or because you move your program to a different computer. Because
both hardware and systems are made with backward-compatibility in mind,
which means that they try hard to work for programs written for previous versions
of the hardware or the system. Thus, it might even be unnecessary to recompile
your program if the basic architecture remains the same. For instance, your Win-
dows binaries would probably work in any PC you might find with this system.
When they do not work, it is probably not because of the hardware, but due to other
reasons (a missing library in the system or a bug).

This is the reason why operating systems are sometimes called (at least in
textbooks) a virtual machine. They provide a machine that does not exist, physi-
cally, hence it is virtual. The virtual machine provides files, processes, network
connections, windows, and other artifacts unknown to the bare hardware.

With powerful computers like the ones we have today, most machines are
capable of executing multiple programs simultaneously. The system makes it easy
to keep these programs running, unaware of the underlying complexity resulting
from sharing the machine among them.

Did you notice that it was natural for you to write and execute a program as if
the computer was all for itself? However, I would say that at least an editor, a web
browser, and perhaps a music player were executing at the same time. The system
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decides which parts of the machine, and at which times, are to be used by each pro-
gram. That is, the system multiplexes the machine among different applications.
The abstractions it provides try to isolate one executing program from another, so
that you can write programs without having to consider all the things that happen
inside your computer while they run.

Deciding which resources are used by which running programs, and adminis-
tering them is called, not surprisingly, resource management. Therefore the operat-
ing system is also a resource manager. It assigns resources to programs, and mul-
tiplexes resources among programs.

Some resources must be multiplexed on space, i.e. different parts of the
resource are given to different programs. For example, memory. Different pro-
grams use different parts of your computer’s memory. However, other resources
cannot be used by several programs at the same time. Think on the processor. It
has a set of registers, but a compiled program is free to use any of them. What the
system does is to assign the whole resource for a limited amount of time to a pro-
gram, and then to another one in turn. In this case, the resource is multiplexed on
time. Because machines are so fast, you get the illusion that all the programs work
nicely as if the resource was always theirs.

People make mistakes, and programs have bugs. A bug in a program may
bring the whole system down if the operating system does not take countermea-
sures. However, the system is not God, and magic does not exist (or does it?). Most
systems use hardware facilities to protect executing programs, and files, from acci-
dents.

For example, one of the first things that the system does is to protect itself.
The memory used to keep the system program is marked as privileged and made
untouchable by non-privileged software. The privilege-level is determined by a bit
in the processor and some information given to the hardware. The system runs
with this bit set, but your programs do not. This means that the system can read the
memory used by your program, but not the other way around. Also, each program
can read and write only its own memory (assigned to it by the system). This means
that a misleading pointer in a buggy program would not affect other programs. Did
you notice that when your programs crash the other programs seem to remain unaf-
fected? Can you say why?

To summarize, the operating system is just some software that provides con-
venient abstractions to write programs without dealing with the underlying hard-
ware by ourselves. To do so, it has to manage the different resources to assign them
to different programs and to protect ones from others. In any case, the operating
system is just a set of programs, nothing else.

1.2. Entering the system
In this course you will be using Plan 9 from Bell Labs. There is a nice paper that
describes the entire system in a few pages [4]. All the programs shown in this
book are written for this operating system. Before proceeding, you need to know
how to enter the system, edit files and run commands. This will be necessary for
the rest of this book. One word of caution, if you know UNIX, Plan 9 is not UNIX,
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you should forget what you assume about UNIX while using this system.
In a Plan 9 system, you use a terminal to perform your tasks. The terminal is

a machine that lets you execute commands by using the screen, mouse, and key-
board as input/output devices. See figure 1.1. A command is simply some text
you type to ask for something. Most likely, you will be using a PC as your termi-
nal. The window system, the program that implements and draws the windows
you see in the screen, runs at your terminal. The commands you execute, which are
also programs, run at your terminal. Editing happens at your terminal. However,
none of the files you are using are stored at your terminal. Your terminal’s disk is
not used at all. In fact, the machine might be diskless!

Command execution,
Window system, ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

network

...........................................

network

Command execution,
Window system, ...

Files,
Accounts, ...

Figure 1.1: You terminal provides you with a window system. Your files are not there.

There is one reason for doing this. Because your terminal does not keep state (i.e.,
data in your files), it can be replaced at will. If you move to a different terminal and
start a session there, you will see the very same environment you saw at the old ter-
minal. Because terminals do not keep state, they are called stateless. Another com-
pelling reason is that the whole system is a lot easier to administer. For example,
none of the terminals at the university had to be installed or customized to be used
with Plan 9. There is nothing to install because there is no state to keep within the
terminal, remember?

Your files are kept at another machine, called the file server. The reason for
this name is that the machine serves (i.e., provides) files to other machines in the
network. In general, in a network of computers (or programs) a server is a program
that provides any kind of service (e.g., file storage). Other programs order the
server to perform operations on its files, for example, to store new files or retrieve
data. These programs placing orders on the server are called clients. In general, a
client sends a message to a server asking it to perform a certain task, and the server
replies back to the client with the result for the operation.

To use Plan 9, you must switch on your terminal. Depending on the local
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installation, you may have to select PXE as the boot device (PXE is a facility that
lets the computer load the system from the network). But perhaps the terminal
hardware has been configured to boot right from the network and you can save this
step. Once the Plan 9 operating system program (you know, the kernel) has been
loaded into memory, the screen looks similar to this:

PBS...
Plan 9
cpu0: 1806MHz GenuineIntel P6 (cpuid: AX 0x06D8 DX 0xFE9FBBF)
ELCR: 0E20
#l0: AMD79C970: 10Mbps port 0x1080 irq 10: 000c292839fc
#l1: AMD79C970: 10Mbps port 0x1400 irq 9: 000c29283906
#U/usb0: uhci: port 0x1060 irq 9
512M memory: 206M kernel data, 305M user, 930M swap
root is from (local, tcp)[tcp]:

There are various messages that show some information about your terminal,
including how much memory you have. Then, Plan 9 asks you where do you want
to take your files from. To do so, it writes a prompt, i.e., some text to let you
know that a program is waiting for you to type something. In this prompt, you can
see tcp between square brackets. That is the default value used if you hit return
without further typing. Replying tcp to this prompt means to use the TCP net-
work protocol to reach the files kept in the machine that provides them to your ter-
minal (called, the file server). Usually, you just have to hit return at this stage.
This leads to another prompt, asking you to introduce your user name.

You may obtain a user name by asking the administrator of the Plan 9 system
to provide one for you (along with a password that you will have to specify). This
is called opening an account. In this example we will type nemo as the user name.
What follows is the dialog with the machine to enter the system.

user[none]: nemo
time...version...
!Adding key: dom=dat.escet.urjc.es proto=p9sk1
user[nemo]: Return
password: type your password here and press return
!

This dialog shows all conventions used in this book. Text written by the computer
(the system, a program, ...) is in constant width font, like in user[none]. Text
you type is in a slightly slanted variant of the same font, like in nemo. When the
text you type is a special key not shown in the screen, we use boldface, like in
Return. Any comment we make is in italics, like in type your password. Now we
can go back to how do we enter the system.

At the user prompt, you told your terminal who you are. Your terminal
trusts you. Therefore, there is no need to give it a password. At this point you have
an open account at your terminal! This is to say that you now have a program run-
ning on your name in the computer. By the way, entering the system is also called
logging into the system. Leaving the system is called usually loging out.

However, the file server needs some proof to get convinced that you are who
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you say you are. That is why you will get immediately two more prompts: one to
ask your user name at the file server, and one to ask for your secret password for
that account. Usually, the user name for your account in the file server is also that
used in the terminal, so you may just hit return and type your password when
prompted.

If you come from UNIX, be aware not to type your password immediately
after you typed your user name for the first time. That would be the file server user
name, and not the password. All your password would be in the clear in the screen
for anyone to read.

You are in! If this is the first time you enter a Plan 9 system you have now
the prompt of a system shell (after several error messages). A shell is a program
that lets you execute commands in the computer. In Windows, the window system
itself is the system shell. There is another shell in Windows, if you execute Run
command in the start menu you get a line of text where you can type commands.
That is a command line.

At this point in your Plan 9 session, you can also type commands to the shell
that is running for you. The shell is a program, rc in this case, that writes a
prompt, reads a command (text) line, executes it, waits for the command to com-
plete, and then repeats the whole thing.

The shell prompt may be term%, or perhaps just a semicolon (which is the
prompt we use in this book). Because you never entered the system, and because
your files are yours, nobody created a few files necessary to automatically start the
window system when you enter the system. This is why you got some error mes-
sages complaining about some missing files. The only file created for you was a
folder (we use the name directory) where you can save your files. That directory is
your home directory.

Proceeding is simple. If you execute
; /sys/lib/newuser

the newuser program will create a few files for you and start rio, the Plan 9
window system. To run this command, type /sys/lib/newuser and press
return. All the commands are executed that way, you type them at the shell prompt
and press return.

Running newuser is only necessary the first time you enter the system.
Once executed, this program creates for you a profile file that is executed when
you enter the system, and starts rio for you. The profile for the user nemo is kept
in the file /usr/nemo/lib/profile. Users are encouraged to edit their pro-
files to add any command they want to execute upon entering the system, to cus-
tomize the environment for their needs. To let you check if things went right, fig-
ure 1.2 shows your screen once rio started.
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Figure 1.2: Your terminal after entering rio. Isn’t it a clean window system?

1.3. Leaving the system
To leave your terminal you have all you need. Press the terminal power button
(don’t look at the window system for it) and switch it off. Because the files are kept
in the file server, any file you changed is already kept safe in the file server. Your
terminal has nothing to save. You can switch it off at any time.

1.4. Editing and running commands
The window system is a program that can be used to create windows. Initially, each
window runs the Plan 9 shell, another program called rc. To create a window you
must press the right mouse button (button-3) and hold it. A menu appears and you
can move the mouse (without releasing the button) to select a particular command.
You can select New (see figure 1.3) by releasing the mouse on top of that com-
mand.

Because rio is now expecting one argument, the pointer is not shown as an
arrow after executing New, it is shown as a cross. The argument rio requires is the
rectangle where to show the window. To provide it, you press button-3, then sweep
a rectangle in the screen (e.g., from the upper left corner to the bottom right one),
and then release button-3. Now you have your shell. The other rio commands are
similar. They let you resize, move, delete, and hide any window. All of them
require that you identify which window is to be involved. That is done by a single
button-3 click on the window. Some of them (e.g., Resize) require that you pro-
vide an additional rectangle (e.g., the new one to be used after the resize). This is
done as we did before.
The window system uses the real display, keyboard, and mouse, to provide
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Figure 1.3: The rio menu for mouse button-3.

multiple (virtual) ones. A command running at a window thinks that it has the real
display, keyboard, and mouse. That is far from being the truth! The window system
is the one providing a fake set of display, keyboard, and mouse to programs run-
ning in that window. You see that a window system is simply a program that
multiplexes the real user I/O devices to permit multiple programs to have their own
virtual ones.

It will not happen in a while, but in the near future we will be typing many
commands in a window. As commands write text in the window, it may fill up and
reach the last (bottom) line in the window. At this point, the window will not
scroll down to show more text unless you type the down arrow key, !, in the win-
dow. The up arrow key, ", can be used to scroll up the window. You can edit all
the text in the window. However, commands may be typed only at the end. You
can always use the mouse to click near the end and type new commands if you
changed. The Delete key can be used to stop a command, should you want to do so.

To edit files, and also to run commands and most other things (hence its
name), we use acme, a user interface for programmers developed by Rob Pike.
When you run acme in your new window it would look like shown in figure 1.4.
Just type the command name, in the new window (which has a shell accepting
commands) and press return.

As you can see, acme displays a set of windows using two columns initially.
Acme is indeed a window system! Each window in acme shows a file, a folder, or
the output of commands. In the figure, there is a single window showing the direc-
tory (remember, this is the name we use for folders) /usr/nemo. For Nemo, that
is the home directory. As you can see, the horizontal text line above each window
is called the tag line for the window. In the figure, the tag line for the window
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Figure 1.4: Acme: used to edit, browse system files, and run commands.

showing /usr/nemo contains the following text:
/usr/nemo Del Snarf Get | Look

Each tag line contains on the left the name of the file or directory shown. Some
other words follow, which represent commands (buttons!). For example, our tag
line shows the commands Del, Snarf, Get, and Look.

Within acme, the mouse left mouse button (button-1) can be used to select a
portion of text, or to change the insertion point (the tiny vertical bars) where text is
to be inserted. All the text shown can be edited. If we click before Look with the
left button, do not move the mouse, and type Could, the tag line would now con-
tain:

/usr/nemo Del Snarf Get | Could Look

The button-1 can be also used to drag a window and move it somewhere else, to
adjust its position. This is done by dragging the tiny square shown near the left of
the tag line for the window. Resizing a window is done in the same way, but a sin-
gle click with the middle button (button-2) in the square can maximize a window if
you need more space. The shaded boxes near the top-left corner of each column can
be used in the same way, to rearrange the layout for entire columns.

The middle button (button-2) is used in acme to execute commands. Those
shown in the figure are understood by acme itself. For example, a click with the
button-2 on Del in our tag line would execute Del (an acme command), and
delete the window. Any text shown by acme can be used as a command. For com-
mands acme does not implement, Plan 9 is asked to execute them.
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Some commands understood by acme are Del, to delete the window,
Snarf, to copy the selected text to the clipboard, Get, to reread the file shown
(and discard your edits), and Put, to store your edits back to the file. Another use-
ful command is Exit, to exit from acme. For example, to create a new file with
some text in it:
1 Execute Get with a button-2 click on that word. You get a new window (that

has no file name).
2 Give a name to the file. Just click (button-1) near the left of the tag line for

the new window and type the file name where it belongs. The file name
typed on the left of the tag line is used for acme to identify which file the
window is for. For example, we could type /usr/nemo/newfile (you
would replace nemo with your own user name).

3 Point to the body of the window and type what you want.
4 Execute Put in that window. The file (whose name is shown in the tag line)

is saved.
You may notice that the window for /usr/nemo is not showing the new file.
Acme only does what you command, no more, no less. You may reload that win-
dow using Get and the new file should appear.

The right button (button-3) is used to look for things. A click with the button
on a file name would open that file in the editor. A click on a word would look for
it (i.e., search for it) in the text shown in the window.

Keyboard input in acme goes to the window where the pointer is pointing at.
To type at a tag line, you must place the pointer on it. To type at the body of a
window, you must point to it. This is called "point to type#. Note that in rio things
are different. Input goes to the window where you did click last. This is called
"click to type#.

Although you can use acme to execute commands, we will be using a rio win-
dow for that in this book, to make it clear when you are executing commands and
to emphasize that doing so has nothing to do with acme.

But to try it at least once, type date anywhere in acme (e.g., in a tag line, or
in the window showing your home directory. Then execute it (again, by a click
with button-2 on it). You will see how the output of date is shown in a new win-
dow. The new window will be called /usr/nemo+Errors. Acmes creates win-
dows with names terminated in +Errors to display output for commands exe-
cuted at the directory whose name precedes the +Errors. In this case, to display
output for commands executed at /usr/nemo. If you do not know what "at#
means in the last sentences, don’t worry. Forget about it for a while.

There is a good description of Acme in [5], although perhaps a little bit too
detailed for us at this moment. It may be helpful to read it ignoring what you can-
not understand, and get back to it later as we learn more things.
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1.5. Obtaining help
Most systems include their manual on-line, for users to consult. Plan 9 is not an
exception. The Plan 9 manual is available in several forms. From the web, you can
consult http://plan9.bell-labs.com/sys/man for a web version of the
manual. At Rey Juan Carlos University, we suggest you use
http://plan9.lsub.org/sys/man instead, which is our local copy.

And there is even more help available in the system! The directory
/sys/doc, also available at http://plan9.bell-labs.com/sys/doc,
contains a copy of most of the papers relevant for the system. We will mention sev-
eral of them in this book. And now you know where to find them.

The manual is divided in sections. Each manual page belongs to a particular
section depending on its topic. For us, it suffices to know that section 1 is for com-
mands, section 8 is for commands not commonly used by users (i.e., they are
intended to administer the system), and section 2 is for C functions and libraries.
To refer to a manual page, we use the name of the page followed by the section
between parenthesis, as in acme(1). This page refers to a command, because the
section is 1, and the name for the page (i.e., the name of the command) is acme.

From the shell, you can use the man command to access the system manual.
If you don’t know how to use it, here is how you can learn to do it.

; man man

Asks the manual to give its own manual page.
; man man

MAN(1) Plan 9 ! 4th edition MAN(1)

NAME
man, lookman, sig - print or find pages of this manual

SYNOPSIS
man [ -bnpPStw ] [ section ... ] title ...

lookman key ...

sig function ...

DESCRIPTION
Man locates and prints pages of this manual named title in
the specified sections. Title is given in lower case. Each
....

As you can see, you can give to man the name of the program or library function
you are interested in. It displays a page with useful information. If you are doing
this in the shell, you can use the down arrow key, "!#, to page down the output.
To read a manual page found at a particular section, you can type the section num-
ber and the page name after the man command, like in

; man 1 ls
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If you look at the manual page shown above, you can see several sections. The
synopsis section of a manual page is a brief indication on how to use the program
(or how to call the function if the page is for a C library). This is useful once you
know what the program does, to avoid re-reading the page again. In the synopsis
for commands, words following the command name are arguments. The words
between square brackets are optional. They are called options. Any option starting
with "-# represents individual characters that may be given as flags to change the
program behavior. So, in our last example, 1 and ls are options for man, corre-
sponding to section and title in the synopsis of man(1).

The description section explains all you need to know to use the program (or
the C functions). It is suggested to read the manual page for commands the first
time you use them. Even if someone told you how to use the command. This will
always help in the future, when you may need to use the same program in a slightly
different way. The same happens for C functions.

The source section tells you where to find the source code for programs and
libraries. It will be of great value for you to read as much source as you can from
this system. Programming is an art, and the authors of this system dominate that
art well. The best way for you to quickly become an artist yourself is to study the
works of the best ones. This is a good opportunity.

From time to time you will imagine that there must be a system command to
do something, or a library function. To search for it, you may use lookman, as the
portion of man(1) reproduced before shows. Using lookman is to the manual
what using search engines (e.g., Google) is to the Web. You don’t know how to use
the manual if you don’t know how to search it well.

Another command that comes with the manual is sig. It displays the
signature, i.e., the prototype for a C function documented in section 2 of the man-
ual. That is very useful to get a quick reminder of which arguments receives a sys-
tem function, and what does it return. For example,

; sig chdir
int chdir(char *dirname)

When a new command or function appears in this book, it may be of help for you
to take a look at its manual page. For example, intro(1) is a kind introduction to
Plan 9. The manual page rio(1) describes how to use the window system. The
meaning of all the commands in rio menus can be found there. In the same way,
acme(1) describes how to use acme, and rc(1) describes the shell, rc.

If some portions of the manual pages seem hard to understand, you might
ignore them for the time being. This may happen for some time while you learn
more about the system, and about operating systems in general. After completing
this course, you should have no problem to understand anything said in a manual
page. Just ignore the obscure parts and try to learn from the parts you understand.
You can always get back to a manual page once you have the concepts needed to
understand what it says.
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1.6. Using files
Before proceeding to write programs and use the system, it is useful for you to
know how to use the shell to see which files you created, search for them, rename,
and remove them, etc.

When you open a window, rio starts a shell on it. You can type commands
to it, as you already know. For example, to execute date from the shell we can
simple type the command name and press return:

; date
Sat Jul 8 01:13:54 MDT 2006

In what follows, we do not remind you to press return after typing a command.
Now we will use the shell in a window to play a bit with files. You can list files
using ls:

; ls
bin
lib
tmp
;

There is another command, lc (list in columns), that arranges the output in multi-
ple columns, but is otherwise the same:

; lc
bin lib tmp
;

If you want to type several commands in the same line, you can do so by separating
them with a semicolon. The only ";# we typed here is the one between date and
lc. The other ones are the shell prompt:

; date ; lc
Sat Jul 8 01:18:54 MDT 2006
bin lib tmp
;

Another convenience is that if a command is getting too long, we can type a back-
slash and then continue in the next line. When the shell sees the backslash charac-
ter, it ignores the start of a new line and pretends that you typed a space instead of
pressing return.

; date ; \
;; date ; \
;; date
Sat Jul 8 01:19:54 MDT 2006
Sat Jul 8 01:19:54 MDT 2006
Sat Jul 8 01:19:54 MDT 2006
;

The double semicolon that we get after typing the backslash and pressing return is
printed by the shell, to prompt for the continuation of the previous line (prompts
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might differ in your system). By the way, backslash, \, is called an escape
character because it can be used to escape from the special meaning that other
characters have (e.g., to escape from the character that starts a new line).

We can create a file by using acme, as you know. To create an empty file, we
can use touch, and then lc to see our outcome.

; touch hello
; lc
bin hello lib tmp
;

The lc command was not necessary, of course. But that lets you see the outcome
of executing touch. In the following examples, we will be doing the same to
show what happens after executing other commands.

Here, we gave an argument to the touch command: hello. Like func-
tions in C, commands accept arguments to give "parameters# to them. Command
arguments are just strings. When you type a command line, the shell breaks it into
words separated by white space (spaces and tabs). The first word identifies the
command, and the following ones are the arguments.

We can ask ls to give a lot of information about hello. But first, lets list
just that file. As you see, ls lists the files you give as arguments. Only if you
don’t supply a file name, all files are listed.

; ls hello
hello
;

We can see the size of the file we created giving an option to ls. An option is an
argument that is used to change the default behavior of the command. Some
options specify certain flags to adjust what the command does. Options that specify
flags always start with a dash sign, "-#. The option -s of ls can be used to print
the size along with the file name:

; ls -s hello
0 hello
;

Touch created an empty file, therefore its size is zero.
You will be creating files using acme. Nevertheless, you may want to copy an

important file so that you don’t loose it by accidents. We can use cp to copy files:
; cp hello goodbye
; lc
bin goodbye hello lib tmp
;

We can now get rid of hello and remove it, to clean things up.
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; rm hello
; lc
bin goodbye lib tmp
;

Many commands that accept a file name as an argument also accept multiple ones.
In this case, they do what they know how to do to all the files given:

; lc
bin goodbye lib tmp
; touch mary had a little lamb
; lc
a goodbye lamb little tmp
bin had lib mary
; rm little mary had a lamb
; lc
bin goodbye lib tmp

Was rm very smart? No. For rm, the names you gave in the command line were
just names for files to be removed. It did just that.

A related command lets you rename a file. For example, we can rename
goodbye to hello again by using mv (move):

; mv goodbye GoodBye
; lc
GoodBye bin lib tmp
;

Let’s remove the new file.
; rm goodbye
rm: goodbye: ’goodbye’ file does not exist

What? we can see it! What happens is that file names are case sensitive. This
means that GoodBye, goodbye, and GOODBYE are entirely different names.
Because rm could not find the file to be removed, it printed a message to tell you.
We should have said

; rm GoodBye
; lc
bin lib tmp

In general, when a command can do its job, it prints nothing. If it completes and
does not complaint by printing a diagnostic message, then we know that it could do
its job.

Some times, we may want to remove a file and ignore any errors. For exam-
ple, we might want to be sure that there is no file named goodbye, and would not
want to see complaints from rm when the file does not exist (and therefore cannot
be removed). Flag -f for rm achieves this effect.
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; rm goodbye
rm: goodbye: ’goodbye’ file does not exist
; rm -f goodbye

Both command lines achieve the same effect. Only that the second one is silent.

1.7. Directories
As it happens in Windows and most other systems, Plan 9 has folders. But it uses
the more venerable name directory for that concept. A directory keeps several files
together, so that you can group them. Two files in two different directories are two
different files. This seems natural. It doesn’t matter if the files have the same name.
If they are at different directories, they are different.

/

386 usr tmp

nemo glenda mero

bin lib tmp

Figure 1.5: Some files that user Nemo can find in the system.

Directories may contain other directories. Therefore, files are arranged in a tree.
Indeed, directories are also files. A directory is a file that contains information
about which files are bounded together in it, but that’s a file anyway. This means
that the file tree has only files. Of course, many of them would be directories, and
might contain other files.

Figure 1.5 shows a part of the file tree in the system, relevant for user Nemo.
You see now that the files bin, lib, and tmp files that we saw in some of the
examples above are kept within a directory called nemo. To identify a file, you
name the files in the path from the root of the tree (called slash) to the file itself,
separating each name with a slash, /, character. This is called a path. For exam-
ple, the path for the file lib shown in the figure would be /usr/nemo/lib.
Note how /tmp and /usr/nemo/tmp are different files, depite using the name
tmp in both cases.

The first directory at the top of the tree, the one which contains everything
else, is called the root directory (guess why?). It is named with a single slash, /.
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; ls /
386
usr
tmp
...other files omitted...
;

That is the only file whose name may have a slash on it. If we allowed using the
slash within a file name, the system would get confused, because it would not
know if the slash is part of a name, or is separating different file names in a path.

Typing paths all the time, for each file we use, would be a burden. To make
things easier for you, each program executing in the system has a directory associ-
ated to it. It is said that the program is working in that directory. Such directory is
called the current directory for the program, or the working directory for the pro-
gram.

When a program uses file names that are paths not starting with /, these paths
are walked in the tree relative to its current directory. For example, the shell we
have been using in the previous examples had /usr/nemo as its current directory.
Therefore, all file names we used were relative to /usr/nemo. This means that
when we used goodbye, we were actually referring to the file
/usr/nemo/goodbye. Such paths are called relative paths. By the way, paths
starting with a slash, i.e., from the root directory, are called absolute paths.

Another important directory is /usr/nemo, it is called the home directory
for the user Nemo. The reason for this name is that Nemo’s files are kept within
that directory, and because the shell started by the system when Nemo logs in (the
one that usually runs the window system), is using that directory initially as its cur-
rent directory. That is the reason why all the (shells running at) windows we open
in rio have /usr/nemo as their initial current directory. What follows is a sim-
ple way to know which users have accounts in the system:

; lc /usr
esoriano glenda nemo mero paurea
;

There is an special file name for the current directory, a single dot: ".". Therefore,
we can do two things to list the current directory in a shell

; lc
bin lib tmp
; lc .
bin lib tmp
;

Note the dot given as the file to list to the second command. When ls or lc are
not given a directory name to list, they list the current directory. Therefore, both
commands print the same output. Another special name is "..#, called dot-dot. It
refers the parent directory. That is, it walks up one element in the file tree. For
example, /usr/nemo/.. is /usr, and /usr/nemo/../.. is simply /.

To change the current directory in the shell, we can use the cd (change dir)
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command. If we give no argument to cd, it changes to our home directory. To
know our current working directory, the command pwd (print working directory)
can be used. Let’s move around and see where we are:

; cd
; pwd
/usr/nemo
; cd / ; pwd
/
; cd usr/nemo/lib ; pwd
/usr/nemo/lib
; cd ../.. ; pwd
/usr

This command does nothing. Can you say why?
; cd .
;

Now we know which one is the current working directory for commands we exe-
cute. But, which one would be the working directory for a command executed
using acme? It depends. When you execute a command in acme, its working
directory is set to be that shown in the window (or containing the file shown in the
window). So, the command we executed time ago in the acme window for
/usr/nemo had /usr/nemo as its working directory. If we execute a command
in the window for a file /usr/nemo/newfile, its working directory would be
also /usr/nemo.
Directories can be created with mkdir (make directory), and because they are
files, they can be also removed with rm. Although, because it may be dangerous,
rm refuses to remove a directory that is not empty.

; cd
; mkdir dir
; lc
bin dir lib tmp
; rm dir
; lc
bin lib tmp
;

The command mv, that we saw before, can move files from one directory to
another. Hence its name. When the source and destination files are within the same
directory, mv simply renames the file (i.e., changes the name for the file in the
directory).
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; touch a
; lc
a bin lib tmp
; mkdir dir
; lc
a bin dir lib tmp
; mv a dir/b
; lc
bin dir lib tmp
; lc dir
b
;

Now we have a problem, ls can be used to list a lot of information about a file.
For example, flag -m asks ls to print the name of the user who last modified a file,
along with the file name. Suppose we want to know who was the last user who
created or removed a file at dir. We might do this, but the output is not what we
could perhaps expect:

; ls -m dir
[nemo] dir/b
;

The output refers to file b, and not to dir, which was the file we were interested
in. The problem is that ls, when given a directory name, lists its contents. Option
-d asks ls not to list the contents, but the precise file we named:

; ls -md dir
[nemo] dir

Like other commands, cp works with more than one file at a time. It accepts more
than one (source) file name to copy to the destination file name. In this case it is
clear that the destination must be a directory, because it would make no sense to
copy multiple files to a single one. This copies the two files named to the current
directory:

; cp /LICENSE /NOTICE .
; lc
LICENSE NOTICE bin dir lib tmp

1.8. Files and data
Like in most other systems, in Plan 9, files contain bytes. Plan 9 does not know
(nor cares) about what is in a file. It just provides the means to let you create,
remove, read, and write files. If you store a notice in a file, it is you who knows
that it is a notice. For Plan 9, that is just bytes. We can use cat (catenate) to dis-
play what is in a file:
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; cat /NOTICE
Copyright © 2002 Lucent Technologies Inc.
All Rights Reserved
;

This program reads the files you name and prints their contents. Of course, if you
name just one, it prints just its content. If you cat a very long file in a Plan 9 ter-
minal, beware that you might have to press the down arrow key in your keyboard
to let the terminal scroll down.

What is stored at /NOTICE? We can see a dump of the bytes kept within
that file using the program xd (hexadecimal dump). This program reads a file and
writes its contents so that it is easy for us to read. Option -b asks xd to print the
contents as a series of bytes:

; xd -b /NOTICE
0000000 43 6f 70 79 72 69 67 68 74 20 c2 a9 20 32 30 30
0000010 32 20 4c 75 63 65 6e 74 20 54 65 63 68 6e 6f 6c
0000020 6f 67 69 65 73 20 49 6e 63 2e 0a 41 6c 6c 20 52
0000030 69 67 68 74 73 20 52 65 73 65 72 76 65 64 0a
000003f
;

The first column in the program output shows the offset (the position) in the file
where the bytes printed on the right can be found. This offset is in hexadecimal (we
write hexadecimal numbers starting with 0x, as done in C). For example, the byte
at position 0x10, which is the byte at position 16 (decimal) has the value 0x32.
This is the 17th byte! The first byte is at position zero, which makes arithmetic
simpler when dealing with offsets.

So, why does cat display text? It’s all numbers. The program cat reads
bytes, and writes them to its output. Its output is the terminal in this case, and the
terminal assumes that everything it shows is just text. The text is represented using
a binary codification known as UTF-8. This format encodes runes (i.e, characters,
kanjis, and other glyphs) as a sequence of bytes. For most of the characters we use,
UTF-8 uses exactly the same format used by ASCII (another standard that codifies
each character using a single byte). The program implementing the terminal (the
window) decodes UTF-8 to obtain the runes to display, and renders them on the
screen.

We can ask xd to do the same for the file contents. Adding option -c, the
program prints the character for each byte when feasible:



- 21 -

; xd -b -c /NOTICE
0000000 43 6f 70 79 72 69 67 68 74 20 c2 a9 20 32 30 30

0 C o p y r i g h t c2 a9 2 0 0
0000010 32 20 4c 75 63 65 6e 74 20 54 65 63 68 6e 6f 6c

10 2 L u c e n t T e c h n o l
0000020 6f 67 69 65 73 20 49 6e 63 2e 0a 41 6c 6c 20 52

20 o g i e s I n c . \n A l l R
0000030 69 67 68 74 73 20 52 65 73 65 72 76 65 64 0a

30 i g h t s R e s e r v e d \n
000003f

Here we see how the value 0x43 represents the character "C#. If you look after the
text Copyright, you see 0xc2 0xa9, which is the UTF-8 representation for the
"©# sign. This program does not know and all it can do is print the byte values.

Another interesting thing is shown near the end of each line in the file. After
the text in the first line, we see a "\n#. That is a byte with value 0x0a. The same
happens at the end of the second line (the last line in the file). The syntax "\n# is
used to represent control characters, i.e., characters not to be printed as text. The
character \n is just a 0x0a byte stored in the file, but xd printed it as \n to let us
recognize it. This syntax is understood by many programs, like for example the C
compiler, which admits it to embed control characters in strings (like in
"hello\n").

Control characters have meaning for many programs. That is way they seem
to do things (but of course they do not!). For example, "\n# is the new-line charac-
ter. It can be generated using the keyboard by pressing the Return key. When
printed, it causes the current line to terminate and the following text will be printed
starting at the left of the next line.

If you compare the output of xd and the output of cat you will see how each
one of the two lines in /NOTICE terminates with an end of line character that is
precisely \n. That is the convention in Plan 9 (and UNIX). The new line character
terminates a line only because programs in Plan 9 (and UNIX) follow the conven-
tion that lines terminate with a \n character. The terminal shows a new line when
it finds a \n, programs that read files a line at a time decide that they get a line
when a \n character is found, etc. It is just a convention.

Windows (and its predecessor MSDOS) use a different format to encode text
lines, and terminates each line with two characters: "\r\n# (or carriage-return,
and new-line). This comes from the times when computers used a tele-typewriter
(tty) machine for console output. The former character, \r, makes the carriage in
the typewriter return to its left position. We have to admit, there are no typewriters
anymore. But the character \r makes the following text appear on the left of the
line. The \n character advances the carriage (sic) to the next line. That is why \n
is also known as the line-feed character. A consequence is that if you display in
Plan 9 a Windows text file, you will see one little control character at the end of
each line:
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; cat windowstext
This is one line!
and this is another!
;

That is the \r. Going the other way around, and displaying in Windows a text
typed in Plan 9, may produce this output

This is one line
and this is another

because Windows misses the carriage-return character.
Now that we can see the actual contents of a file, there is another interesting

thing to note. There is no EOF (end of file) character! Such thing is an invention of
some programming languages. For Plan 9, the file terminates right after the last
byte that has been stored on it.

Another interesting control character is the tabulator, generated pressing the
Tab key in the keyboard. It is used in text files to cause editors and terminals to
advance the text following the tabulator character to the next tab-stop. On type-
writers (sorry once more), the carriage could be quickly advanced to particular
columns (called tab-stops) by hitting a Tab key. This control character achieves the
same effect. Of course, there is no carriage any more and Tab advances to, say, the
next column that is a multiple of 8 (column 8, 16, etc.). This value is called the
tab-width. The file scores contains several tabs.

; cat scores
Real Madrid 1
Barcelona 0
; xd -c scores
0000000 R e a l M a d r i d \t 1 \n B a
0000010 r c e l o n a \t 0 \n
000001a

Note how in the output for cat, the terminal tabulates the scores to form a column
after the names. The number 0 is shown right below the number 1. However, the
output from xd reveals that there are no spaces after Madrid and Barcelona.
Following each name, there is a single \t character, which is the notation for Tab.
In general, \t is used to tabulate data and to indent source code. The appearance of
the output text depends on the tab width used by the editor or the terminal (which
was 8 characters in our case). The net effect is that it is a bad idea to mix spaces
and tabs to indent code or tabulate data. Depending on the editor, a single tab may
displace the following text 8, 4, 2, or any other number of characters (it depends on
where the editor considers the tab stop to be).

The point is that characters like \n, \r, and \t are control characters, with
special meaning, just because there are programs that use them to represent actions
and not to represent literal text. Table 1.1 shows some usual control characters and
their meaning.

The table shows the usual escape syntax (a backslash and a character) used by
most programs to represent control characters (including the C compiler), and how
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___________________________________________________________
Byte value Character Keyboard Description___________________________________________________________
04 control-d end of transmission (EOT)
08 \b Backspace remove previous character
09 \t Tab horizontal tabulation
0a \n Return line feed
0d \r carriage return
1b Esc escape___________________________________________________________!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!

Table 1.1: Some control characters understood by most systems and programs.

to generate the characters using the keyboard. Not all the control characters are
shown and not all the cells in the table contain information. We included just what
you should know to avoid discomfort while using the system.

To summarize, files contain just data that has no meaning per-se. Only pro-
grams and users give meaning to data. This is what you could see here.

1.9. Permissions
Each file in Plan 9 can be secured to provide some privacy and restrict what people
can do with the file. The security mechanism to control access to files is called an
access control list. This is like the list given to security guards to let them know
who are allowed to get into a party and what are they allowed to do inside. In this
case, the system is the security guard, and it keeps an access control list (or ACL)
for each file. To be more precise, the program that keeps the files, i.e., the file
server, keeps an ACL for each file.

The ACL for a file describes if the file can be read, can be written, and can
be executed. Who can be allowed by the ACL to do such things? The file server
keeps a list of user names. You had to give your user name to log into the system
and access your files in the file server. Depending on your user name, you may be
allowed or not to read, write, and execute a particular file. It depends on what the
file’s ACL says.

Because it would be too inconvenient to list these permissions for all the
users in the ACL for each file, a more compact representation is used. Each file
belongs to a user, the one who created it. And each user is entitled to a group of
users. The ACL lists read, write, and execute permissions for the owner of the file,
for any other user in the group of users, and for the rest of the world. That is just
nine permissions instead of a potentially very long list.

In the file server, each user account can be used as a group. This means that
your user name is also a group name. The group that contains just you as the only
member. This is the output of ls when called to print long listing for a file. It list
permissions and ownership for the file:

; cd
; ls -l lib/profile
--rwxrwxr-x M 19 nemo nemo 1024 May 30 16:31 lib/profile
;
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You see a user name listed twice. The first name is the owner for the file. It is
nemo in this case. The second name is the user group for the file, which is also
nemo in this case. This group contains a single user, nemo.

The initial "-# printed by ls indicates that the file is a not a directory. For
directories, a "d# would be printed instead. The following characters show the ACL
for the file, i.e., its permissions.

There are three groups of rwx permissions, each one determining if the file
can be read (r), written (w) and executed (x). The first rwx group refers to the
owner of the file. For example, if r is set on it, the owner of the file can read the
file. As you see for lib/profile, nemo (its owner) can read, write, and exe-
cute this file.

The second rwx group determines permissions applied to any other user who
belongs to the group for the file. In this case the group is also nemo, which con-
tains just this user. The last rwx group sets permissions applied to any other user.
For example, esoriano can read and execute this file, but he cannot write it. The
permissions for him (not the owner, and not in the group) are r-x, which mean
this.

Because it does not makes sense to grant the owner of a file less permissions
than to others, the file owner has a particular permission if it is enabled for the
owner, the group, or for the others. The same applies for members of the group.
They have permission when either permissions for the group or permissions for
others grant access.

In general, read permission means permission to access the file to consult its
contents. Write permission means permission to modify the file. This includes not
just writing the file, but also truncating it. Execute permission means the right to
ask a Plan 9 kernel to execute the file. Any file with execution permission is an
executable file in Plan 9.

For directories, the meaning of the permissions is different. For a directory,
read permission means permission to list the directory. Because the directory has to
be read to list its contents. Write permission means permission to create and
remove files in the directory. These operations require writing the directory con-
tents. Execute permission means the right to enter, i.e., to cd into it.

When there is a project involving several users, it is convenient to create a
directory for the files of the project and to create a group of users for that project.
All files created in that directory will be entitled to the group of users that the
directory is entitled to. For example, this directory keeps documents for a project
called Plan B:

; ls -ld docs
d-rwxrwxr-x M 19 nemo planb 0 Jul 9 21:28 docs

If we create a file in that directory, permissions get reasonable:
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; cd docs
; touch memo
; ls -l memo
--rw-rw-r-- M 19 nemo planb 0 Jul 9 21:30 memo

The group for the new file is planb, because the group for the directory was that
one. The file has write permission for users in the group because that was the case
for the directory.

To modify permissions, the chmod (change mode) command can be used. Its
first argument grants or revocates permissions. The following arguments are files
where to perform this permission change. For example, to grant execution permis-
sion for file program, you may execute

; chmod +x program

To remove write permission for an important file that is not to be overwritten, you
may

; chmod -w file

The + sign grants permission. The - sign removes it. The characters following this
sign indicate which permissions to grant or remove. For example, +rx grants both
read and execution permissions.

If you want to change the permissions just for the owner, or just for the
group, or just for anyone else, you may specify this before the + or - sign. For
example,

; chmod g+r docs

grants read permission to users in the group. Permissions for the owner and for the
rest of the world remain unaffected. In the same way u+r would grant read permis-
sion for the owner, and o+r would do the same for others.

In some cases, for example, in C programs, you are going to have to use an
integer to indicate file permissions. There are three permissions repeated three
times, once for the user, once for the group, and once for others. This is codified as
nine bits. Using a number in octal base, which has three bits for each digit, it is
very simple to write a number for a given permission set.

For example, consider the ACL rwxr-xr-x. That is three bits for the user,
three for the group, and three for others. A bit is set to grant permission and clear to
deny it. For the user, the bits would be 111, for the group, they would be 101, and
for the others they would also be 101.

You know that 111 (binary) is 7 decimal. It is the same in octal. You also
know that 101 (binary) is 5 decimal. It is the same in octal. Therefore, an integer
value representing this ACL would be 0755 (octal). We use the same format used
by C to write octal numbers, by writing an initial 0 before the number. Figure 1.6
depicts the process. Thus, the command

; chmod 755 afile

would leave afile with rwxr-xr-x permissions.
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r w x r - x r - x

1 1 1 1 0 1 1 0 1

7 5 5

Figure 1.6: Specifying permissions as integers using octal numbers.

1.10. Writing a C program in Plan 9
Consider the traditional "take me to your leader!# program$, that we show here.
We typed it into a file named take.c. When we show a program that is stored in
a particular file, the file name is shown in a little box before the file contents.
!take.c !" """""______

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

print("take me to your leader!\n");
exits(nil);

}

This program is just text stored in a file. To execute it, we must compile it and then
link the program with whatever libraries are necessary (in this case, the C library).
There is one command for each task:

; 8c take.c # compile it
; 8l take.8 # link the resulting object
;

As you see, the shell ignores text following the # sign. That is the line-comment
character for rc. That is usual in most shells found in other systems, like UNIX.
The C compiler for Intel architectures is 8c (80x86 compiler) and 8l is the linker
(In Plan9, 8l is called a loader, because it prepares the way for loading the result-
ing program into memory). Object files generated by 8c use the extension .8, to
make it clear that the object is for an Intel (it reminds of 8086). The binary file pro-
duced by linking the object file(s) and the libraries implied is named 8.out, when
using 8l. This binary has execute permission and can be executed.

In Plan 9 there are many C compilers. One for each architecture where the
system runs. And, as it could be expected, each compiler has been compiled for all
the architectures where the system runs. For example, for the Arm, the compiler is
________________
$ Because we talk about Plan 9, this program is more appropriate than the one you are thinking on. If
you don’t know why, you did not use Internet to discover why this system has this name.
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5c and the linker 5l. We have these programs available for all the architectures
(e.g., PCs, and Arms). To compile for one architecture you only have to use the
compiler that generates code for it. But you can compile from any other architec-
ture because the compiler itself is available for all of them.

For the Arm, the files generated by the compiler and the linker would be
take.5 and 5.out. This makes it easy to compile a single program for execu-
tion at different platforms in the same directory. We still know which file is for
which architecture. Now you may have the pleasure of executing your first hand-
made Plan 9 program

; 8.out
take me to your leader!
;

The Plan 9 C dialect is not ANSI (nor ISO) C. It is a variant implemented by Ken
Thompson. One of the authors of UNIX. It has a few differences with respect to the
C language you can use in other system. You already noticed some. Most programs
include just two files, u.h, which contains machine and system definitions, and
libc.h, which contains most of the things you will need. The header files include
a hint for the linker that is included in the object file. For example, this is the first
line in the file libc.h:

#pragma lib "libc.a"

The linker uses this to automatically link against the libraries with headers included
by your programs. There is no need to supply a long list of library names in the
command line for 8l!.

There are several flags that may be given to the compiler to make it more
strict regarding the source code. It is very sensible to use them always. The 8c(1)
manual page details them, and we hope you just take them as a custom:

; 8c -FVw take.c

The binary file generated by 8l is 8.out, by default. But it may be more conve-
nient to give a better name to this file. This can be done with the -o option for the
linker. If we use a file name like take, the file should be kept at a directory where
it is clear which architecture it has been compiled for. For example, for PCs, bina-
ries are kept at /386/bin or at /usr/nemo/bin/386 for the user nemo. This
is what is done when the program is installed for people to use. People enjoy typ-
ing just the program name.

But otherwise, it is a custom to generate a binary file with a name that states
clearly the architecture it requires. Think that you may be compiling a program
today while using a PC as a terminal. Tomorrow morning you might be doing the
same on an Alpha. You wouldn’t like to get confused.

The tradition to name the binary file is to use the name 8.out if the direc-
tory contains the source code for just one program, or a name like 8.take if there
are multiple programs that can be compiled in the same directory. This is our case.

In this text we will always compile for the same architecture, an Intel PC,
unless said otherwise, and generate the binary in the directory where we are
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working. For example, for our little program, this would be the command used to
generate its binary:

; 8l -o 8.take take.8

For the first few programs, we will explicitly say how we compiled them. Later, we
start assuming that you remember that the binary for a file named take.c was
compiled and linked using

; 8c -FVw take.c
; 8l -o 8.take take.8
;

and the resulting executable is at 8.take.
There is an excellent paper for learning how to use the Plan 9 C compiler [6].

It is a good thing to read if you want to learn more details not described here about
how to use the compiler.

1.11. The Operating System and your programs
So far so good. But, what is the actual relation between the system and your pro-
grams? How can you understand what happens? You will see that things are sim-
pler than you did image. But let’s revisit what happens to your program after you
write it, before bringing the operating system in the play. We can use some com-
mands to do this. By now, ignore what you cannot understand.

; ls -l take.c take.8 8.take
--rwxr-xr-x M 19 nemo nemo 36280 Jul 2 18:46 8.take
--rw-r--r-- M 19 nemo nemo 388 Jul 2 18:46 take.8
--rw-r--r-- M 19 nemo nemo 110 Jul 2 18:46 take.c

The command ls tells us that take.c has 110 bytes in it. That is the text of our
program. After 8c compiled it, the resulting object file take.8 has just 388 bytes
in it. The contents are machine instructions for our program plus initial values for
our variables (e.g., the string printed) and some other information. If we take this
object file, and give it to 8l to link it against the C library and produce the binary
file 8.take, we get a file with 36.280 bytes on it.

Let’s try to gather more information about these files. The command nm
(name list) displays the names of symbols (i.e., procedure names, variables) that are
contained or required by our object and executable files.
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; nm take.8
U exits
T main
U print

; nm 8.take
... more output...
1131 T exits
1020 T main
118d T print
... more output...

;

It seems that take.8 contains a procedure called main. We call text to binary
program code, and nm prints a T before names for symbols that are text and are
contained in the object file. Besides, our object file requires at least two other pro-
cedures, exits, and print to build a complete binary program. We know this
because nm prints U (undefined, but required) before names for required things.

If we look at the output for the executable file, you will notice that the three
procedures are in there. Furthermore, they now have addresses! The code for
exits is at address 1131 (hexadecimal), and so on. The code that is now linked
to our object file comes from the C library. It was included because we included
the library’s header libc.h in our program and called some functions found in
that library. The linker, 8l, knew where to find that code.

But there is more code that is used by our program and is not contained in the
binary file. When our program calls print, this function will write bytes to the
output (e.g., the window). But the procedure that knows how to write is not in our
program, nor is in the C library. This procedure is within the operating system ker-
nel. A procedure provided by the system is known as a system call, calling such
procedure is known as making a system call.

main() { ...}

write() { ...}

main() { ...}
procedure

call print() { ...}

system call

Your program Other program

System kernel

Figure 1.7: System calls, user programs, and the system kernel.

Figure 1.7 depicts two different programs, e.g., the one you executed before
and another one, and the system kernel. Those programs are executing, not just
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files sitting on a disk. Your program contains all the code it needs to execute,
including portions of the C library. Your main procedure calls print, with a
local procedure call. The code for print was taken from the C library and linked
into your program by 8l. To perform its job, print calls another procedure,
write, that is contained within the operating system kernel. That is a system call.
As you can see in the figure, the other program might perform its own system calls
as well.

In general, you don’t mind if a particular function is a system call or is
defined in the standard system library (the C library). Many functions that are part
of the interface of the system are not actual system calls (i.e., are not implemented
within the kernel), but library functions. For example, the manual page for read(2)
gives multiple functions that can be used to read and write a file. However, only
one, or maybe a few, are actual system calls. The others are implemented within
the C library in terms of the real system call(s). Going from one version of the sys-
tem to another, we may find that an old system call is now a library function, and
vice-versa. What matters is that the function is part of the programmer’s interface
for a system provided abstraction. Indeed, in what follows, we may refer to func-
tions within the C library as system calls. Be warned. In any case, the entire section
2 of the manual describes the functions available.

As a remark, programmer’s interfaces are usually called APIs, for Applica-
tion Programmer’s Interface.

1.12. Where are the files?
If you remember, we said that your files are not kept in the machine you use to exe-
cute Plan 9 commands and programs. Plan 9 calls the machine you use, a terminal,
and the machine where the files are kept, a file server. The Plan 9 that runs at your
terminal lets you use the files that you have available at other places in the net-
work, and there can be many of them. For simplicity, we assume that all your files
are stored at a single machine behaving as the file server.

How does this work? What we said about how a program performs a system
call to the kernel, to write into a file, is still true. But there was something missing
in the description we made in the last section. To do the write you requested, your
Plan 9 kernel is likely to need to talk to another machine. Most probably, your ter-
minal does not have the file, and must get in touch with the file server to ask him to
write the file.

Figure 1.8 shows the steps involved for doing the same print shown in the
last section. This time, it shows how the file server comes into play, and it shows
only your program. Other programs running at your terminal would follow a simi-
lar path.
1 Your program makes a procedure call, to the function print in the C

library.
2 The function makes a system call to the kernel in your machine. This is simi-

lar to a procedure call, but calls a procedure that is implemented by your ker-
nel and shared among all the programs in your terminal. Because the kernel
protects itself to prevent your program from calling arbitrary procedures in
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main(){

...

}

print(){

...

}

1. call

6. return

write(){

...

}

2. system call5. return

write(){

...

}

...........................................................................................
3. message: write!

...........................................................................................
4. message: done!

Your program

Your terminal’s kernel File server

Figure 1.8: Your system kernel makes a remote procedure call to write a file in the file server.

the kernel, a software interrupt is the mechanism used to perform this call.
This is called a trap, and is mostly irrelevant for you now.

3 The code for the write function (the system call) in the kernel, must send a
message through the network to the machine that keeps the file, to the file
server. This message contains a request to perform the write operation and all
the information needed to perform it, e.g., all the values and data you sup-
plied as parameters for the write.

4 The remote machine, the file server, performs the operation and replies send-
ing a message through the network back to your terminal. The message
reports if the operation was completed or not, and contains any output result
for the operation performed, e.g., the number of bytes that could be written
into the file.

5 Your kernel does some bookkeeping and returns to your system call the result
of the operation (as reported by the other machine).

6 The library function returns to your program when everything was printed.
Steps 3 and 4 are called a remote procedure call. This is not as complex as it
sounds, but it is not a procedure call either. A remote procedure call is a call made
by one program to another that is at a different place in the network. Because your
processor cannot call procedures kept at different machines, what the system does
is to send a message with a request to do something, and to receive a reply back
with any result of interest.

1.13. The Shell, commands, binaries, and system calls
It is important to know how these elements come into play. As you know, the oper-
ating system provides the implementation of several functions, known as system
calls. These functions provide the interface for the abstract data types invented by
the system, to make it easier to use the computer.

In general, the only way to use the system is to write a program that makes
system calls. However, there are many programs already compiled in your system,
ready to run. To provide you some mean to run them, another program is provided:
the shell. When you type a command name at the shell prompt, the shell searches
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for a file with the same name located at a directory that, by convention, keeps the
executable files for the system. If the shell finds such file, it asks the system to exe-
cute it.

read
command line shell execute

/bin/ls ls

system kernel

Figure 1.9: Executing commands.

Figure 1.9 shows what happens when you type ls at the shell prompt. First,
the shell reads your command line. It looks for a file named /bin/ls, and
because there is such file, the shell executes it. To read the command line, and to
execute the corresponding file for the command you typed, the shell uses system
calls. Only the operating system knows what it means to "read# and to "execute# a
file. Remember, the hardware knows nothing about that!

The consequence of your command request is that the program contained in
/bin/ls is loaded into memory by the operating system and gets executed as a
new program. Note that if you create a new executable file, you have created a new
command. All you have to do to run it is to give its (file) name to the shell.

When you run a window system, things are similar. The only difference is
that the window system must read input from both the mouse and the keyboard and
writes at a graphics terminal instead of at a text display. Of course, when the win-
dow system creates (i.e., "invents#) a new window, it has to ask the system to run a
shell on it.

1.14. The Operating System and the hardware
As you can imagine now, most of the time, the operating system is not even exe-
cuting. Usually, it is your code the one running in the processor. At least, until the
point in time when your program makes a system call. At that point, the operating
system code takes control (because its code starts executing) and performs your
request.

However, the hardware may also require attention from the operating system.
As you know from computer architecture courses, this is done by means of hard-
ware interrupts. When data arrives from the network, or you hit a keyboard key, the
hardware device interrupts the processor. What happens later is that the interrupt
handler runs after the hardware saves the processor state.

The interrupt handlers are kept within the operating system kernel. The kernel
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contains the code used to operate each particular device. That is called a device
driver. Device drivers use I/O instructions to operate the devices, and the devices
interrupt the processor to request the attention of their drivers. Thus, while your
program is executing, a device might interrupt the processor. The hardware saves
some state (registers mostly) and the operating system starts executing to attend the
interrupt. Many times, when the interrupt has been serviced, the operating system
will return from the interruption and your code would be running again.

You can think that the kernel is a library but not just for your programs, also
for things needed to operate the hardware. You make system calls to ask the system
to do things. The hardware issues interrupts for that purpose. And most of the time,
the system is idle sitting in memory, until some one makes a call.

Problems
1 Open a system shell, execute ip/ping to determine if all of the machines at

the network 213.128.4.0 are alive or not. To do this, you have to run these
254 commands:
; ip/ping -n 1 213.128.4.1
; ip/ping -n 1 213.128.4.2
...

; ip/ping -n 1 213.128.4.254

The option -n with argument 1 tells ping to send just one probe and not 64,
which would be its default.

2 Do the same using this shell command line:
; for (m in ‘{seq 1 254}) { ip/ping 213.128.4.$m }

This line is not black magic. You are quite capable of doing things like this,
provided you pass this course.

3 Start the system shell in all the operating systems where you have accounts. If
you know of a machine running an unknown system where you do not have
an account, ask for one and try to complete this exercise there as well.

4 Does your TV set remote control have its own operating system? Why does
your mobile phone include an operating system? Where is the shell in your
phone?

5 Explain this:
; lc .
bin lib tmp
; ls.
ls.: ’/bin/ls.’ file does not exist

6 How many users do exist in your Plan 9 system?
7 What happens if you do this in your home directory? Explain why.

; touch a
; mv a a



- 34 -

8 What would happen when you run this? Try it and explain.
; mkdir dir
; touch dir/a dir/b
; rm dir
; mv dir /tmp

9 And what if you do this? Try it and explain.
; mkdir dir dir/b
; cd dir/b
; rm ../b
; pwd



2 ! Programs and Processes
______
2.1. Processes
A running program is called a process. The name program is not used to refer to a
running program because both concepts differ. The difference is the same that you
may find between a cookie recipe and a cookie. A program is just a bunch of data,
and not something alive. On the other hand, a process is a living program. It has a
set of registers including a program counter and a stack. This means that it has a
flow of control that executes one instruction after another as you know.

The difference is quite clear if you consider that you may execute simultane-
ously the same program more than once. For example, figure 2.1 shows a window
system with three windows. Each one has its own shell. This means that we have
three processes running /bin/rc, although there is only a single program for
those processes. Namely, that kept stored in the file /bin/rc. Furthermore, if we
change the working directory in a shell, the other two ones remain unaffected. Try
it! Suppose that the program rc keeps in a variable the name for its working direc-
tory. Each shell process has its own current working directory variable. However,
the program had only one such variable declared.

Figure 2.1: Three /bin/rc processes. But just one /bin/rc.

So, what is a process? Consider all the programs you made. Pick one of them.
When you execute your program and it starts execution, it can run independently
of all other programs in the computer. Did you have to take into account other pro-
grams like the window system, the system shell, a clock, a web navigator, or any
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other just to write your own (independent) program and execute it? Of course not.
A brain with the size of the moon would be needed to be able to take all that into
account. Because no such brains exist, operating systems provide the process
abstraction. To let you write and run one program and forget about other running
programs.

Each process gets the illusion of having its own processor. When you write
programs, you think that the machine executes one instruction after another. But
you always think that all the instructions belong to your program. The implementa-
tion of the process abstraction included in your system provides this fantasy.

When machines have several processors, multiple programs can be executed
in parallel. i.e., at the same time. Although this is becoming common, many
machines have just one processor. In some cases we can find machines with two or
four ones. But in any case, you run many more programs than processors are
installed. Count the number of windows at your terminal. There is at least one pro-
gram per window. You do not have that many processors.

What happens is that the operating system makes arrangements to let each
program execute for just some time. Figure 2.2 depicts the memory for a system
with three processes running. Each process gets its own set of registers, including
the program counter. The figure is just a snapshot made at a point in time. During
some time, the process 1 running rio may be allowed to proceed, and it would
execute its code. Later, a hardware timer set by the system may expire, to let the
operating system know that the time for this process is over. At this point, the sys-
tem may jump to continue the execution of process 2, running rc. After the time
for this process expires, the system would jump to continue execution for process
3, running rio. When time for this process expires, the system may jump back to
process 1, to continue where it was left at.

...

addl bx, di

addl bx, si

subl $4, di

movl bx, cx

...

Rio

(process #1)

...

cmpl si, di

jls label

movl bx, cx

addl bx, si

...

Rio

(process #3)

PC

PC

...

addl bx, di

addl bx, si

subl $4, di

movl bx, cx

...

Rc

(process #2)
PC

System

Memory

Figure 2.2: Concurrent execution of multiple programs in the same system.

All this happens behind the scenes. The operating system program knows that
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there is a single flow of control per processor, and jumps from one place to another
to transfer control. For the users of the system, all that matters is that each process
executes independently of other ones, as if it had a single processor for it.

Because all the processes appear to execute simultaneously, we say they are
concurrent processes. In some cases, they will really execute in parallel when
each one can get a real processor. In most cases, it would be a pseudo-parallel
execution. For the programmer, it does not matter. They are just concurrent pro-
cesses that seem to execute simultaneously.

In this chapter we are going to explore the process we obtain when we exe-
cute a program. Before doing so, it is important to know what’s in a program and
what’s in a process.

2.2. Loaded programs
When a program in source form is compiled and linked, a binary file is generated.
This file keeps all the information needed to execute the program, i.e., to create a
process that runs it. Different parts of the binary file that keep different type of
information are called sections. A binary file starts with a few words that describe
the following sections. These initial words are called a header, and usually show
the architecture where the binary can run, the size and offset in the file for various
sections.

One section (i.e., portion) of the file contains the program text (machine
instructions). For initialized global variables of the program, another section con-
tains their initial values. Note that the system knows nothing about the meaning of
these values. For uninitialized variables, only the total memory size required to
hold them is kept in the file. Because they have no initial value, it makes no sense
to keep that in the file. Usually, some information to help debuggers is kept in the
file as well, including the strings with procedure and symbol names and their
addresses.

In the last chapter we saw how nm can be used to display symbol informa-
tion in both object and binary files. But it is important to notice that only your
program code knows the meaning of the bytes in the program data (i.e., the pro-
gram knows what a variable is). For the system, your program data has no mean-
ing. The system knows nothing about your program; you are the one who knows.
The program nm can display information about the binary file because it looks at
the symbol table stored in the binary for debugging purposes.

We can see this if we remove the symbol table from our binary for the
take.c program. The command strip removes the symbol table. To find the
binary file size, we can use option -l for ls, which (as you know) lists a long line
of information for each file, including the size in bytes.

; ls -l 8.take
--rwxr-xr-x M 19 nemo nemo 36348 Jul 6 22:49 8.take
; strip 8.take
; ls -l 8.take
--rwxr-xr-x M 19 nemo nemo 21713 Jul 6 22:49 8.take
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The number after the user name and before the date is the file size in bytes. The
binary file size changed from 36348 bytes down to 21713 bytes. The difference in
size is due to the symbol table. And without the symbol table, nm knows nothing.
Just like the system.

; nm 8.take
;

Well, of course the system has a convention regarding which one is the address
where to start executing the program. But nevertheless, it does not care much about
which code is in there.

A program stored in a file is different from the same program stored in mem-
ory while it runs. They are related, but they are not the same. Consider this pro-
gram. It does nothing, but has a global variable of one megabyte.
!global.c !" """""""________

#include <u.h>
#include <libc.h>

char global[1 * 1024 * 1024];

void
main(int, char*[])
{

exits(nil);
}

Assuming it is kept at global.c, we can compile it and use the linker option -o
to specify that the binary is to be generated in the new file 8.global. It is a good
practice to name the binary file for a program after the program name, specially
when multiple programs may be compiled in the same directory.

; 8c -FVw global.c
; 8l -o 8.global global.8

; ls -l 8.global global.8
--rwxr-xr-x M 19 nemo nemo 3380 Jul 6 23:06 8.global
--rw-r--r-- M 19 nemo nemo 328 Jul 6 23:06 global.8

Clearly, there is no room in the 328 bytes of the object file for the global array,
which needs one megabyte of storage. The explanation is that only the size required
to hold the (not initialized) array is kept in the file. The binary file does not include
the array either (change the array size, and recompile to check that the size of the
binary file does not change).

When the shell asks the system (making a system call) to execute
8.global, the system loads the program into memory. The part of the system
(kernel) doing this is called the loader. How can the system load a program? By
reading the information kept in the binary:
% The header in the binary file reports the memory size required for the pro-

gram text, and the file keeps the memory image of that text. Therefore, the
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system can just copy all this into memory. For a given system and architec-
ture, there is a convention regarding which addresses the program must use.
Therefore, the system knows where to load the program.

% The header in the binary reports the memory size required for initialized vari-
ables (globals) and the file contains a memory image for them. Thus, the sys-
tem can copy those bytes to memory. Note that the system has no idea regard-
ing where does one variable start or how big it is. The system only knows
how many bytes it has to copy to memory, and at which address should they
be copied.

% For uninitialized global variables, the binary header reports their total size.
The system allocates that amount of memory for the program. That is all it
has to do. As a courtesy, Plan 9 guarantees that such memory is initialized
with all bytes being zero. This means that all your global variables are initial-
ized to null values by default. That is a good thing, because most programs
will misbehave if variables are not properly initialized, and null values for
variables seem to be a nice initial value by default.

We saw how the program nm prints addresses for symbols. Those addresses are
memory addresses that are only meaningful when the program has been loaded. In
fact, the Plan 9 manual refers to the linker as the loader. The addresses are virtual
memory addresses, because the system uses the virtual memory hardware to keep
each process in its own virtual address space. Although virtual, the addresses are
absolute, and not relative (offsets) to some particular origin. Using nm we can
learn more about how the memory of a loaded program looks like. Option -n asks
nm to sort the output by symbol address.

; nm -n 8.global
1020 T main
1033 T _main
1073 T atexit
10e2 T atexitdont
1124 T exits
1180 T _exits
1188 T getpid
11fb T memset
122a T lock
12e7 T canlock
130a T unlock
1315 T atol
1442 T atoi
1455 T sleep
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145d T open
1465 T close
146d T read
14a0 T _tas
14ac T pread
14b4 T etext
2000 D argv0
2004 D _tos
2008 D _nprivates
200c d onexlock
2010 D _privates
2014 d _exits
2024 B edata
2024 B onex
212c B global

10212c B end

Figure 2.3 shows the layout of memory for this program when loaded. Looking at
the output of nm we can see several things. First, the program code uses addresses
starting at 0x1020 up to 0x14b4.

The last symbol in the code is etext, which is a symbol defined by the
linker to let you know where the end of text is. Data goes from address 0x2000 up
to address 0x10212c. There is a symbol called end, also defined by the linker, at
the end of the data. This symbol lets you know where the end of data is. This sym-
bol is not to be confused with edata, which reports the address where initialized
data terminates.

Text segment

Program
text

Data segment

Initialized
data

BSS segment

Uninitialized
data ...

Stack segment

stack

0x0 etext edata end

Figure 2.3: Memory image for the global program.

In decimal, the address for end is 1.057.068 bytes! That is more than 1
Mbyte, which is a lot of memory for a program that was kept in a binary file of 3
Kbytes. Can you see the difference?

And there is more. We did not take into account the program stack. As you
know, your program needs a stack to execute. That is the place in memory used to
keep track of the chain of function calls being made, to know where to return, and
to maintain the values for function arguments and local variables. Therefore, the
size of the program when loaded into memory will be even larger. To know how
much memory a program will consume, use nm, do not list the binary file.
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The memory of a loaded program, and thus that of a process, is arranged as
shown in figure 2.3. But that is an invention of the operating system. That is the
abstraction supplied by the system, implemented using the virtual memory hard-
ware, to make your life easier. This abstraction is called virtual memory. A pro-
cess believes that it is the only program loaded in memory. You can notice by look-
ing at the addresses shown by nm. All processes running such program will use the
same addresses, which are absolute (virtual) memory addresses. And more than
just one of such processes might run simultaneously in the same computer.

The virtual memory of a process in Plan 9 has several, so called, segments.
This is also an abstraction of the system and has few to do with the segmentation
hardware found at some popular processors. A memory segment is a portion of
contiguous memory with some properties. Segments used by a Plan 9 process are:
% The text segment. It contains instructions that can be executed but not modi-

fied. The hardware is used by the system to enforce these permissions. The
memory is initialized by the system with the program text (code) kept within
the binary file for the program.

% The data segment. It contains the initialized data for the program. Protection
is set to allow both read and write operations on it, but you cannot execute
instructions on it. The memory is initialized by the system using the initial-
ized data kept within the binary file for the program.

% The uninitialized data segment, called bss segment is almost like the data
segment. However, this one is initialized by zeroing its memory. The name of
the segment comes from an arcane instruction used to implement it on a
machine that no longer exists. How much memory is given depends on the
size recorded in the binary file. Moreover, this segment can grow, by using a
system call that allocates more memory for it. Function libraries like
malloc cause this segment to grow when they consume all the available
memory in this segment. This is the reason for the gap between this segment
and the stack segment (shown in figure 2.3), to leave room for the segment
to grow.

% The stack segment is also used for reading and writing memory. Unlike other
segments, this segment seems to grow automatically when more space is
used. It is used to keep the stack for the process.

All this is important to know because it has a significant impact on your programs
and processes. Usually, not all the code is loaded at once from the binary file into
the text (memory) segment. Binaries are copied into memory one virtual memory
page at a time as demanded by references to memory addresses. This is called
demand paging, (or loading on demand). It is important to know this because, if
you remove a binary file for a program that is executing, the corresponding process
may get broken if it needs a part of the program that was not yet loaded into mem-
ory. And the same might happen if you overwrite a binary file while a process is
using it to obtain its code!

Because memory is virtual, and is only allocated when first used, any unused
part of the BSS segment is free! It consumes no memory until you touch it. How-
ever, if you initialized it with a loop, all the memory will be allocated. One particu-
lar case when this may be useful is when you implement large hash tables that
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contain few elements (called sparse). You might implement them using a huge
array, not initialized. Because it is not initialized, no physical memory will be allo-
cated for the array, initially. If the program uses later a portion of the array for the
first time, the system will allocate memory and zero it. The array entries would be
all nulls. Therefore, in this example, initializing by hand the array would have a
big impact on memory consumption.

2.3. Process birth and death
Programs are not called, they are executed. Besides, programs do not return, their
processes terminate when they want or when they misbehave. Being this said, we
can supply arguments to programs we run, to control what they do.

When the shell asks the system to execute a program, after it has been loaded
into memory, the system provides a flow of control for it. This means just that pro-
cessor registers are initialized for the new running program, including the program
counter and stack pointer, along with an initial (almost empty) stack. When we
compile a C program, the loader puts main at the address where the system will
start executing the code. Therefore, our C programs start running at main. The
arguments supplied to this program (e.g., in the shell command line) are copied by
the system to the stack for the new program.

The arguments given to the main function of a program are an array of
strings (the argument vector, argv) and the number of strings kept in the array.
We can write a program to print its arguments.
!echo.c !" """""______

#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int i;

for (i = 0; i < argc; i++)
print("%d: %s\n ", i, argv[i]);

exits(nil);
}

If we execute it we can see which arguments are given to the program for a particu-
lar command line:

; 8c -FVw echo.c
; 8l -o 8.echo echo.8
; ./8.echo one little program
0: ./8.echo
1: one
2: little
3: program
;
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There are several things to note here. First, the first argument supplied to the pro-
gram is the program name! More precisely, it is the command name as given to the
shell. Second, this time we gave a relative path as a command name. Remember,
./8.echo, is the file 8.echo within the current working directory for our shell.
which is a relative path. And that was the value of argv[0] for our program. Pro-
grams know their name by looking at argv[0], which is very useful to print diag-
nostic messages while letting the user know which program was the one that had a
problem.

There is a standard command in Plan 9 that is almost the same, echo. This
command prints its arguments separated by white space and a new line. The new
line can be suppressed with the option -n.

; echo hi there
hi there
;
; echo -n hi there
hi there;

Note the shell prompt right after the output of echo. Despite being simple, echo is
invaluable to know which arguments a program would get, and to generate text
strings by using echo to print them.

Our program is not a perfect echo. At least, the standard echo has the flag
-n, to ask for a precise echo of its arguments, without the addition of the final new
line. We could add several options to our program. Option -n may suppress the
print of the additional new line, and option -v may print brackets around each
argument, to let us know precisely where does an argument start and where does it
end. Without any option, the program might behave just like the standard tool and
print one argument after another. The problem is that the user may call the program
in any of the following ways, among others:

8.echo repeat after me
8.echo -n repeat after me
8.echo -v repeat after me
8.echo -n -v repeat after me
8.echo -nv repeat after me

It is customary that options may be combined in any of the ways shown. Further-
more, the user might want to echo just -word-, and echo might be confused
because it would think that -word- was a set of options. The standard procedure
is to do it like this.

8.echo -- -word--

The double dash indicates that there are no more options. Isn’t it a burden to pro-
cess argc and argv to handle all these combinations? That is why there are a set
of macros to help (macros are definitions given to the C preprocessor, that are
replaced with some C code before actually compiling). The following program is
an example.
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!aecho.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int nflag = 0;
int vflag = 0;
int i;

ARGBEGIN{
case ’v’:

vflag = 1;
break;

case ’n’:
nflag = 1;
break;

default:
fprint(2, "usage: %s [-nv] args\n", argv0);
exits("usage");

}ARGEND;

for (i = 0; i < argc; i++)
if (vflag)

print("[%s] ", argv[i]);
else

print("%s ", argv[i]);
if (!nflag)

print("\n");
exits(nil);

}

The macros ARGBEGIN and ARGEND loop through the argument list, removing
and processing options. After ARGEND, both argc and argv reflect the argument
list without any option. Between both macros, we must write the body for a
switch statement (supplied by ARGBEGIN), with a case per option. And the
macros take care of any feasible combination of flags in the arguments. Here are
some examples of how can we run our program now.

; 8.aecho repeat after me
repeat after me
; 8.aecho -v repeat after me
[repeat] [after] [me]
; 8.aecho -vn repeat after me
[repeat] [after] [me] ; we gave a return here.
; 8.aecho -d repeat after me
usage: 8.aecho [-nv] args
; 8.aecho -- -d repeat after me
-d repeat after me

In all but the last case, argc is 3 after ARGEND, and argv holds just repeat,
after, and me.
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Another convenience of using these macros is that they initialize the global
variable argv0 to point to the original argv[0] in main, that is, to point to the
name of the program. We used this when printing the diagnostic about how the
program must be used, which is the custom when any program is called in a erro-
neously way.

In some cases, an option for a program carries an argument. For example, we
might want to allow the user to specify an alternate pair of characters to use instead
of [ and ] when echoing with the -v option. This could be done by adding an
option -d to the program that carries as its argument a string with the characters to
use. For example, like in

8.aecho -v -d"" repeat after me

This can be done by using another macro, called ARGF. This macro is used within
the case for an option, and it returns a pointer to the option argument (the rest of
the argument if there are more characters after the option, or the following argu-
ment otherwise). The resulting program follows.
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!becho.c !" """""""________
#include <u.h>
#include <libc.h>

void
usage(void)
{

fprint(2, "usage: %s [-nv] [-d delims] args\n", argv0);
exits("usage");

}
void
main(int argc, char* argv[])
{

int nflag = 0;
int vflag = 0;
char* d = "[]";
int i;

ARGBEGIN{
case ’v’:

vflag = 1;
break;

case ’n’:
nflag = 1;
break;

case ’d’:
d = ARGF();
if (d == nil || strlen(d) < 2)

usage();
break;

default:
usage();

}ARGEND;

for (i = 0; i < argc; i++)
if (vflag)

print("%c%s%c ", d[0], argv[i], d[1]);
else

print("%s ", argv[i]);
if (!nflag)

print("\n");
exits(nil);

}

And this is an example of use for our new program.
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; 8.becho -v -d"" repeat after me
"repeat" "after" "me"
; 8.becho -vd "" repeat after me note the space before the ""
"repeat" "after" "me"
; 8.becho -v

; 8.becho -v -d
usage: 8.becho [-nv] [-d delims] args

A missing argument for an option usually means that the program calls a function
to terminate (e.g., usage), the macro EARGF is usually preferred to ARGF. We
could replace the case for our option -d to be as follows.

case ’d’:
delims = EARGF(usage());
if (strlen(delims) < 2)

usage();
break;

And EARGF would execute the code given as an argument when the argument is
not supplied. In our case, we had to add an extra if, to check that the argument has
at least the two characters we need.

Most of the Plan 9 programs that accept multiple options use these macros to
process their argument list in search for options. This means that the invocation
syntax is similar for most programs. As you have seen, you may combine options
in a single argument, use multiple arguments, supply arguments for options imme-
diately after the option letter, or use another argument, terminate the option list by
giving a -- argument, and so on.

As you have probably noticed after going this far, a process terminates by a
call to exits, see exits(2) for the whole story. This system call terminates the call-
ing process. The process may leave a single string as its legacy, reporting what it
has to say. Such string reports the process exit status, that is, what happen to it. If
the string is null, it means by convention that everything went well for the dying
process, i.e., it could do its job. Otherwise, the convention is that string should
report the problem the process had to complete its job. For example,
!sic.c !" """"_____

#include <u.h>
#include <libc.h>
void
main(int, char*[])
{

exits("sic!");
}

would report sic! to the system when exits terminates the process. Here is a
run that shows that by echoing $status we can learn how it went to this depres-
sive program.



- 48 -

; 8.sic
; echo $status
8.sic 2046: sic!
;

Commands exit with an appropriate status depending on what happen to them.
Thus, ls reports success as its status when it could list the files given as argu-
ments, and it reports failure otherwise. In the same way, rm reports success when it
could remove the file(s) indicated, and failure otherwise. And the same applies for
other commands.

We lied before when we said that a program starts running at main, it does
not. It starts running at a function that calls main and then (when main returns),
this function calls exits to terminate the execution. That is the reason why a pro-
cess ceases existing when the main function of the program returns. The process
makes a system call to terminate itself. There is no magic here, and a process may
not cease existing merely because a function returns. A flow of control does not
vanish, the processor always keeps on executing instructions. However, because
processes are an invention of the operating system, we can use a system call that
kills the calling process. The system deallocates its resources and the process is his-
tory. A process is a data type after all.

In few words, if your program does not call exits, the function that calls
main will do so when main returns. But you better call exits in your program.
Otherwise, you cannot be sure about what value is being used as your exit status.

2.4. System call errors
In this chapter and the following ones we are going to make a lot of system calls
from programs written in C. In many cases, there will be no problem and a system
call we make will be performed. But in other cases we will make a mistake and a
system call will not be able to do its work. For example, this will happen if we try
to change our current working directory and supply a path that does not exist.

Almost any function that we call (and system calls are functions) may have
problems to complete its job. In Plan 9, when a system call encounters an error or
is not able to do its work, the function returns a value that alerts us of the error con-
dition. Depending on the function, the return value indicating the error may be one
or another. In general, absurd return values are used to report errors.

For example, we will see how the system call open returns a positive small
integer. However, upon failure, it returns -1. This is the convention for most system
calls returning integer values. System calls that return strings will return a null
string when they fail, and so on. The manual pages report what a system call does
when it fails.

You must always check for error conditions. If you do not check that a
system call could do its work, you do not know if it worked. Be warned, not check-
ing for errors is like driving blind, and it will surely put you into a debugging
Inferno (limbo didn’t seem bad enough). An excellent book, that anyone program-
ming should read, which teaches practical issues regarding how to program is [2].
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Besides reporting the error with an absurd return value from the system call,
Plan 9 keeps a string describing the error. This error string is invaluable informa-
tion for fixing the problem. You really want to print it out to let the user know what
happen.

There are several ways of doing so. The more convenient one is using the for-
mat "%r# in print. This instructs print to ask Plan 9 for the error string and
print it along with other output. This program is an example.
!err.c !" """"_____

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

if (chdir("magic") < 0){
sysfatal("chdir failed: %r\n");

}
/* ... do other things ... */
exits(nil);

}

Let’s run it now
; 8.err
chdir failed: ’magic’ file does not exist

The program tried to use chdir to change its current working directory to magic.
Because it did not exist, the system call failed and returned -1. A good program
would always check for this condition, and then report the error to the user. Note
the use of %r in print and compare to the output produced by the program.

If the program cannot proceed because of the failure, it is sensible to termi-
nate the execution indicating that the program failed. This is so common that there
is a function that both prints a message and exits. It is called sysfatal, and is
used like follows.

if (chdir("magic") < 0)
sysfatal("chdir failed: %r");

In a few cases you will need to obtain the error string for a system call that failed.
For example, to modify it and print a customary diagnostic message. The system
call rerrstr reads the error string. It stores the string at the buffer you supply.
Here is an example

char error[128];
...
rerrstr(error, sizeof error);

After the call, error contains the error string.
A function implemented to be placed in a library also needs to report errors.

If you write such function, you must think how to do that. One way is to use the
same mechanism used by Plan 9. This is good because it allows any programmer
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using your library to do exactly the same to deal with errors, no matter if the error
is being reported by your library function or by Plan 9.

The system call werrstr writes a new value for the error string. It is used
like print. Using it, we can implement a function that pops an element from a
stack and reports errors nicely:

int
pop(Stack * s)
{

if (isempty(s)){
werrstr("pop on an empty stack");
return -1;

}
... do the pop otherwise ...

}

Now, we could write code like the following,
...
if (pop(s) < 0){

print("pop failed: %r\n");
...

}

and, upon an error in pop this would print something like:
pop failed: pop on an empty stack

2.5. Environment
Another way to supply "arguments# to a process is to define environment
variables. Each process is supplied with a set of name=value strings, that are
known as environment variables. They are used to customize the behavior of cer-
tain programs, when it is more convenient to define an environment variable than
to give a command line argument every time we run a program. Usually, all pro-
cesses running in the same window share the environment variables.

For example, the variable home has the path for your home directory as its
value. The command cd uses this variable to know where your home is. Other-
wise, how could it know what to do when given no arguments? Both names and
values of environment variables are strings. Remember this.

We can define environment variables in a shell command line by using an
equal sign. Later, we can use the shell to refer to the value of any environment
variable. After reading each command line, the shell replaces each word starting
with a dollar sign with the value of the environment variable whose name follows
the dollar. For example, the first command in the following session defines the
variable dir:
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; dir=/a/very/long/path
; cd $dir
; pwd
/a/very/long/path
;

The second command line used $dir, and therefore, the shell replaced the string
$dir with the string that is the value of the dir environment variable:
/a/very/long/path. Note that cd knows nothing about $dir. We can see
this using echo, because we know it prints the arguments received verbatim.

; echo $dir
/a/very/long/path
;

The next two commands do the same. However, one receives one argument and the
other does not. The output of pwd would be the same after any of them.

; cd $home
; cd

In some cases it is convenient to define an environment variable just for a com-
mand. This can be done by defining it in the same command line, before the com-
mand, like in the following example:

; temp=/tmp/foobar echo $temp
/tmp/foobar
; echo $temp

;

At this point, we can understand what $status means. It is the value of the envi-
ronment variable status. This variable is updated by the shell once it finds out how
it went to the last command it executed. This is done before prompting for the next
command. As you know, the value of this variable would be the string given to
exits by the process running the command.

Another interesting variable is path. This variable is a list of paths where
the shell should look for executable files to run the user commands. When you type
a command name that does not start with / or ./, the shell looks for an executable
file relative to each one of the directories listed in $path, in the same order. If a
binary file is found, that is the one executed to run the command. This is the value
of the path variable in a typical Plan 9 shell:

; echo $path
. /bin
;

It contains the working directory, and /bin, in that order. If you type ls, the
shell tries with ./ls, and if there is no such file, it tries with /bin/ls. If you
type ip/ping, the shell tries with ./ip/ping, and then with /bin/ip/ping.
Simple, isn’t it?

Two other useful environment variables are user, which contains the user
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name, and sysname, which contains the machine name. You may define as many
as you want. But be careful. Environment variables are usually forgotten while
debugging a problem. If some program input value should be a command line argu-
ment, use a command line argument. If somehow you need an environment vari-
able to avoid passing an argument all the times a program is called, perhaps the
command arguments should be changed. Sensible default values for program argu-
ments can avoid the burden of having to supply always the same arguments. Com-
mand line arguments make the program invocation explicit, more clear at first
sight, and therefore, simpler to grasp and debug. On the other hand, environment
variables are used by programs without the user noticing.

Because of the syntax in the shell for environment variables, we may have a
problem if we want to run echo, or any other program, supplying arguments con-
taining either the dollar sign, or the equal sign. Both characters we know are spe-
cial. This can be done by asking the shell not to do anything with a string we type,
and to take it literally. Just type the string into single quotes and the shell will not
change anything between them:

; echo $user
nemo
; echo ’$user’ is $user
$user is nemo
;

Note also that the shell behaves always the same way regarding command line text.
For example, the first word (which is the command name) is not special, and we
can do this

; cmd=pwd
; $cmd
/usr/nemo
;

and use variables wherever we want in command lines. Also, quoting works always
the same way. Let’s try with the echo program we implemented before:

; 8.echo ’this is’ weird
0: echo
1: this is
2: weird
;

As you may see, argv[1] contains the string this is, including the white
space. The shell did not split the string into two different arguments for the com-
mand. Because you quoted it! Even the new line can be quoted.

; echo ’how many
;; lines’
how many
lines

The prompt changed because the shell had to read more input, to complete the
quoted string. That is its way of telling us. Quoting also removes the special
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meaning of other characters, like the backslash:
; echo \
;; waiting for the continuation of the line
; ...until we press return

echo prints the empty line
; echo ’\’
\
;

To obtain the value for a environment variable, from a C program, we can use the
getenv system call. And of course, the program must check out for errors. Even
getenv can fail. Perhaps the variable was not defined. In this case getenv
returns a null string.
!env.c !" """""______

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

char* home;

home = getenv("home");
if (home == nil)

sysfatal("we are homeless");
print("home is %s\n", home);
exits(nil);

}

Running it yields
; 8.env
home is /usr/nemo

A related call is putenv, which accepts a name and a value, and sets the corre-
sponding environment variable accordingly. Both the name and value are strings.

2.6. Process names and states
The name of a process is not the name of the program it runs. That is convenient to
know, nevertheless. Each process is given a unique number by the system when it
is created. That number is called the process id, or the pid. The pid identifies, and
therefore names, a process.

The pid of a process is a positive number, and the system tries hard not to
reuse them. This number can be used to name a process when asking the system to
do things to it. Needless to say that this name is also an invention of the operating
system. The shell environment variable pid contains the pid for the shell. Note
that its value is a string, not an integer. Useful for creating temporary files that we
want to be unique for a given shell.
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To know the pid of the process that is executing our program, we can use
getpid:
!pid.c !" """"_____

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int pid;

pid = getpid();
print("my pid is %d\n", pid);
exits(nil);

}

Executing this program several times may look like this
; 8.pid
my pid is 345
; 8.pid
my pid is 372
;

The first process was the one with pid 345, but we may say as well that the first
process was the 345, for short. The second process started was the 372. Each time
we run the program we would get a different one.

The command ps (process status) lists the processes in the system. The sec-
ond field of each line (there is one per process) is the process id. This is an example

; ps
nemo 280 0:00 0:00 13 13 1148K Pread rio
nemo 281 0:02 0:07 13 13 1148K Pread rio
nemo 303 0:00 0:00 13 13 1148K Await rio
nemo 305 0:00 0:00 13 13 248K Await rc
nemo 306 0:00 0:00 13 13 1148K Await rio

... more output omitted ...

The last field is the name of the program being run by the process. The third field
going right to left is the size of the (virtual) memory being used by the process.
You may now know how much memory a program consumes when loaded.

The second field on the right is interesting. You see names like Pread and
Await. Those names reflect the process state. The process state indicates what
the process is doing. For example, the first processes 280 and 281, running rio,
are reading something, and everyone else in the listing above is awaiting for some-
thing to happen. To understand this, it is important to get an idea of how the oper-
ating system implements processes.

There is only one processor, but there are multiple processes that seem to run
simultaneously. That is the process abstraction. Multiple programs that execute
independently of each other. None of them transfer control to others. However, the
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processor implements only a single flow of control.
What happens is that when one process enters the kernel because of a system

call, or an interrupt, the system may store the process state (its registers mostly)
and then jump to the previously saved state for another process. Doing this
quickly, with the amazingly fast processors we have today, makes it appear that all
processes can run at the same time. Each process is given a small amount of pro-
cessor time, and later, the system decides to jump to another one. This amount of
processor time is called a quantum, and can be 100ms, which is a very long time
regarding the number of machine instructions that you can execute in that time.

A transfer of control from one process to another, by saving the state for the
old process and reloading the state for the new one, is called a context switch,
because the state for a process (its registers, stack, etc.) is called its context. But
note that it is the kernel the one that transfers control. You do not include "jumps#
to other processes in your programs!

The part of the kernel deciding which process runs each time is called the
scheduler, because it schedules processes for execution. And the decisions made
by the scheduler to multiplex the processor among processes are collectively
known as scheduling. In Plan 9 and most other systems, the scheduler is able to
move a process out of the processor even if it does not call the operating system
(and gives it a chance to move the process out). Interrupts are used to do this. Such
type of scheduling is called preemptive scheduling.

With a single processor, just one process may be running at a time, and
many others may be ready to run. These are two process states, see figure 2.4. The
running process becomes ready when the system terminates its time in the proces-
sor. Then, the system picks up a ready process to become the next running one.
States are just constants defined by the system to cope with the process abstraction.

Many times, a process would be reading from a terminal, or from a network
connection, or any other device. When this happens, the process has to wait for
input to come. The process could wait by using a loop, but that would be a waste of
the processor. The idea is that when one process starts waiting for input (or output)
to happen, the system can switch to another process and let it run. Input/output
devices are so slow compared with the processor that the machine can execute a lot
of code for other processes while one is waiting. The time the processor needs to
execute some instructions, compared to the time needed by I/O devices to perform
their job, is like the time you need to move around in your house and the time you
need to go to the moon.

This idea is central to the concept of multiprogramming, which is the name
given to the technique that allows multiple programs to be loaded at the same time
on a computer.

To let one process wait out of the processor, without considering it as a candi-
date to be put into the running state, the process is flagged as blocked. This is yet
another process state. All the processes listed above where blocked. For example,
Pread and Await mean that the process is blocked (i.e., the former shows that
the process is blocked waiting for a read to complete). When the event a blocked
process is waiting for happens, the process state is changed to ready. Sometime in
the future it will be selected for execution in the processor.
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Running

Ready BlockedBirth

Broken Death

Figure 2.4: Process states and transitions between them.

In Plan 9, the state shown for blocked processes reflects the reason that
caused the process to block. That is why ps shows many different states. They are
a help to let us know what is happening to our processes.

There is one last state, broken, which is entered when the process does some-
thing illegal (i.e., it suffers an error). For example, dividing by zero or dereferenc-
ing a null pointer causes a hardware exception (an error). Exceptions are dealt with
by the hardware like interrupts are, and the system is of course the handler for these
exceptions. Upon this kind of error, the process enters the broken state. A broken
process will never run. But it will be kept hanging around for debugging until it
dies upon user request (or because there are too many broken processes).

2.7. Debugging
When we make a mistake, and a running program enters the broken state, it is use-
ful to see what happen. There are several ways of finding out what happen. To see
them, let’s write a program that crashes. This program says hello to the name given
as an argument, but it does not check that the argument was given, nor does it use
the appropriate format string for print.
!hi.c !" """____

#include <u.h>
#include <libc.h>

void
main(int, char*argv[])
{

/* Wrong! */
print("hi ");
print(argv[1]);
exits(nil);

}

When we compile this program and execute it, this happens:
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; 8.hi
8.hi 788: suicide: sys: trap: fault read addr=0x0 pc=0x000016ff

The last line is a message printed by the shell. It was waiting for 8.hi to terminate
its execution. When it terminated, the shell saw that something bad happen to the
program and printed the diagnostic so we could know. If we print the value of the
status variable, we see this

; echo $status
8.hi 788: sys: trap: fault read addr=0x0 pc=0x000016ff

Therefore, the legacy, or exit status, of 8.hi is the string printed by the shell. This
status does not proceed from a call to exits in 8.hi, we know that. What hap-
pen is that we tried to read the memory address 0x0. That address is not within any
valid memory segment for the process, and reading it leads to an error (or excep-
tion, or fault). That is why the status string contains fault read addr=0x0.
The status string starts with the program name and the process pid, so we could
know which process had a problem. There is more information, the program
counter when the process tried to read 0x0, was 0x000016ff. We do some post-
mortem analysis now.

The program src knows how to obtain the source file name and line number
that corresponds to that program counter.

; src -n -s 0x000016ff 8.hi
/sys/src/libc/fmt/dofmt.c:37

We gave the name of the binary file as an argument. The option -n causes the
source file name and line to be printed. Otherwise src would ask your editor to
display that file and line. Option -s permits you to give a memory address or a
symbol name to locate its source. By the way, this program is an endless source of
wisdom. If you want to know how to implement, say, cat, you can run src
/bin/cat.

Because of the source file name printed, we know that the problem seems to
be within the C library, in dofmt.c. What is more likely? Is there a bug in the C
library or did we make a mistake when calling one of its functions? The mystery
can be solved by looking at the stack of the broken process. We can read the pro-
cess stack because the process is still there, in the broken state:

; ps
...many other processes...
nemo 788 0:00 0:00 24K Broken 8.hi
;

To print the stack, we call the debugger, acid:
; acid 788
/proc/788/text:386 plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/386
acid:
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This debugger is indeed a powerful tool, described in [8], we will use just a couple
of its functions. After obtaining the prompt from acid, we ask for a stack dump
using the stk command:

acid: stk()
dofmt(fmt=0x0,f=0xdfffef08)+0x138 /sys/src/libc/fmt/dofmt.c:37
vfprint(fd=0x1,args=0xdfffef60,fmt=0x0)+0x59 /sys/src/libc/fmt/vfprint.c:30
print(fmt=0x0)+0x24 /sys/src/libc/fmt/print.c:13
main(argv=0xdfffefb4)+0x12 /usr/nemo/9intro/hi.c:8
_main+0x31 /sys/src/libc/386/main9.s:16
acid:

The function stk() dumps the stack. The program crashed while executing the
function dofmt, at file dofmt.c. This function was called by vfprint, which
was called by print, which was called by main. As you can see, the parameter
fmt of print is zero! That should never happen, because print expects its first
parameter to be a valid, non-null, string. That was the bug.

We can gather much more information about this program. For example, to
obtain the values of the local variables in all functions found in the stack

acid: lstk()
dofmt(fmt=0x0,f=0xdfffef08)+0x138 /sys/src/libc/fmt/dofmt.c:37

nfmt=0x0
rt=0x0
rs=0x0
r=0x0
rune=0x15320000
t=0xdfffee08
s=0xdfffef08
n=0x0

vfprint(fd=0x1,args=0xdfffef60,fmt=0x0)+0x59 /sys/src/libc/fmt/vfprint.c:30
f=0x0
buf=0x0
n=0x0

print(fmt=0x0)+0x24 /sys/src/libc/fmt/print.c:13
args=0xdfffef60

main(argv=0xdfffefb4)+0x12 /usr/nemo/9intro/hi.c:8
_main+0x31 /sys/src/libc/386/main9.s:16

When your program gets broken, using lstk() in acid is invaluable. Usually,
that is all you need to fix your bug. You have all the information about what hap-
pen from main down to the point where it crashed, and you just have to think a lit-
tle bit why that could happen. If your program was checking out for errors, things
can be even more easy, because in many case the error diagnostic printed by the
program may suffice to fix up the problem.

One final note. Can you see how main is not the main function in your pro-
gram? It seems that _main in the C library called what we thought was the main
function.

The last note about debugging is not about what to do after a program
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crashes, but about what to do before. There is a library function called abort.
This is its code

void
abort(void)
{

while(*(int*)0)
;

}

This function dereferences a nil pointer! You know what would happen to the mis-
erable program calling abort. It gets broken. While you program, it is very sensi-
ble to prepare for things that in theory would not happen. In practice they will hap-
pen. One tool for doing this is abort. You can include code that checks for
things that should never happen. Those things that you know in advance that
would be very hard to debug. If your code detects that such things happen, it may
call abort. The process will enter the broken state for you to debug it before
things get worse.

2.8. Everything is a file!
We have seen two abstractions that are part of the baggage that comes with

processes in Plan 9: Processes themselves and environment variables. The way to
use these abstractions is to perform system calls that operate on them.

That is nice. But Plan 9 was built considering that it is natural to have the
machine connected to the network. We saw how your files are not kept at your ter-
minal, but at a remote machine. The designers of the system noticed that files
(another abstraction!) were simple to use. They also noticed that it was well known
how to engineer the system to permit one machine use files that were kept at
another.

Here comes the idea! For most abstractions provided by Plan 9, to let you use
your hardware, a file interface is provided. This means that the system lies to you,
and makes you believe that many things, that of course are not, are files. The point
is that they appear to be files, so that you can use them as if that was really the
case.

The motivation for doing things this way is that you get simple interfaces to
write programs and use the system, and that you can use also these files from
remote machines. You can debug programs running at a different machine, you
can use (almost) anything from any other computer running Plan 9. All you have to
do is to apply the same tools that you are using to use your real files at your termi-
nal, while keeping them at a remote machine (the file server).

Consider the time. Each Plan 9 machine has an idea of what is the time. Inter-
nally, it keeps a counter to notice the time passing by and relies on a hardware
clock. However, for a Plan 9 user, the time seems to be a file:

; cat /dev/time
1152301434 1152301434554319872 ...
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Reading /dev/time yields a string that contains the time, measured in various
forms: Seconds since the epoch (since a particular agreed-upon point in time in the
past), nanoseconds since the epoch, and clock ticks since the epoch.

Is /dev/time a real file? Does it exist in your disk with rest of the files? Of
course not! How can you keep in a disk a file that contains the current time? Do
you expect a file to change by some black magic so that each different nanosecond
it contains the precise value that matches the current time? What happens is that
when you read the file the system notices you are reading /dev/time, and it
knows what to do. To give you the string representing the current system time.

If this seems confusing, think that files are an abstraction. The system can
decide what reading a file means, and what writing a file means. For real files sit-
ting on a disk, the meaning is to read and write data from and to the disk storage.
However, for /dev/time, reading means obtaining the string that represents the
system time. Other operating systems provide a time system call that returns the
time. Plan 9 provides a (fake!) file. The C function time, described in time(2),
reads this file and returns the integer value that was read.

Consider now processes. How does ps know which processes are in the sys-
tem? Simple. In Plan 9, the /proc directory does not exist on disk either. It is a
virtual (read: fake) directory that represents the processes running in the system.
Listing the directory yields one file per process:

; lc /proc
1 1320 2 246 268 30 32 348
10 135 20 247 269 300 320 367

...

But these files are not real files on a disk. They are the interface for handling run-
ning processes in Plan 9. Each of the files listed above is a directory, and its name
is the process pid. For example, to go to the directory representing the shell we are
using we can do this:

; echo $pid
938
; cd /proc/938
; lc
args fd kregs note notepg proc regs status wait
ctl fpregs mem noteid ns profile segment text

These files provide the interface for the process with pid 938, which was the shell
used. Many of these (fake, virtual) files are provided to permit debuggers to operate
on the process, and to permit programs like ps gather information about the pro-
cess. For example, look again at the first lines printed by acid when we broke a
process in the last section:

; acid 788
/proc/788/text:386 plan 9 executable

Acid is reading /proc/788/text, which appears to be a file containing the
binary for the program. The debugger also used /proc/788/regs, to read the
values for the processor registers in the process, and /proc/788/mem, to read
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the stack when we asked for a stack dump.
Besides files intended for debuggers, other files are for you to use (as long as

you remember that they are not files, but part of the interface for a process). We are
now in position of killing a process. If we write the string kill into the file named
ctl, we kill the process. For example, this command writes the string kill into
the ctl file of the shell where you execute it. The result is that you are killing the
shell you are using. You are not writing the string kill on a disk file. Nobody
would record what you wrote to that file. The more probable result of writing this
is that the window where the shell was running will vanish (because no other pro-
cesses are using it).

; echo kill >/proc/$pid/ctl
... where is my window? ...

We saw the memory layout for a process. It had several segments to keep the pro-
cess memory. One of the (virtual) files that is part of the process interface can be
used to see which segments a process is using, and where do they start and termi-
nate:

; cat /proc/$pid/segment
Stack defff000 dffff000 1
Text R 00001000 00016000 4
Data 00016000 00019000 1
Bss 00019000 0003f000 1

The stack starts at 0xdefff000, which is a big number. It goes up to 0xdffff000. The
process is not probably using all of this stack space. You can see how the stack seg-
ment does not grow. The physical memory actually used for the process stack will
be provided by the operating system on demand, as it is referenced. Having virtual
memory, there is no need for growing segments. The text segment is read-only (it
has an R printed). And four processes are using it! There must be four shells run-
ning at my system, all of them executing code from /bin/rc.

Note how the first few addresses, from 0 to 0x0fff, are not valid. You cannot
use the first 4K of your (virtual) address space. That is how the system catches null
pointer dereferences.

We have seen most of the file interface provided for processes in Plan 9.
Environment variables are not different. The interface for using environment vari-
ables in Plan 9 is a file interface. To know which environment variables we have,
we can list a (virtual) directory that is invented by Plan 9 to represent the interface
for our environment variables. This directory is /env.
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; lc /env
’*’ cpu init planb sysname

0 cputype location plumbsrv tabstop
MKFILE disk menuitem prompt terminal
afont ether0 monitor rcname timezone
apid facedom mouseport role user
auth ’fn#sigexit’ nobootprompt rootdir vgasize
bootdisk font objtype sdC0part wctl
bootfile fs part sdC1part wsys
cflag home partition service
cfs i path status
cmd ifs pid sysaddr
;

Each one of these (fake!) files represents an environment variable. For you and
your programs, these files are as real as those stored in a disk. Because you can list
them, read them, and write them. However, do not search for them on a disk. They
are not there.

You can see a file named sysname, another named user, and yet another
named path. This means that your shell has the environment variables sysname,
user, and path. Let’s double check:

; echo $user
nemo
; cat /env/user
nemo;

The file /env/user appears to contain the string nemo, (with no new line at the
end). That is precisely the value printed by echo, which is the value of the user
environment variable. The implementation of getenv, which we used before to
return the value of an environment variable, reads the corresponding file, and
returns a C string for the value read.

This simple idea, representing almost everything as a file, is very powerful. It
will take some ingenuity on your part to fully exploit it. For example, the file
/dev/text represents the text shown in the window (when used within that win-
dow). To make a copy of your shell session, you already know what to do:

; cp /dev/text $home/saved

The same can be done for the image shown in the display for your window, which
is also represented as a file, /dev/window. This is what we did to capture screen
images for this book. The same thing works for any program, not just for cp, for
example, lp prints a file, and this command makes a hardcopy of the whole screen.

; lp /dev/screen
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Problems
1 Why was not zero the first address used by the memory image of program

global?
2 Write a program that defines environment variables for arguments. For

example, after calling the program with options
; args -ab -d x y z

the following must happen:
; echo $opta
yes
; echo $optb
yes
; echo $optc
yes
; echo $args
x y z

3 What would print /bin/ls /blahblah (given that /blahblah does
not exits). Would ls /blahblah print the same? Why?

4 What happens when we execute
; cd
;

after executing this program. Why?
#include <u.h>
#include <libc.h>
void
main(int, char*[])
{

putenv("home", "/tmp");
exits(nil);

}

5 What would do these commands? Why?
; cd /
; cd ..
; pwd

6 After reading date(1), change the environment variable timezone to dis-
play the current time in New Jersey (East coast of US).

7 How can we know the arguments given to a process that has been already
started?

8 Give another answer for the previous problem.
9 What could we do if we want to debug a broken process tomorrow, and want

to power off the machine now?
10 What would happen if you use the debugger, acid, to inspect 8.out after
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executing the next command line? Why?
; strip 8.out



3 ! Files
______
3.1. Input/Output
It is important to know how to use files. In Plan 9, this is even more important.
The abstractions provided by Plan 9 can be used through a file interface. If you
know how to use the file interface, you also know how to use the interface for most
of the abstractions that Plan 9 provides.

You already know a lot about files. In the past, we have been using print to
write messages. And, before this course, you used the library of your programming
language to open, read, write, and close files. We are going to learn now how to do
the same, but using the interface provided by the operating system. This is what
your programming language library uses to do its job regarding input/output.

Consider print, it is a convenience routine to print formatted messages. It
writes to a file, by calling write. Look at this program:
!write.c !" """"""_______

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

char msg[] = "hello\n";
int l;

l = strlen(msg);
write(1, msg, l);
exits(nil);

}

This is what it does. It does the same that print would do given the same string.
; 8.write
hello

The function write writes bytes into a file. Isn’t it a surprise? To find out the dec-
laration for this function, we can use sig$.

; sig write
long write(int fd, void *buf, long nbytes)

The bytes written to the file come from buf, which was msg in our example pro-
gram. The number of bytes to write is specified by the third parameter, nbytes,
________________
$ Remember that this program looks at the source of the manual pages, in section 2, to find a function
with the given name in any SYNOPSIS section of any manual page. Very convenient to get a quick
reminder of which arguments receives a system function, and what does it return.
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which was the length of the string in msg. And the file were to write was specified
by the first parameter, which was just 1 for us.

Files have names, as we learned. We can use a full path, absolute or relative,
to name a file. Files being used by a particular process have "names# as well. The
names are called file descriptors and are small integers. You know from your pro-
gramming courses that to read/write a file you must open it. Once open, you may
read and write it until the file is closed. To identify an open file you use a small
integer, its file descriptor. This integer is used by the operating system as an index
in a table of open files for your process, to know which file to use for reading or
writing. See figure 3.1.

Process
File descriptor

table

0
1
2
3 ...
n

Standard
input

Standard
output

Standard
error

Figure 3.1: File descriptors point to files used for standard input, standard output, and standard error.

All processes have three files open right from the start, by convention, even if
they do not open a single file. These open files have the file descriptors 0, 1, and 2.
As you could see, file descriptor 1 is used for data output and is called standard
output, File descriptor 0 is used for data input and is called standard input, File
descriptor 2 is used for diagnostic (messages) output and is called standard error.

To read an open file, you may call read. Here is the function declaration:
; sig read

long read(int fd, void *buf, long nbytes)

It reads bytes from file descriptor fd a maximum of nbytes bytes and places the
bytes read at the address pointed to by buf. The number of bytes read is the value
returned. Read does not guarantee that we would get as many bytes as we want, it
reads what it can and lets us know. This program reads some bytes from standard
input and later writes them to standard output.
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!read.c !" """""______
#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

char buffer[1024];
int nr;

nr = read(0, buffer, sizeof buffer);
write(1, buffer, nr);
exits(nil);

}

And here is how it works:
; 8.read
from stdin, to stdout! If you type this
from stdin, to stdout! the program writes this

When you run the program it calls read, which awaits until there is something to
read. When you type a line and press return, the window gives the characters you
typed to the program. They are stored by read at buffer, and the number of
bytes that it could read is returned and stored at nr. Later, the program uses
write to write so many bytes into standard output, echoing what we wrote.

Many of the Plan 9 programs that accept file names as arguments work with
their standard input when given no arguments. Try running cat.

; cat
...it waits until you type something

It reads what you type and writes a copy to its standard output
; cat
from stdin, to stdout! If you type this
from stdin, to stdout! cat writes this
and again
and again
control-d
;

until reaching the end of the file. The end of file for a keyboard? There is no such
thing, but you can pretend there is. When you type a control-d by pressing the d
key while holding down Control, the program reading from the terminal gets an
end of file.

Which file is standard input? And output? Most of the times, standard input,
standard output, and standard error go to /dev/cons. This file represents the
console for your program. Like many other files in Plan 9, this is not a real (disk)
file. It is the interface to use the device that is known as the console, which corre-
sponds to your terminal. When you read this file, you obtain the text you type in
the keyboard. When you write this file, the text is printed in the screen.
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When used within the window system, /dev/cons corresponds to a fake
console invented just for your window. The window system takes the real console
for itself, and provides each window with a virtual console, that can be accessed via
the file /dev/cons within each window. We can rewrite the previous program,
but opening this file ourselves.
!read.c !" """""______

#include <u.h>
#include <libc.h>
void
main(int , char* [])
{

char buffer[1024];
int fd, nr;

fd = open("/dev/cons", ORDWR);
nr = read(fd, buffer, sizeof buffer);
write(fd, buffer, nr);
close(fd);
exits(nil);

}

This program behaves exactly like the previous one. You are invited to try. To
open a file, you must call open specifying the file name (or its path) and what do
you want to do with the open file. The integer constant ORDWR means to open the
file for both reading and writing. This function returns a new file descriptor to let
you call read or write for the newly open file. The descriptor is a small integer
that we store into fd, to use it later with read and write. Figure 3.2 shows the
file descriptors for the process running this program after the call to open. It
assumes that the file descriptor for the new open file was 3.

Process
File descriptor

table

0
1
2
3

...
n

/dev/cons

Figure 3.2: File descriptors for the program after opening /dev/cons.
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When the file is no longer useful for the program, it can be closed. This is
achieved by calling close, which releases the file descriptor. In our program, we
could have open /dev/cons several times, one for reading and one for writing

infd = open("/dev/cons", OREAD);
outfd = open("/dev/cons", OWRITE);

using the integer constants OREAD and OWRITE, that specify that the file is to be
open only for reading or writing. But it seemed better to open the file just once.

The file interface provided for each process in Plan 9 has a file that provides
the list of open file descriptors for the process. For example, to know which file
descriptors are open in the shell we are using we can do this.

; cat /proc/$pid/fd
/usr/nemo
0 r M 94 (0000000000000001 0 00) 8192 18 /dev/cons
1 w M 94 (0000000000000001 0 00) 8192 2 /dev/cons
2 w M 94 (0000000000000001 0 00) 8192 2 /dev/cons
3 r c 0 (0000000000000002 0 00) 0 0 /dev/cons
4 w c 0 (0000000000000002 0 00) 0 0 /dev/cons
5 w c 0 (0000000000000002 0 00) 0 0 /dev/cons
6 rw | 0 (0000000000000241 0 00) 65536 38 #|/data
7 rw | 0 (0000000000000242 0 00) 65536 81320369 #|/data1
8 rw | 0 (0000000000000281 0 00) 65536 0 #|/data
9 rw | 0 (0000000000000282 0 00) 65536 0 #|/data1

10 r M 10 (00003b49000035b0 13745 00) 8168 512 /rc/lib/rcmain
11 r M 94 (0000000000000001 0 00) 8192 18 /dev/cons
;

The first line reports the current working directory for the process. Each other line
reports a file descriptor open by the process. Its number is listed on the left. As
you could see, our shell has descriptors 0, 1, and 2 open (among others). All these
descriptors refer to the file /dev/cons, whose name is listed on the right for each
descriptor. Another interesting information is that the descriptor 0 is open just for
reading (OREAD), because there is an r listed right after the descriptor number.
And as you can see, both standard output and error are open just for writing
(OWRITE), because there is a w printed after the descriptor number. The
/proc/$pid/fd file is a useful information to track bugs related to file descrip-
tor problems. Which descriptors has the typical process open? If you are skeptic,
this program might help.
!sleep.c !" """"""_______

#include <u.h>
#include <libc.h>
void
main(int, char*[])
{

print("process pid is %d. have fun.\n", getpid());
sleep(3600*1000); // one hour to play
exits(nil);

}
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It prints its PID, and hangs around for one hour. After running this program
; 8.sleep
process pid is 1413. have fun.
...and it hangs around for one hour.

we can use another window to inspect the file descriptors for the process.
; cat /proc/1413/fd
/usr/nemo/9intro
0 r M 94 (0000000000000001 0 00) 8192 87 /dev/cons
1 w M 94 (0000000000000001 0 00) 8192 936 /dev/cons
2 w M 94 (0000000000000001 0 00) 8192 936 /dev/cons
3 r c 0 (0000000000000002 0 00) 0 0 /dev/cons
4 w c 0 (0000000000000002 0 00) 0 0 /dev/cons
5 w c 0 (0000000000000002 0 00) 0 0 /dev/cons
6 rw | 0 (0000000000000241 0 00) 65536 38 #|/data
7 rw | 0 (0000000000000242 0 00) 65536 85044698 #|/data1
8 rw | 0 (0000000000000281 0 00) 65536 0 #|/data
9 rw | 0 (0000000000000282 0 00) 65536 0 #|/data1

Your process has descriptors 0, 1, and 2 open, as they should be. However, it seems
that there are many other ones open as well. That is why you cannot assume that
the first file you open in your program is going to obtain the file descriptor number
3. It might already be open. You better be aware.

There is one legitimate question still pending. After we open a file, how does
read know from where in the file it should read? The function knows how many
bytes we would like to read at most. But its parameters tell nothing about the offset
in the file where to start reading. And the same question applies to write as well.

The answer comes from open, Each time you open a file, the system keeps
track of a file offset for that open file, to know the offset in the file where to start
working at the next read or write. Initially, this file offset is zero. When you
write, the offset is advanced the number of bytes you write. When you read, the
offset is also advanced the number of bytes you read. Therefore, a series of writes
would store bytes sequentially, one write at a time, each one right after the previous
one. And the same happens while reading.

The offset for a file descriptor can be changed using the seek system call. Its
second parameter can be 0, 1, or 2 to let you change the offset to an absolute posi-
tion, to a relative one counting from the old value, and to a relative one counting
from the size of the file. For example, this sets the offset in fd to be 10:

seek(fd, 10, 0);

This advances the offset 5 bytes ahead:
seek(fd, 5, 1);

And this moves the offset to the end of the file:
seek(fd, 0, 2);

We did not use the return value from seek, but it is useful to know that it returns
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the new offset for the file descriptor.

3.2. Write games
This program is a variant of the first one in this chapter, but writes the salutation to
a regular file, and not to the console
!fhello.c !" """"""_______

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

char msg[] = "hello\n";
int fd;

fd = open("afile", OWRITE);
write(fd, msg, strlen(msg));
close(fd);
exits(nil);

}

We can create a file to play with by copying /NOTICE to afile, and then run
this program to see what happens.

; cp /NOTICE afile
; 8.fhello

This is what was at /NOTICE:
; cat /NOTICE
Copyright © 2002 Lucent Technologies Inc.
All Rights Reserved
;

and this is what is in afile:
; cat afile
hello
ght © 2002 Lucent Technologies Inc.
All Rights Reserved

At first sight, it seems that something weird happen. The file has one extra line.
However, part of the original text has been lost. These two things seem contradic-
tory but they are not. Using xd may reveal what happen:
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; xd -c afile
0000000 h e l l o \n g h t c2 a9 2 0 0
0000010 2 L u c e n t T e c h n o l
0000020 o g i e s I n c . \n A l l R
0000030 i g h t s R e s e r v e d \n
000003f
; xd -c /NOTICE
0000000 C o p y r i g h t c2 a9 2 0 0
0000010 2 L u c e n t T e c h n o l
0000020 o g i e s I n c . \n A l l R
0000030 i g h t s R e s e r v e d \n
000003f

Our program opened afile, which was a copy of /NOTICE, and then it wrote
"hello\n#. After the call to open, the file offset for the new open file was set
zero. This means that write wrote 6 bytes into afile starting at offset 0. The
first six bytes in the file, which contained "Copyri#, have been overwritten by our
program. But write did just what it was expected to do. Write 6 bytes into the
file starting at the file offset (0). Nothing more, nothing less. It does not truncate
the file (it shouldn’t!). It does not insert. It just writes.

If we change the program above, adding a second call to write, so that it
executes this code

write(fd, "hello\n");
write(fd, "there\n");

we can see what is inside afile after running the program.
; cat afile
hello
there
2002 Lucent Technologies Inc.
All Rights Reserved

; xd -c afile
0000000 h e l l o \n t h e r e \n 2 0 0
0000010 2 L u c e n t T e c h n o l
0000020 o g i e s I n c . \n A l l R
0000030 i g h t s R e s e r v e d \n
000003f

After the first call to write, the file offset was 6. Therefore, the second write hap-
pen starting at offset 6 in the file. And it wrote six more bytes. Once more, it did
just its job, write bytes. The file length is the same. The number of lines changed
because the number of newline characters in the file changed. The console
advances one line each time it encounters a newline, but it is just a single byte.

Figure 3.3 shows the elements involved in writing this file, after the first call
to write, and before the second call. The file descriptor, which we assume was 3,
points to a data structure containing information about the open file. This data
structure keeps the file offset, to be used for the following read or write opera-
tion, and record what the file was open for, e.g., OWRITE. Plan 9 calls this data
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structure a Chan (Channel), and there is one per file in use in the system. Besides
the offset and the open mode, it contains all the information needed to let the kernel
reach the file server and perform operations on the file. Indeed, a Chan is just
something used by Plan 9 to speak to a server regarding a file. This may require
doing remote procedure calls across the network, but that is up to your kernel, and
you can forget it.

Process

File descriptor
table

0
1
2
3

...
n

offset: 6
mode: OWRITE
file:

h e l l o \n ... afile

Chan

Figure 3.3: The file offset for next operations is kept separate from the file descriptor.

We can use seek to write at a particular offset in the file. For example, the
following code writes starting at offset 10 into our original version of afile.

int fd;

fd = open("afile", OWRITE);
seek(fd, 10, 0);
write(fd, "hello\n", 6);
close(fd);

The contents of afile have six bytes changed, as it could be expected.
; xd -c afile
0000000 C o p y r i g h t h e l l o \n
0000010 2 L u c e n t T e c h n o l
0000020 o g i e s I n c . \n A l l R
0000030 i g h t s R e s e r v e d \n
000003f
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How can we write new contents into afile, getting rid of anything that could be
in the file before we write? Simply by specifying to open that we want to
truncate the file besides opening it. To do so, we can do a bit-or of the desired
open mode and OTRUNC, a flag that requests file truncation. This program does so,
and writes a new string into our file.
!thello.c !" """"""_______

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

int fd;

fd = open("afile", OWRITE|OTRUNC);
write(fd, "hello\n", 6);
close(fd);
exits(nil);

}

After running this program, afile contains just the 6 bytes we wrote:
; 8.thello
; cat afile
hello
;

The call to open, caused the file afile to be truncated. If was empty, open for
writing on it, and the offset for the next file operation was zero. Then, write
wrote 6 bytes, at offset zero. At last, we closed the file.

What would the following program do to our new version of afile?
!seekhello.c !" """""""""__________

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

int fd;

fd = open("afile", OWRITE);
seek(fd, 32, 0);
write(fd, "there\n", 6);
close(fd);
exits(nil);

}

All system calls are very obedient. They do just what they are asked to do. The
call to seek changes the file offset to 32. Therefore, write must write six bytes
at offset 32. This is the output for ls and xd on the new file after running this pro-
gram:
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; 8.seekhello
; ls -l afile
--r--r--r-- M 19 nemo nemo 38 Jul 9 18:14 afile
; xd -c afile
0000000 h e l l o \n 00 00 00 00 00 00 00 00 00 00
0000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000020 t h e r e \n
0000026

The size is 38 bytes. That is the offset before write, 32, plus the six bytes we
wrote. In the contents you see how all the bytes that we did not write were set to
zero by Plan 9. And we know a new thing: The size of a file corresponds to the
highest file offset ever written on it.

A variant of this program can be used to create files of a given size. To create
a 1 Gigabyte file you do not need to write that many bytes. A single write suffices
with just one byte. Of course, that write must be performed at an offset of 1 Giga-
byte (minus 1 byte).

Creating large files in this way is different from writing all the zeroes your-
self. First, it takes less time to create the file, because you make just a couple of
system calls. Second, it can be that your new file does not consume all its space in
the disk until you really use it. Because Plan 9 knows the new size of the file, and it
knows you never did write most of it, it can just record the new size and allocate
disk space only for the things you really wrote. Reading other parts of the file yield
just zeroes. There is no need to store all those zero bytes in the disk.

This kind of file (i.e., one created using seek and write), is called a file
with holes. The name comes from considering that the file has "holes# on it, where
you did never write anything. Of course, the holes are not really stored in a disk. It
is funny to be able to store files for a total amount of bytes that exceeds the disk
capacity, but now you know that this can happen.

To append some data to a file, we can use seek to set the offset at the end of
the file before calling write, like in

fd = open("afile", OWRITE);
seek(fd, 0, 2); // move to the end
write(fd, bytes, nbytes);

For some files, like log files used to append diagnostic messages, or mail folders,
used to append mail messages, writing should always happen at the end of the file.
In this case, it is more appropriate to use an append only permission bit supported
by the Plan 9 file server:

; chmod +a /sys/log/diagnostics
; ls -l /sys/log/diagnostics
a-rw-r--r-- M 19 nemo nemo 0 Jul 10 01:11 /sys/log/diagnostics

This guarantees that any write will happen at the end of existing data, no matter
what the offset is. Doing a seek in all programs using this file might not suffice. If
there are multiple machines writing to this file, each machine would keep its own
offset for the file. Therefore, there is some risk of overwriting some data in the file.
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However, using the +a permission bit fixes this problem once and for all.

3.3. Read games
To read a file it does not suffice to call read once. This point may be missed when
using this function for the first few times. The problem is that read does no guar-
antee that all the bytes in the file could be read in the first call. For example, early
in this chapter we did read from the console. Before typing a line, there is no way
for read to obtain its characters. The result in that when reading from the console
our program did read one line at a time. If we change the program to read from a
file on a disk, it will probably read as much as it fits in the buffer we supply for
reading.

Usually, we are supposed to call read until there is nothing more to read.
That happens when the number of bytes read is zero. For example, this program
reads the whole file /NOTICE, and prints what it can read each time. The program
is unrealistic, because usually you should employ a much larger read buffer. Mem-
ory is cheap these days.
!read.c !" """""______

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

char buffer[10];
int nr;
int fd;

fd = open("/NOTICE", OREAD);
if (fd < 0)

sysfatal("open: %r");
for(;;){

nr = read(fd, buffer, sizeof buffer);
if (nr <= 0)

break;
if (write(1, buffer, nr) != nr)

sysfatal("write: %r");
}
exits(nil);

}

Although we did not check out error conditions in most of the programs in this
chapter. This program does so. When open fails , it returns -1. The program
issues a diagnostic and terminates if that is the case. Also, after calling read, it
does not just check for nr == 0, which means that there is nothing more to read.
Instead, it checks for nr <= 0, because read returns -1 when it fails. The call
to write might fail as well. It returns the number of bytes that could be written,
and it is considered an error when this number differs from the one you specified.
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3.4. Creating and removing files
The create system call creates one file. It is very similar to open. After creating
the file, it returns an open file descriptor for the new file, using the specified mode.
It accepts the same parameters used for open, plus an extra one used to specify per-
missions for the new file encoded as a single integer.

This program creates its own version of afile, without placing on us the
burden of creating it. It does not check errors, because it is just an example.
!create.c !" """""""________

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

int fd, n;
char msg[] = "a new file\n";

fd = create("afile", OWRITE, 0664);
write(fd, msg, strlen(msg));
close(fd);
exits(nil);

}

To test it, we remove our previous version for afile, run this program, and ask
ls and cat to print information about the file and its contents.

; rm afile
; ls afile
ls: afile: ’afile’ file does not exist
; 8.create
; ls -l afile
--rw-r--r-- M 19 nemo nemo 11 Jul 9 18:39 afile
; cat afile
a new file

In fact, there was no need to remove afile before running the program. If the file
being created exists, create truncates it. If it does not exist, the file is created. In
either case, we obtain a new file descriptor for the file.

Directories can be created by doing a bit-or of the integer constant DMDIR
with the rest of the permissions given to create. This sets a bit (called DMDIR)
in the integer used to specify permissions, and the system creates a directory
instead of a file.

fd = create("adir", OREAD, DMDIR|0775);

You cannot write into directories. That would be dangerous. Instead, when you
create and remove files within the directory, Plan 9 updates the contents of the
directory file for you. If you modify the previous program to try to create a direc-
tory, you must remove the line calling write. But you should still close the file
descriptor.
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Removing a file is simple. The system call remove removes the named file.
This program is similar to rm.
!rm.c !" """"_____

#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

int i;

for (i = 1; i < argc; i++)
if (remove(argv[i]) < 0)

fprint(2, "%s: %r\n", argv[0]);
exits(nil);

}

It can be used like the standard rm(1) tool, to get rid of multiple files. When
remove fails it alerts the user of the problem.

; 8.rm rm.8 x.c afile
8.rm: ’x.c’ file does not exist

Like other calls, remove returns -1 when it fails. In this case we print the pro-
gram name (argv[0]) and the error string. That suffices to let the user know what
happen and take any appropriate action. Note how the program iterates through
command line arguments starting at 1. Otherwise, it would remove itself!

A directory that is not empty, and contains other files, cannot be removed
using remove. To remove it, you must remove its contents first. Plan 9 could
remove the whole file tree rooted at the directory, but it would be utterly danger-
ous. Think about rm /. The system command rm accepts option -r to recur-
sively descend the named file and remove it and all of its contents. It must be used
with extreme caution. When a file is removed, it is gone. There is nothing you can
do to bring it back to life. Plan 9 does not have a wastebasket. If you are not sure
about removing a file, just don’t do it. Or move it to /tmp or to some other place
where it does not gets in your way.

Now that we can create and remove files, it is interesting to see if a file does
exist. This could be done by opening the file just to see if we can. However, it is
more appropriate to use a system call intended just to check if we can access a file.
It is called, perhaps surprisingly, access. For example, this code excerpt aborts
the execution of its program when the file name in fname does not exist:

if (access(fname, AEXIST) < 0)
sysfatal("%s does not exist", fname);

The second parameter is an integer constant that indicates what do you want
access to check the file for. For example, AWRITE checks that you could open
the file for writing, AREAD does the same for reading, and AEXEC does the same
for executing it.
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3.5. Directory entries
Files have data. There are many examples above using cat and xd to retrieve the
data stored in a file. Besides, files have metadata, i.e., data about the data. File
metadata is simply what the system needs to know about the file to be able to
implement it. File metadata includes the file name, the file size, the time for the last
modification to the file, the time for the last access to the file, and other attributes
for the file. Thus, file metadata is also known as file attributes.

Plan 9 stores attributes for a file in the directory that contains the file. Thus,
the data structure that contains file metadata is known as a directory entry. A
directory contains just a sequence of entries, each one providing the attributes for a
file contained in it. Let’s see this in action:

; lc
; cat .
;

An empty directory is an empty file.
; touch onefile
; xd -c .
0000000 B 00 M 00 13 00 00 00 00 00 00 00 00 bf a1 01
0000010 00 00 00 00 00 a4 01 00 00 \r I b1 D \r I b1
0000020 D 00 00 00 00 00 00 00 00 07 00 o n e f i
0000030 l e 04 00 n e m o 04 00 n e m o 04 00
0000040 n e m o
0000044

After creating onefile in this empty directory, we see a whole bunch of bytes in
the directory. Nothing that we could understand by looking at them, although you
can see how there are several strings, including nemo and onefile within the
data kept in the directory.

For each file in the directory, there is an entry in the directory to describe the
file. The format is independent of the architecture used, which means that the for-
mat is the same no matter the machine that stored the file. Because the machine
using the directory (e.g., your terminal) may differ from the machine keeping the
file (e.g., your file server), this is important. Each machine could use a different
format to encode integers, strings, and other data types.

We can double-check our belief by creating a second file in our directory.
After doing so, the directory has twice the size:
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; touch another
; xd -c .
0000000 B 00 M 00 13 00 00 00 00 00 00 00 00 c0 a1 01
0000010 00 00 00 00 00 a4 01 00 00 ! I b1 D ! I b1
0000020 D 00 00 00 00 00 00 00 00 07 00 a n o t h
0000030 e r 04 00 n e m o 04 00 n e m o 04 00
0000040 n e m o B 00 M 00 13 00 00 00 00 00 00 00
0000050 00 bf a1 01 00 00 00 00 00 a4 01 00 00 \r I b1
0000060 D \r I b1 D 00 00 00 00 00 00 00 00 07 00 o
0000070 n e f i l e 04 00 n e m o 04 00 n e
0000080 m o 04 00 n e m o
0000088

When programming in C, there are convenience functions that convert this portable
(but not amenable) data structure into a C structure. The C data type declared in
libc.h that describes a directory entry is as follows:

typedef
struct Dir {

/* system-modified data */
ushort type; /* server type */
uint dev; /* server subtype */
/* file data */
Qid qid; /* unique id from server */
ulong mode; /* permissions */
ulong atime; /* last read time */
ulong mtime; /* last write time */
vlong length; /* file length */
char *name; /* last element of path */
char *uid; /* owner name */
char *gid; /* group name */
char *muid; /* last modifier name */

} Dir;

From the shell, we can use ls to obtain most of this information. For example,
; ls -lm onefile
[nemo] --rw-r--r-- M 19 nemo nemo 0 Jul 9 19:24 onefile

% The file name is onefile. The field name within the directory entry is a
string with the name. Just with the name. An absolute path to refer to this file
would include all the names from that of the root directory down to the file;
each component separated by a slash. But the file name is just onefile.

% The times for the last access and for the last modification of the file (this one
printed by ls) are kept at atime and mtime respectively. These dates are
codified in seconds since the epoch, as we saw for /dev/time.

% The length for the file is zero. This is stored at field length in the directory
entry. The file is owned by user nemo and belongs to the group nemo.
These values are stored as string, using the fields uid (user id) and gid
(group id) respectively.

% The field mode records the file permissions, also known as the mode (that is
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why chmod has that name, for "change mode#). Permissions are encoded in
a single integer, as we saw. For this file mode would be 0644.

% The file was last modified by user nemo, and this value is encoded as a string
in the directory entry, using field muid (modification user id).

% The fields type, dev, and qid identify the file. They deserve a separate
explanation on their own that we defer by now.

To obtain the directory entry for a file, i.e., its attributes, we can use dirstat.
This function uses the actual system call, stat, to read the data, and returns a Dir
structure that is more convenient to use in C programs. This structure is stored in
dynamic memory allocated with malloc by dirstat, and the caller is responsi-
ble for calling free on it.

The following program gives some information about /NOTICE, nothing
that ls could not do, and produces this output when run:

; 8.stat
file name: NOTICE
file mode: 0444
file size: 63 bytes
;

!stat.c !" """""______
#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

Dir* d;

d = dirstat("/NOTICE");
if (d == nil)

sysfatal("dirstat: %r");
print("file name: %s\n", d->name);
print("file mode: 0%o\n", d->mode);
print("file size: %d bytes\n", d->length);
free(d);
exits(nil);

}

Note that the program called free only once, for the whole Dir. The strings
pointed to by fields in the structure are stored along with the structure itself in the
same malloc-allocated memory. Calling free once suffices.

An alternative to using this function is using dirfstat, which receives a
file descriptor instead of a file name. This function calls fstat, which is another
system call similar to stat (but receiving a file descriptor instead of a file name).
Which one to use depends on what do you have at hand, a name, or a file descrip-
tor.

Because directories contain directory entries, reading from a directory is very
similar to what we have just done. The function read can be used to read
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directories as well as files. The only difference is that the system will read only an
integral number of directory entries. If one more entry does not fit in the buffer you
supply to read, it will have to wait until you read again.

The entries are stored in the directory in a portable, machine independent, and
not amenable, format. Therefore, instead of using read, it is more convenient to
use dirread. This function calls read to read the data stored in the directory.
But before returning to the caller, it unpacks them into a, more convenient, array of
Dir structures.

As an example, the next program lists the current directory, using dirread
to obtain the entries in it.

Running the program yields the following output. As you can see, the direc-
tory was being used to keep a few C programs and compile them.

; 8.lsdot
8.lsdot
create.8
create.c
lsdot.8
lsdot.c
;

!lsdot.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int , char* [])
{

Dir* dents;
int ndents, fd, i;

fd = open(".", OREAD);
if (fd < 0)

sysfatal("open: %r");
for(;;){

ndents = dirread(fd, &dents);
if (ndents == 0)

break;
for (i = 0; i < ndents; i++)

print("%s\n", dents[i].name);
free(dents);

}
exits(nil);

}

The array of directory entries is returned from dirread using a pointer parameter
passed by reference (We know, C passes all parameters by value; The function
receives a pointer to the pointer). Such array is allocated by dirread using
malloc, like before. Therefore, the caller must call free (once) to release this
memory. The number of entries in the array is the return value for the function.
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Like read would do, when there are no more entries to be read, the function
returns zero.

Sometimes it is useful to change file attributes. For example, changing the
length to zero may truncate the file. A rename within the same directory can be
achieved by changing the name in the directory entry. Permissions can be changed
by updating the mode in the directory entry. Some of the attributes cannot be
updated. For example, it is illegal to change the modification type, or any of the
type, dev, and qid fields.

The function dirwstat is the counterpart of dirstat. It works in a simi-
lar way, but instead of reading the attributes, it updates them. New values for the
update are taken from a Dir structure given as a parameter. However, the function
ignores any field set to a null value, to allow you to change just one attribute, or a
few ones. Beware that zero is not a null value for some of the fields, because it
would be a perfectly legal value for them. The function nulldir is to be used to
null all of the fields in a given Dir.

Here is an example. The next program is similar to chgrp(1), change group,
and can be used to change the group for a file. The main function iterates through
the file name(s) and calls a chgrp function to do the actual work for each file.
!chgrp.c !" """""""________

#include <u.h>
#include <libc.h>

void
chgrp(char* gid, char* fname)
{

Dir d;

nulldir(&d);
d.gid = gid;
if (dirwstat(fname, &d) < 0)

fprint(2, "chgrp: wstat: %r\n");
}

void
main(int argc, char* argv[])
{

int i;

if (argc < 3){
fprint(2, "usage: %s gid file...\n", argv[0]);
exits("usage");

}
for (i = 2; i < argc; i++)

chgrp(argv[1], argv[i]);
exits(nil);

}

The interesting part is the implementation of the chgrp function. It is quite sim-
ple. Internally, dirwstat packs the structure into the portable format, and calls
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wstat (the actual system call). As a remark, there is also a dirfwstat variant,
that receives a file descriptor instead of a file name. It is the counterpart of
dirfstat and uses the fwstat system call. Other attributes in the directory
entry can be updated as done above for the group id.
The resulting program can be used like the real chgrp(1)

; 8.chgrp planb chgrp.c chgrp.8
; ls -l chgrp.c chgrp.8
--rw-r--r-- M 19 nemo planb 1182 Jul 10 12:09 chgrp.8
--rw-r--r-- M 19 nemo planb 377 Jul 10 12:08 chgrp.c
;

3.6. Listing files in the shell
It may be a surprise to find out that there is now a section with this title. You know
all about listing files. It is a matter of using ls and other related tools. Well, there
is something else. The shell on its own knows how to list files, to help you type
names. Look at this session:

; cd $home
; lc
bin lib tmp
; echo *
bin lib tmp

First, we used lc to list our home. Later, we used just the shell. It is clear that
echo is simply echoing its arguments. It knows nothing about listing files. There-
fore, the shell had to supply bin, lib, and tmp, as the arguments for echo
(instead of supplying the "*#). It could be either the shell or echo the one responsi-
ble for this behavior. There is no magic, and no other program was involved on
this command line.

The shell gives special meaning to certain characters (we already saw two:
"$#, and "’#). One of them is "*#. When the a command line contains a word that is
"*#, it is replaced with the names for all the files in the current directory. Indeed,
"*# works for all directories:

; lc bin
386 rc
; echo bin/*
bin/386 bin/rc
;

In this case, the shell replaced bin/* with two names before running echo:
bin/386 and bin/rc. This is called globbing, and it works as follows. When
the shell reads a command line, it looks for file name patterns. A pattern is an
expression that describes file names. It can be just a file name, but useful patterns
can include special characters like "*#. The shell replaces the pattern with all file
names matching the pattern.

For example, * matches with any sequence of characters not containing "/#.
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Therefore, in this directory
; lc
bin book lib tmp

the pattern * matches with bin, book, lib, and tmp:
; echo *
bin book lib tmp

The pattern b* matches with any file name that has an initial "b# followed by "*#,
i.e, followed by anything. This means

; echo b*
bin book

The pattern *i* matches with anything, then an i, and then anything:
; echo *i*
bin lib

Another example
; echo *b*
bin book lib

showing that the part of the name matched by * can be also an empty string! Pat-
terns like this one mean the file name has a b in it.

Patterns may appear within path names, to match against different levels in
the file tree. For example, we might want to search for the file containing ls, and
this would be a brute force approach:

; ls /ls
ls: /ls: ’/ls’ file does not exist

Not there. Let’s try one level down
; ls /*/ls
/bin/ls

Found! But let’s assume it was not there either.
; ls /*/*/ls

It might be at /usr/bin/ls. Not in a Plan 9 system, but we did not know. Each
* in the pattern /*/*/ls matches with any file name. Therefore, this patterns
means any file named ls, inside any directory, which is inside any directory that is
found at /.

This mechanism is very powerful. For example, this directory contains a lot
of source and object files. We can use a pattern to remove just the object files.
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; lc
8.out echo.c err.c open.c
echo.8 err.8 open.8 sleep.c
; rm *.8

The shell replaced the pattern *.8 with any file name terminated with .8. There-
fore, rm received as arguments all the names for object files.

; lc
8.out echo.c err.c open.c sleep.c

Patterns may contain a "?#, which matches a single character. For example, we
know that the linkers generate output files named 8.out, 5.out, etc. This
removes any temporary binary that we might have in the directory:

; rm ?.out

Any file name containing a single character, and then .out, matches this pattern.
The shell replaces the pattern with appropriate file names, and then executes the
command line. If no file name matches the pattern, the pattern itself is untouched
by the shell and used as the command argument. After the previous command, if
we try again

; rm ?.out
rm: ?.out: ’?.out’ file does not exist

Another expression that may be used in a pattern is a series of characters between
square brackets. It matches any single character within the brackets. For example,
instead of using ?.out we might have used [58].out in the command line
above. The only file names matching this expression are 5.out and 8.out,
which were the names we meant.

Another example. This lists any C source file (any string followed by a single
dot, and then either a c or an h).

; lc *.[ch]

As a shorthand, consecutive letters or numbers within the brackets may be abbrevi-
ated by using a - between just the first and the last ones. An example is [0-9],
which matches again any single digit.

The directory /n/dump keeps a file tree that uses names reflecting dates, to
keep a copy of files in the system for each date. For example,
/n/dump/2002/0217 is the path for the dump (copy) made in February 17th,
2002. The command below uses a pattern to list directories for dumps made the
17th of any month not after June, in a year beyond 2000, but ending in 2 (i.e., just
2002 as of today).
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; ls /n/dump/2*2/0[1-6]17
/n/dump/2002/0117
/n/dump/2002/0217
/n/dump/2002/0317
/n/dump/2002/0417
/n/dump/2002/0517
/n/dump/2002/0617

In general, you concoct patterns to match on file names that may be of interest for
you. The shell knows nothing about the meaning of the file names. However, you
can exploit patterns in file names using file name patterns. Confusing?

To ask the shell not to touch a single character in a word that might be other-
wise considered a pattern, the word must be quoted. For example,

; lc
bin lib tmp
; touch ’*’
; echo *
* bin lib tmp

Because the * for touch was quoted, the shell took it verbatim. It was not inter-
preted as a pattern. However, in the next command line it was used unquoted and
taken as a pattern. Removing the funny file we just created is left as an exercise.
But be careful. Remember what

; rm *

would do!

3.7. Buffered Input/Output
The interface provided by open, close, read, and write suffices many times
to do the task at hand. Also, in many cases, it is just the more convenient interface
for doing I/O to files. For example, cat must just write what it reads. It is just fine
to use read and write for implementing such a tool. But, what if our program
had to read one byte at a time? or one line at a time? We can experiment using the
program below. It is a simple cp, that copies one file into another, but using the
size for the buffer that we supply as a parameter.
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!bcp.c !" """""______
#include <u.h>
#include <libc.h>

static void
usage(void)
{

fprint(2, "usage: %s [-b bufsz] infile outfile\n", argv0);
exits("usage");

}

void
main(int argc, char* argv[])
{

char* buf;
long nr, bufsz = 8*1024;
int infd, outfd;

ARGBEGIN{
case ’b’:

bufsz = atoi(EARGF(usage()));
break;

default:
usage();

}ARGEND;
if (argc != 2)

usage();
buf = malloc(bufsz);
if (buf == nil)

sysfatal("no more memory");
infd = open(argv[0], OREAD);
if (infd < 0)

sysfatal("%s: %s: %r", argv0, argv[0]);
outfd = create(argv[1], OWRITE, 0664);
if (outfd < 0)

sysfatal("%s: %s: %r", argv0, argv[1]);
for(;;){

nr = read(infd, buf, bufsz);
if (nr <= 0)

break;
write(outfd, buf, nr);

}
close(infd);
close(outfd);
exits(nil);

}

We are going to test our new program using a file created just for this test. To cre-
ate the file, we use dd. This is a tool that is useful to copy bytes in a controlled
way from one place to another (its name stands for device to device). Using this
command
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; dd -if /dev/zero -of /tmp/sfile -bs 1024 -count 1024
1024+0 records in
1024+0 records out
; ls -l /tmp/sfile
--rw-r--r-- M 19 nemo nemo 1048576 Jul 29 16:20 /tmp/sfile

we create a file with 1 Mbyte of bytes, all of them zero. The option -if lets you
specify the input file for dd, i.e., where to read bytes from. In this case, we used
/dev/zero, which a (fake!) file that seems to be an unlimited sequence of
zeroes. Reading it would just return as many zeroes as bytes you tried to read, and
it would never give an end of file indication. The option -of lets you specify
which file to use as the output. In this case, we created the file /tmp/sfile,
which we are going to use for our experiment.

This tool, dd, reads from the input file one block of bytes after another, and
writes each block read to the output file. A block is also known as a record, as the
output from the program shows. In our case, we used -bs (block size) to ask dd to
read blocks of 1024 bytes. We asked dd to copy just 1024 blocks, using its
-count option. The result is that /tmp/sfile has 1024 blocks of 1024 bytes
each (therefore 1 Mbyte) copied from /dev/zero.

We are using a relic that comes from ancient times! Times when tapes and
even more weird artifacts were very common. Many of such devices required pro-
grams to read (or write) one record at a time. Using dd was very convenient to
duplicate one tape onto another and similar things. Because it was not common to
read or write partial records, the diagnostics printed by dd show how many entire
records were read (1024 here), and how many bytes were read from a last but par-
tial record (+0 in our case). And the same for writing. Today, it is very common to
see always +0 for both the data read in, and the data written out. By the way, for
our little experiment we could have used just dd, instead of writing our own dumb
version for it, but it seemed more appropriate to let you read the code to review file
I/O once more.

So, what would happen when we copy our file using our default buffer size of
8Kbytes?

; time 8.bcp /tmp/sfile /tmp/dfile
0.01u 0.01s 0.40r 8.bcp /tmp/sfile /tmp/dfile

Using the command time, to measure the time it takes for a command to run, we
see that using a 8Kbyte buffer it takes 0.4 seconds of real time (0.40r) to copy a
1Mbyte file. As an aside, time reports also that 8.bcp spent 0.01 seconds exe-
cuting its own code (0.01u) and 0.01 seconds executing inside the operating sys-
tem (0.01s), e.g., doing system calls. The remaining 0.38 seconds, until the total
of 0.4 seconds, the system was doing something else (perhaps executing other pro-
grams or waiting for the disk to read or write).

What would happen reading one byte at a time? (and writing it, of course).
; time 8.bcp -b 1 /tmp/sfile /tmp/dfile
9.01u 56.48s 755.31r 8.bcp -b 1 /tmp/sfile /tmp/dfile

Our program is amazingly slow! It took 755.31 seconds to complete. That is 12.6
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minutes, which is an eon for a computer. But it is the same program, we did not
change anything. Just this time, we read one byte at a time and then wrote that byte
to the output file. Before, we did the same but for a more reasonable buffer size.

Let’s continue the experiment. What would happen if our program reads one
line at a time? The source file does not have lines, but we can pretend that all lines
have 80 characters of one byte each.

; time 8.bcp -b 80 /tmp/sfile /tmp/dfile
0.11u 0.74s 10.38r 8.bcp -b 80 /tmp/sfile /tmp/dfile

Things improved, but nevertheless we still need 10.38 seconds just to copy 1
Mbyte. What happens is that making a system call is not so cheap, at least it seems
very expensive when compared to making a procedure call. For a few calls, it does
not matter at all. However, in this experiment it does. Using a buffer of just one
byte means making 2,097,152 system calls! (1,048,576 to read bytes and 1,048,576
to write them). Using an 8Kbyte buffer requires just 128 calls (.e., 1,048,576 /
8,192). You can compare for yourself. In the intermediate experiment, reading one
line at a time, it meant 26,214 system calls. Not as many as 2,097,152, but still a
lot.

How to overcome this difficulty when we really need to write an algorithm
that reads/writes a few bytes at a time? The answer, as you probably know, is just
to use buffering. It does not matter if your algorithm reads one byte at a time. It
does matter if you are making a system call for each byte you read.

The bio(2) library in Plan 9 provides buffered input/output. This is an
abstraction that, although not provided by the underlying Plan 9, is so common that
you really must know how it works. The idea is that your program creates a Bio
buffer for reading or writing, called a Biobuf. You program reads from the
Biobuf, by calling a library function, and the library will call read only to refill
the buffer each time you exhaust its contents. This is our (in)famous program, but
this time we use Bio.
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!biocp.c !" """"""_______
#include <u.h>
#include <libc.h>
#include <bio.h>

static void
usage(void)
{

fprint(2, "usage: %s [-b bufsz] infile outfile\n", argv0);
exits("usage");

}

void
main(int argc, char* argv[])
{

char* buf;
long nr, bufsz = 8*1024;
Biobuf* bin;
Biobuf* bout;

ARGBEGIN{
case ’b’:

bufsz = atoi(EARGF(usage()));
break;

default:
usage();

}ARGEND;
if (argc != 2)

usage();
buf = malloc(bufsz);
if (buf == nil)

sysfatal("no more memory");
bin = Bopen(argv[0], OREAD);
if (bin == nil)

sysfatal("%s: %s: %r", argv0, argv[0]);
bout = Bopen(argv[1], OWRITE);
if (bout == nil)

sysfatal("%s: %s: %r", argv0, argv[1]);
for(;;){

nr = Bread(bin, buf, bufsz);
if (nr <= 0)

break;
Bwrite(bout, buf, nr);

}
Bterm(bin);
Bterm(bout);
exits(nil);

}

The first change you notice is that to use Bio the header bio.h must be included.
The data structure representing the Bio buffer is a Biobuf. The program obtains
two ones, one for reading the input file and one for writing the output file. The
function Bopen is similar to open, but returns a pointer to a Biobuf instead of
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returning a file descriptor.
; sig Bopen

Biobuf* Bopen(char *file, int mode)

Of course, Bopen must call open to open a new file. But the descriptor returned
by the underlying call to open is kept inside the Biobuf, because only routines
from bio(2) should use that descriptor. You are supposed to read and write from the
Biobuf.

To read from bin, our input buffer, the program calls Bread. This function
is exactly like read, but reads bytes from the buffer when it can, without calling
read. Therefore, Bread does not receive a file descriptor as its first parameter, it
receives a pointer to the Biobuf used for reading.

; sig Bread
long Bread(Biobufhdr *bp, void *addr, long nbytes)

The actual system call, read, is used by Bread only when there are no more
bytes to be read from the buffer, e.g., because you already read it all.

To write bytes to a BIobuf, the program uses Bwrite. This is to write
what Bread is to read.

; sig Bwrite
long Bwrite(Biobufhdr *bp, void *addr, long nbytes)

The call to Bterm releases a Biobuf, including the memory for the data struc-
ture. This closes the file descriptor used to reach the file, after writing any pending
byte still sitting in the buffer.

; sig Bterm
int Bterm(Biobufhdr *bp)

As you can see, both Bterm and Bflush return an integer. That is how they
report errors. They can fail because it can be that the file cannot really be written
(e.g., because the disk is full), but you will only know when you try to write the
file, which does not necessarily happen in Bwrite.

How will our new program behave, now that it uses buffered input/output?
Let’s try it.

; time 8.biocp /tmp/sfile /tmp/dfile
0.00u 0.03s 0.38r 8.bcp /tmp/sfile /tmp/dfile
; time 8.biocp -b 1 /tmp/sfile /tmp/dfile
0.00u 0.13s 0.31r 8.bcp -b 1 /tmp/sfile /tmp/dfile
; time 8.biocp -b 80 /tmp/sfile /tmp/dfile
0.00u 0.02s 0.20r 8.bcp -b 80 /tmp/sfile /tmp/dfile

Always the same!. Well, not exactly the same because there is always some uncer-
tainty in every measurement. In this case, give or take 2/10th of a second. But in
any case, reading one byte at a time is far from taking 12.6 minutes. Bio took care
of using a reasonable buffer size, and calling read only when necessary, as we did
by ourselves when using 8Kbyte buffers.
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One word of caution. After calling write, it is very likely that our bytes are
already in the file, because there is probably no buffering between your program
and the actual file. However, after a call to Bwrite it is almost for sure that your
bytes are not in the file. They will be sitting in the Biobuf, waiting for more bytes
to be written, until a moment when it seems reasonable for a Bio routine to do the
actual call to write. This can happen either when you fill the buffer, or when you
call Bterm, which terminates the buffering. If you really want to flush your buffer,
i.e., to send all the bytes in it to the file, you may call Bflush.

; sig Bflush
int Bflush(Biobufhdr *bp)

To play with this, and see a couple of other tools provided by Bio, we are going to
reimplement our little cat program but using Bio this time.
!biocat.c !" """""""________

#include <u.h>
#include <libc.h>
#include <bio.h>

void
main(int , char* [])
{

Biobuf bin;
Biobuf bout;
char* line;
int len;

Binit(&bin, 0, OREAD);
Binit(&bout,1, OWRITE);
while(line = Brdline(&bin, ’\n’)){

len = Blinelen(&bin);
Bwrite(&bout, line, len);

}
Bterm(&bin);
Bterm(&bout);
exits(nil);

}

This program uses two Biobufs, like the previous one. However, we now want
one for reading from standard input, and another to write to standard output.
Because we already have file descriptors 0 and 1 open, it is not necessary to call
Bopen. The function Binit initializes a Biobuf for an already open file
descriptor.

; sig Binit
int Binit(Biobuf *bp, int fd, int mode)

You must declare your own Biobuf. Note that this time bin and bout are not
pointers, they are the actual Biobufs used. Once we have our bin and bout
buffers, we might use any other Bio function on them, like before. The call to
Bterm terminates the buffering, and flushes any pending data to the underlying
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file. However, because Bio did not open the file descriptor for the buffer, it will not
close it either.

Unlike the previous program, this one reads one line at a time, because we
plan to use it with the console. The function Brdline reads bytes from the buffer
until the end-of-line delimiter specified by its second parameter.

; sig Brdline
void* Brdline(Biobufhdr *bp, int delim)

We used ’\n’, which is the end of line character in Plan 9. The function returns a
pointer to the bytes read, or zero if no more data could be read. Each time the pro-
gram reads a line, it writes the line to its standard output through bout. The line
returned by Brdline is not a C string. There is not a final null byte after the line.
We could have used Brdstr, which returns the line read in dynamic memory
(allocated with malloc), and terminates the line with a final null byte. But we did
not. Thus, how many bytes must we write to standard output? The function
Blinelen returns the number of bytes in the last line read with Brdline.

; sig Blinelen
int Blinelen(Biobufhdr *bp)

And that explains the body of the while in our program. Let’s now play with our
cat.

; 8.biocat
one little
cat was walking.
control-d
one little
cat was walking.
;

No line was written to standard output until we typed control-d. The program did
call Bwrite, but this function kept the bytes in the buffer. When Brdline
returned an EOF indication, the call to Bterm terminated the output buffer and its
contents were written to the underlying file. If we modify this program to add a call
to

Bflush(&bout);

after the one to Bwrite, this is what happens.
; 8.biocat
Another little cat
Another little cat
did follow
did follow
control-d
;

The call to Bflush flushes the buffer. Of course, it is now a waste to use bout at
all. If we are flushing the buffer after each write, we could have used just write,
and forget about bout.
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Problems
1 Use the debugger, acid, to see that a program reading from standard input in

a window is indeed waiting inside read while the system is waiting for you
to type a line in the window.
Hint: Use ps to find out which process is running your program.

2 Implement the cat(1) utility without looking at the source code for the one in
your system.

3 Compare your program from the previous problem with the one in the sys-
tem. Locate the one in the system using a command. Discuss the differences
between both programs.

4 Implement a version of chmod(1) that accepts an octal number representing a
new set of permissions, and one or more files. The program is to be used like
in
; 8.out 0775 file1 file2 file3

5 Implement your own program for doing a long listing like
; ls -l

would do.
6 Write a program that prints all the files contained in a directory (hierarchy)

along with the total number of bytes consumed by each file. If a file is a
directory, its reported size must include that of the files found inside. Com-
pare with du(1).
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4 ! Parent and Child
______

4.1. Running a new program
In chapter 2 we inspected the process that is executing your code. This process was
created by Plan 9 in response to a request made by the shell. Until now, we have
created new processes only by asking the shell to run new commands. In this chap-
ter we explore how to create new processes and execute new programs by our-
selves.

You may think that the way to start a new process to run a program is by exe-
cuting a single system call (something like run("/bin/ls") for executing ls).
That is not the case. There are two different system calls involved in the process.
One creates a new process, the other executes a new program. There are several
reasons for this:
% One reason is that you may want to start a new process just to have an extra

flow of control for doing something. In this case, there would be no new pro-
gram to execute. Thus, it makes sense to be able to create a new process (e.g.,
a new flow of control) just for its own sake.

% Another reason is that you may want to customize the environment for the
new process (e.g., adjust its file descriptors, change its working directory, or
any other thing) before it executes the new program. It is true that a run()
system call might include parameters to specify all things you may want to
customize. Such call would have countless parameters! It is far more simple
to let you use the programming language to customize whatever you want in
the process before it runs a new program.

Before going any further, this is a complete example using both system calls. This
program creates a new process by calling fork, and executes /bin/ls in the
new process by calling execl:
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!runls.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

switch(fork()){
case -1:

sysfatal("fork failed");
case 0:

execl("/bin/ls", "ls", nil);
break;

default:
print("ls started\n");

}
exits(nil);

}

The process running this program proceeds executing main, and then calls fork.
At this point, a new process is created as an exact clone of the one we had. Both
processes continue execution returning from fork. For the original process (the
parent process), fork returns the pid for the new process. Because this is a posi-
tive number, it enters the default case. For the new process (the child process),
fork returns zero. So, the child process continues executing at case 0. The
child calls execl, which clears its memory and loads the program at /bin/ls
for execution.

We will now learn about each call at a time, to try to understand them well.

4.2. Process creation
The system call fork creates an exact clone of the calling process. What does this
mean? For this program
!onefork.c !" """"""""_________

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

print("one\n");
fork();
print("fork\n");
exits(nil);

}

This is the output



- 99 -

; 8.onefork
one
fork
fork

The first print was first executed. After that, we can see twice the text for the
second print. Indeed, it executed twice. When we asked the shell to run
8.onefork, it created a process to run our program. This process provides the
flow of control that, for us, starts at main and proceeds until the call to exits.
Our process obeys the behavior we expect. It executes the first line, then the next,
and so on until it dies. At some point, this process makes a call to fork, and that
creates another process that proceeds executing from fork one line after another
until it dies.

This can be seen in figure 4.1. The figure depicts the state for both processes
at different points in time. Time increases going down in the figure. The arrows in
the figure represent the program counter. Initially, only the parent exists, it exe-
cutes the instructions for the first print. Later, the parent calls fork. Later,
during the system call, a clone, i.e, the child, is created as a copy of the original.
This means that the memory of the child is a copy of the memory of the parent.
This memory includes the code, all the data, and the stack! Because the child is a
copy, it will return from the fork call like the parent will; Its registers are also
(almost) a copy.

From now on, we do not know in which order they will execute, and we do
not know for how much time one process will be executing each time it is given the
processor. The figure assumes that the child will execute now
print("fork\n") and then the parent will have enough time to complete its
execution, and the child will at last execute its remaining instructions. But we do
not know. The system may assign the processor in turns to these and other
processes in any other way. Perhaps the parent has time to complete right after
calling fork and before the child starts executing, or perhaps it will happen just
the opposite.

The child executes independently from the parent. For it, it does not matter
what the parent does. For the parent, it does not matter what the child does. That is
the process abstraction. You get a new, separate, stand-alone, flow of control
together with everything it needs to do its job.

To write your programs, did you have to think about what the shell program
was doing? You never did. You wrote your own program (executed by your own
process) and you forgot completely about other processes in the system. The same
happens here. In Plan 9, when a process has offspring, the child leaves the parent’s
house immediately.

Because the child is a copy, and all its memory is a copy of the parent’s, vari-
ables in the child start with the values they had by the time of the fork. From
there on, when you program, you must keep in mind that each variable you use
may have one value for the parent and another for the child. You just have to fork
(hence the system call name) the flow of control at the fork, and think separately
from there on for each process. To check out that you really understand this, try to
say what this program would print.
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print("one\n");

fork();

print("fork\n");

exits(nil);

Parent

PC

print("one\n");

fork();

print("fork\n");

exits(nil);

Parent

PC

print("one\n");

fork();

print("fork\n");

exits(nil);

Parent

PC
print("one\n");

fork();

print("fork\n");

exits(nil);

Child

PC

print("one\n");

fork();

print("fork\n");

exits(nil);

Child

PC

print("one\n");

fork();

print("fork\n");

exits(nil);

Parent

PC

print("one\n");

fork();

print("fork\n");

exits(nil);

Parent

PC

print("one\n");

fork();

print("fork\n");

exits(nil);

Child

PC

Flow of control

Child’s flow

Figure 4.1: The call to fork creates a clone of the original process. Both proceed from there.
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!intfork.c !" """"""""_________
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int i;

i = 1;
fork();
i++;
print("i=%d\n", i);
exits(nil);

}

The variable i is initialized to 1 by the only process we have initially. After calling
fork, each process (parent and child) increments it’s own copy of the variable.
The variable i of the parent becomes 2, and that of the child becomes 2 as well.
Finally, each process will print its variable, but we will always get this output:

; 8.intfork
i=2
i=2

After calling fork, you may want to write an if that makes the child do some-
thing different from the parent. If you could not do this, they would be viruses, not
processes. Fortunately, it is simple. We have seen how fork returns two times.
Only the parent calls it, but it returns for the parent (in the parent process) and for
the child (in the child process). The return value differs. This program
!child.c !" """"""_______

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

switch(fork()){
case -1:

sysfatal("fork failed\n");
case 0:

print("I am the child\n");
break;

default:
print("I am the parent\n");

}
exits(nil);

}

produces the following output
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; 8.child
I am the child
I am the parent

To the parent, fork returns the pid of the child, which we know is greater than
zero. To the child, fork always returns zero. Therefore, we can write different
code to be executed in the parent and the child after calling fork. Both processes
have their own copy for all the code, but they can follow different paths from there
on.

When fork fails, it returns -1, and we should always check for errors. Of
course when it fails there would be no child. But otherwise, both processes execute
different code after fork. In which order? We do not know. And we should not
care! Did you care if your shell executed its code before or after the code in your
programs? You forgot about the shell when writing your programs. Do the same
here. The program above might produce this output instead

; 8.child
I am the parent
I am the child

Let’s have some fun. This is a runaway program. It creates a child and then dies.
The child continues playing the same game. This is a nasty program because it is
very hard (or impossible) to kill. When you are prepared to kill it, the process has
gone and there is noone to kill. But there is another process taking its place!
!diehard.c !" """"""""_________

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

while(fork() == 0)
; // catch me!

exits(nil);
}

This version is even more nasty. It creates processes exponentially, which might
happen to you some day when you make a mistake calling fork. Once the system
cannot cope with more processes, there will be nothing you could do but rebooting
the machine. Try it as the last thing do you in one of your sessions so that you
could see what happens.
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!rabbits.c !" """"""""_________
#include <u.h>
#include <libc.h>
void
main(int, char*[])
{

// just like rabbits...
while(fork())

;
exits(nil);

}

4.3. Shared or not?
Fork creates a clone process. Because the child is a clone, it has its own set of file
descriptors. When fork returns, the descriptors in the child are a copy of those in
the parent. However, that is the only thing copied.

Of course, the files referenced by the descriptors are not copied. The Chan
data structures that maintain the offset for the open files are not copied either. Fig-
ure 4.2 shows both a parent and a child just after calling fork, showing file
descriptors for both. This figure may correspond to the following program.

Parent
process

File descriptor
table

0
1
2
3

...
n afile

offset: 6

/dev/cons
offset: 3245

Child
process

File desc.
table

0
1
2
3

...
n

Figure 4.2: The child has a copy of the file descriptors that the parent had.
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!before.c !" """""""________
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int fd;

fd = create("afile", OWRITE, 0644);
write(fd, "hello\n", 6);
if (fork() == 0)

write(fd, "child\n", 6);
else

write(fd, "dad\n", 4);
close(fd);
exits(nil);

}

Initially, the parent had standard input, output, and error open. All of them went to
file /dev/cons. Then, the parent opens (i.e., creates) afile, and file descriptor
3 is allocated. It points to a (Chan) data structure that maintains the offset (initially
0), and the reference to the actual file. After writing 6 bytes, the offset becomes 6.

At this point, fork creates the child as a clone. It has a copy of the parent’s
file descriptors, but everything else is shared. Of course, if either process opens
new files, their offsets would not be shared. For each open you get an all new file
offset. What would be the contents for afile after running this program?

; 8.before
; cat afile
hello
child
dad
;

Each process calls write. the child’s write updates the file and advances the off-
set by 6. The next write does the same. The order of child and dad may differ in
the output, depending on which process executes first its write. Both will be
there.

Compare what happen before with the behavior for the next program. The
program is very similar. The parent tries to write dad to a file, and the child tries to
write child. According to our experience, the file should have both strings in it
after the execution.
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!after.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int fd;

if (fork() == 0){
fd = open("afile", OWRITE);
write(fd, "child\n", 6);

} else {
fd = open("afile", OWRITE);
write(fd, "dad\n", 4);

}
close(fd);
exits(nil);

}

But this is what happens:
; rm afile
; touch afile
; 8.after
; cat afile
dad
d
; xd -c afile
0000000 d a d \n d \n
0000006

Why? Because each process had its own file descriptor for the file, that now is not
sharing anything with the other process. In the previous program, the descriptors in
both processes came from the same open: They were sharing the offset. When the
child wrote, it advanced the offset. The parent found the offset advanced, and could
write past the child’s output.

But now, the parent opens the file, and gets its own offset (starting at 0). The
child does the same and gets its own offset as well (also 0). One of them writes, in
this case the child wrote first. That advances its own offset for the file. The other
offset stays at 0. Therefore, both processes overwrite the same part of the file.

It could be that the parent executes its write before the child, in which case
we would get this, which would be also an overwrite:

; cat afile
child

There is one interesting thing to learn here. We have said that either write
(parent’s and child’s) can execute before the other one. Couldn’t it be that part of a
write is executed and then part of the other? In principle it could. But in this
case, it will never happen.
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Plan 9 guarantees that a single write to a particular file is fully executed
and not mixed with other writes to the same file. This means that if there are two
write calls being made for the same file, one must execute before the other. For
different files, they could execute simultaneously (i.e., concurrently), but not for
the same file in Plan 9.

When one operation is guaranteed to execute completely without being inter-
rupted, it is called atomic. The Plan 9 write system call is atomic at least for
writes on the same file and when the number of bytes is not large enough to force
the system to do several write operations to implement your system call. In our sys-
tem this happens for writes of at most 8Kbytes.

4.4. Race conditions
What you just saw is very important. It is not to be forgotten, or you risk going into
a debugging Inferno. When multiple processes work on the same data, extra care is
to be taken. You saw how the final value for afile depends on which process is
faster, i.e., gets more processor time, and reaches a particular point in the code ear-
lier than another process. Because the final result depends on this race, its said that
the program has a race condition.

You are entering a dangerous world. It is called concurrent programming.
The moment you use more than one process to write an application, you have to
think about race conditions and try to avoid them as much as you can. The name
concurrent is used because you do not know if all your processes execute really in
parallel (when there is more than one processor) or relying on the operating system
to multiplex a single processor among them. In fact, the problems would be the
same: Race conditions. Therefore, it is best to think that they execute concurrently,
try to avoid races, and forget about what is really happening underneath.

Programs with race conditions are unpredictable. They should be avoided.
Doing so is a subject for a book or a course by itself. Indeed, there are many books
and courses on concurrent programming that deal with this topic. In this text, we
will deal with this problem by trying to avoid it, and showing a few mechanisms
that can protect us from races.

4.5. Executing another program
We know how to create a new process. Now it would be interesting to learn how to
run a new program using a process we have created. This is done with the exec
system call. This call receives two parameters, a file name that corresponds to the
executable file that we want to execute, and its argument list. The argument list is
an array of strings, with one string per argument.

If we know the argument list in advance (when we write the program),
another system call called execl is more convenient. It does the same, but lets
you write the arguments directly as the function arguments, without having to
declare and initialize an array. We are going to use this call here.

This is our first example program
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!execl.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

print("running ls\n");
execl("/bin/ls", "ls", "-l", "/usr/nemo", nil);
print("exec failed: %r\n");

}

When run, it produces the following output:
; 8.execl
running ls
d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 18:11 /usr/nemo/bin
d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 21:24 /usr/nemo/lib
d-rwxr-xr-x M 19 nemo nemo 0 Jul 11 21:13 /usr/nemo/tmp

The output is produced by the program found in /bin/ls. Clearly, our program
did not read a directory nor print any file information. Furthermore, the output is
the same printed by the next command:

; ls -l /usr/nemo
d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 18:11 /usr/nemo/bin
d-rwxrwxr-x M 19 nemo nemo 0 Jul 11 21:24 /usr/nemo/lib
d-rwxr-xr-x M 19 nemo nemo 0 Jul 11 21:13 /usr/nemo/tmp

This is what the execl call did. It loaded the program from /bin/ls into our
process, and jumped to its main procedure supplying the arguments "ls#, "-l#,
and "/usr/nemo#. Remember that argv[0] is the program name, by conven-
tion. The last parameter to the execl call was nil to let it know when to stop
taking parameters from the parameter list.

There is an important thing that the output for our program does show.
Indeed, that it does not show. The print we wrote after calling execl is missing
from the output! This makes sense if you think twice. Because execl loads
another program (e.g., that in /bin/ls) into our process, our code is gone. If
execl works, the process no longer has our program. It has that of ls instead.
Also, our process no longer has our data, nor our stack. Initial data and stack for ls
is there instead. What a personality change!

Now consider the same program but replacing the call to execl with this
one:

execl("ls", "-l", "/usr/nemo", nil);

This is the output now when the program is run:
; 8.execl
running ls
exec failed: ’ls’ file does not exist
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This time, both calls to print execute! Because execl failed to do its work, it
did not load any program into our process. Our mind is still here, and the second
printed message shows up. Why did execl fail? We forgot to supply the file name
as the first parameter. Therefore, execl tried to access the file ./ls to load a
program from it. Because such file did not exist, the system call could do nothing
else but to return an error. What value returns execl when it fails? It does not
matter. If it returns, it must be an error.

Now replace the call with the next one. What would happen?
execl("/bin/ls", "-l", "/usr/nemo", nil);

This is what happens:
; 8.execl
running ls
/usr/nemo/bin
/usr/nemo/lib
/usr/nemo/tmp

Clearly ls did run in our process. Its output is there and our second print is not.
However, where is the long listing we requested? Nowhere. For ls, argv[0]
was -l and argv[1] was /usr/nemo. We executed ls /usr/nemo. Even
worse, we told ls that its name was -l.

Now that we have mastered execl, let’s try doing one more thing. If we
replace the call with this other one, what happens?

execl("/bin/ls", "ls", "-l", "$home", nil);

The answer is obvious only when you think which program takes care of under-
standing "$home#. It is the shell, and not ls. The shell replaces $home with its
value, /usr/nemo in this case. It seems natural now that this is he output for the
program:

; 8.execl
running ls
ls: $home: ’$home’ file does not exist

What we executed was the equivalent of the shell command line
; ls -l ’$home’

which we know well now. Should we want to run the program for $home, we must
take care of the environment variable by ourselves:
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#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

char* home;

print("running ls\n");
home = getenv("home");
execl("/bin/ls", "ls", "-l", home, nil);
print("exec failed: %r\n");

}

4.6. Using both calls
Most of the times you will not call exec using the process that initially runs your
program. Your program would be gone. You combine both fork and exec to
start a new process and run a program on it, as saw first in this chapter. We are
going to implement a function called run, which receives a command including its
arguments and runs it at a separate process. This is useful whenever you want to
start an external program from your own one.

The header for the function will be:
int run(char* file, char* argv[]);

and its parameters have the same meaning that those of exec: The file to execute
and the argument vector. This is the code.

int
run(char* cmd, char* argv[])
{

switch(fork()){
case -1:

return -1;
case 0: // child

exec(cmd, argv);
sysfatal("exec: %r");

default: // parent
return 0;

}
}

The function creates a child process, unless fork fails, in which case it reports the
error by returning -1. The parent process returns zero to indicate that it could fork.
The child calls exec to run the new program. Should it fail, there is nothing we
could do but to terminate the execution of this process reporting the error. Note
that the child process should never return from the function. When a program calls
run, only one flow of control performs the call, and you expect only one flow of
control coming out and returning from it.
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This function has one problem. The command file might not exist, or lack
execution permission, but the program calling run would never know. This can be
a temporary fix, until we learn more in the next section:

int
run(char* cmd, char* argv[])
{

if (access(cmd, AEXEC) < 0)
return -1;

switch(fork()){
case -1:

return -1;
case 0: // child

exec(cmd, argv);
sysfatal("exec: %r");

default:
return 0;

}
}

Before creating the child, we try to be sure that the file for the command has access
for executing it. The access system call checks this when given the AEXEC flag.

After calling access, and before doing the exec, things could change. So,
there is a potential race condition here. It could be that access thinks that the
command can be executed, and then something changes, and exec fails! What is
really needed is a way to let the child process tell the parent about what happen.
The parent is only interested in knowing if the child could actually perform its
work, or not.

4.7. Waiting for children
Did you notice that the shell awaits until one command terminates before prompt-
ing for the next? How can it know that the process executing the command has
completed its execution? Also, if you create a process for doing something, how
can you know if it could do its job?

When a process dies, it always dies by a call to exits (remember that there
is one after returning from main). The string the process gives to exits is its
exit status. This was not new. The new point is that the parent may wait until a
child dies and obtain its exit status. The function used to do this is wait:

; sig wait
Waitmsg* wait(void)

where Waitmsg is defined like follows.
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typedef
struct Waitmsg
{

int pid; /* of loved one */
ulong time[3]; /* of loved one & */
char *msg; /* descendants */

} Waitmsg;

A call to wait blocks until one child dies. At that point, it returns a wait message
that contains information about the child, including its pid, its status string, and the
time it took for the child to execute. If one child did already die, there is no need to
wait and this call returns immediately. If there is no children to wait for, the func-
tion returns nil.

Now we can really fix the problem of our last program.
int
run(char* cmd, char* argv[])
{

Waitmsg* m;
int ret;

switch(fork()){
case -1:

return -1;
case 0: // child

exec(cmd, argv);
sysfatal("exec: %r");

default:
m = wait();
if (m->msg[0] == 0)

ret = 0;
else {

werrstr(m->msg);
ret = -1;

}
free(m);
return ret;

}
}

After calling fork, the parent goes through the default case and calls wait. If by
this time the child did complete its execution by calling exits, wait returns
immediately Waitmsg with information about the child. If the child is still run-
ning, wait blocks until the child terminates. The data structure returned by wait
is allocated using malloc, and the caller of wait is responsible for releasing this
memory.

Another detail is that the routine updates the process error string in the parent
process when the child fails. That is where the caller program expects to find out
the diagnostic for a failed (system) call.

In this case we know that there is at least one child, and wait cannot return
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nil. The convention in Plan 9 is that an empty string in the exit message means
"everything ok#. That is the information returned by run. The field m in the
Waitmsg contains a copy of the child’s exit message.

This code still has flaws. The program that calls run might have created
another child before calling our function. In this case, it is not sure that wait
returns information about the child it created. This is a better version of the same
function.

int
run(char* cmd, char* argv[])
{

Waitmsg* m;
int ret;
int pid;

pid = fork();
switch(pid){
case -1:

return -1;
case 0: // child

exec(cmd, argv);
sysfatal("exec: %r");

default:
while(m = wait()){

if (m->pid == pid){
if (m->msg[0] == 0)

ret = 0;
else {

werrstr(m->msg);
ret = -1;

}
free(m);
return ret;

}
free(m);

}
}

}

The routine, when executed by the parent process, makes sure that the message
comes from the right (death) child. Its manual page should now include a warning
stating clearly that this routine waits for any child until the one it creates is waited
for. Callers must know this. Otherwise, what would happen to programs like this
one?
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...
if (fork() == 0){

... do something in this child ...
} else {

run(cmd, args);
...
m = wait(); // wait for our child
...
free(m);

}

The wait in this code seems to be for the child created by the fork. However,
the call to run would probably wait for the 2 children, and wait is likely to return
nil!

When a program is not interested in the exit message, it can use waitpid
instead of wait. This function returns just the pid of the death child. Both func-
tions are implemented using the real system call, await. But that does not really
matter.

Although the shell waits by default until the process running a command
completes, before prompting for another line, it can be convinced not to wait. Any
command line with a final ampersand is not waited for. Try this

; sleep 3 ...no prompt for 3 seconds.
;

and this
; sleep 3 & ...and we get a new prompt right away.
;

This is used when we want to execute a command in the background, i.e., one
that does not read from our terminal and does not make the shell wait for it. We can
start a command and forget it is still there. The shell puts into $apid the pid for
the last process started in the background, to let you know its pid for things like
killing it.

Any output from the command will still go to the console, and may disturb
us. However, the shell arranges for the command to have its standard input coming
from /dev/null, a file that always seems to be empty when read.

This can be double checked. The read command reads a single line of text
from its input, and then writes it to its standard output.

; read
hello you type this...
hello ...and it writes this.
;

Look what happens here:
; read &
;
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The program did not print anything. Because it could not read anything from its
input.

Some programs may want to execute in the background, without making the
shell wait for them until terminated. For example, a program that opens a new win-
dow in the window system should avoid blocking the shell until the new window is
closed. You want a new window, but you still want your shell.

This effect can be achieved without using & in the command line. The only
thing needed is to perform the actual work in a child process, and allow the parent
process to die. Because the shell waits for the parent process (its child), it will
prompt for a new command immediately after this process dies. The first program
of this chapter is an example (even though it makes not sense to do this just to run
ls).

4.8. Interpreted programs
An executable is a file that has the execute permission set. If it is a binary file for
the architecture we are running on, it is understandable what happens. If it is a
binary for another architecture, the kernel will complain. This was executed using
an Intel-based PC:

; 5c ls.c
; 5l ls.5
; ./5.out
./5.out: exec header invalid

The header for the binary file has a constant, weird, number in it. It is placed there
by the loader and checked by the kernel, which is doing its best to be sure that the
binary corresponds to the architecture executing it.

But there is another type of executable files. Interpreted programs. For Plan 9,
an interpreted program is any file starting with a text line that has a format similar
to

#!/bin/rc

It must start with #!, followed by the command that interprets the file. In the
example above, the program interpreting the file is /bin/rc, i.e., the standard
Plan 9 shell. You know what the shell does. It reads lines, interprets them, and exe-
cutes commands as a result. For the shell, it does not matter if commands come
from the console or from a file. Both things are files actually!

This is an example of a program interpreted by the shell, also known as a
shell script. We can try it by storing the text in a file named hello and executing
it:
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; cat hello
#!/bin/rc
echo hello there!
; chmod +x hello
; hello
hello there!
;

When Plan 9 tries to execute a file, and it finds that the two initial characters are
#!, it executes the interpreter as the new binary program for the process, and not
the file whose name was given to exec. The argument list given to exec is
altered a little bit by the kernel to include the script file name as an argument. As a
result, executing hello is actually equivalent to doing this

; rc hello

To say it explicitly, a shell script is always executed by a new shell. Commands in
the script are read by the child shell, and not by the original one. Look at this

; cat cdtmp
#!/bin/rc
cd /tmp
; pwd
/usr/nemo
; chmod +x cdtmp
; cdtmp
; pwd
/usr/nemo

Is Plan 9 disobeying? Of course not. We executed cdtmp. But commands in the
script are not executed by the shell we are using. A new shell was started to read
and execute the commands in the file. That shell changed its working directory to
/tmp, and then died. The parent process (the shell we are using) remains unaf-
fected. This may confirm what we said

; cat cdtmp
#!/bin/rc
cd /tmp
pwd
; pwd
/usr/nemo
; cdtmp
/tmp
; pwd
/usr/nemo

This mechanism works for any program, and not just for the shell. For example,
hoc is a floating point calculator language. It can be used to evaluate arbitrary
floating point calculations. When given a file name, hoc interprets the expressions
in the file and prints any result. Now we can make an interpreted program that lets
you know the output of 2+2:



- 116 -

; cat 2+2
#!/bin/hoc
2 + 2
; chmod +x 2+2
; 2+2
4
;

Amazing!
Because the shell can be used to write programs, it is a programming lan-

guage. It includes even a way to write comments. When the shell finds a # charac-
ter, it ignores it and the rest of the line. That is why the special format for the first
line of interpreted programs in Plan 9 starts with that character! When the shell
interprets the script, it reads the first line as well. However, that line is a comment
and, therefore, ignored.

Scripts have arguments, as any other executable program has. The shell inter-
preting the script stores the argument list in the environment variable named "*#.
This is echo using echo:
!rcecho !" """"""_______

#!/bin/rc
echo $*

And this is what it does
; rcecho hello world
hello world

As an additional convenience, within a shell script, $0 is equivalent to argv[0]
in a C program, $1 to argv[1], and so on.

Problems
1 Trace (by hand) the execution of this program. Double check by executing it

in the machine.
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

fork();
fork();
print("hi\n");

}

2 Compile and execute the first program shown in this chapter. Explain the out-
put.

3 Fix the program from the previous problem using wait(2).
4 Implement your own version of the time(1) tool. This program runs a single
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command and reports the time the command took to execute (elapsed time,
time spent executing user code, and time spent executing kernel code).

5 Implement a function
char* system(char* cmd);

That receives a command line as an argument and must execute it in a child
process like the Plan 9 shell would do. Think of a reasonable return value for
the function.
Hint: Which program did we say that knows how to do this type of work?

6 Write a script that interprets another script, for example, by using rc. Can
you specify that a program interpreter is also an interpreted file? Explain.

7 How could you overcome the limitation expossed in the previous problem?
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5 ! Talking Processes
______

5.1. Input/Output redirection
Most commands we have executed so far write their output to the console, because
their standard output file descriptor is usually leading to the console.

In some cases, it may be useful to redirect the output for a command to store
the data produced in a file. For example, to record the date for an important
moment, we can execute date and store its output in a file, for posterity. The
shell knows how to do this:

; date > rememberthis
;

This command line means: Execute the command date as usual, but send its out-
put to rememberthis. The obedient Plan 9 shell makes the arrangements to get
the output for the command sent to file, and not to the console. As a result, date
did now write anything in the console. But it did write. Its output is here instead.

; cat rememberthis
Thu Jul 13 12:10:38 MDT 2006

This can be done to any command, as you may expect. When the shell finds a ">#
in a command line, it takes the next word as the name of a file where to send the
output for the command. This is a poor’s man editor. We use cat to read what we
write in the terminal, and write it into a file.

; cat >/tmp/note
must leave at 8
control-d
; cat /tmp/note
must leave at 8

The "># character is an operator, and has a special meaning. To use it just as a
character, it must be quoted. We already knew, but just as a reminder:

; echo ’>’ > file
; cat file
>
;

Another example. If our machine seems to be heavily loaded, we may want to con-
serve the list of running processes, to inspect it later. That is simple:

; ps > processlist
;

Now that we have the list of processes stored in a file, we can take our time to
inspect what is happening to the machine. For example, we may use cat to print
the list. It reads the file and prints all the bytes read to the standard output.
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; cat processlist
nemo 1 0:00 0:00 2308K Await bns
nemo 2 5:03 0:00 0K Wakeme genrand
nemo 3 0:00 0:00 0K Wakeme alarm
nemo 4 0:00 0:00 0K Wakeme rxmit
... other lines omitted ...

We can count how many processes there were in the system by the time we stored
the list. To do so, we can count the lines in the file processlist, because we
know there is one line in that file per process. The program wc (word count) counts
lines, words, and characters in a file, and prints what it finds.

; wc processlist
147 1029 8795 processlist

;

The file processlist has 147 lines, 1929 words, and 8795 characters in it. This
means that we had 147 processes in the machine at that time. Because we are only
interested in the number of lines, we might have used the option -l to wc, as said
in wc(1), to ask just for the number of lines:

; wc -l processlist
147 processlist

;

As we said before, most commands that accept a file name as an argument, work
with their standard input when no file name is given. And wc is not an exception.
For example,

; wc
when I see it, I believe it
control-d

1 7 28
;

counts the lines, words, and characters that we type until pressing a control-d.
The shell is able to redirect the standard input for a command, and not just its

output. The syntax is similar to a redirection for output, but using "<# instead of
">#. To remember, imagine the bytes entering through the wide part of the symbol,
going out through the little hole in the other end. We can now do this

; cat < rememberthis
Thu Jul 13 12:10:38 MDT 2006

and it would have the same effect that doing this
; cat rememberthis
Thu Jul 13 12:10:38 MDT 2006

Both commands produce the same output, but they are very different. In the first
case, the shell makes the arrangements so that the standard input for cat comes
from rememberthis and not from the console. The cat program has no arguments
(other than argv[0]) and therefore starts reading from its standard input. But
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cat does not even know the name of the file it is reading! In the second case, the
shell is not doing anything to the standard input for cat. The program itself has to
open the file, and read from it.

For those rare cases when there is a command that requires a file name as its
input, and you still want to run the command to work on its standard input, Plan 9
provides files named /fd/0, /fd/1, etc. These are not real files, but other inter-
face to use your file descriptors. For example, this is another way of running cat
to copy its standard input:

; cat /fd/0
...and cat reads what you type.

and this is achieves the same effect:
; cp /fd/0 /fd/1
...and cp copies what you type back to the console

In the last chapter, we did see that a command line executed in the background, i.e.,
terminated with "&#, is not allowed to read from the console. What happens is that
the shell redirects the command’s standard input to /dev/null, the file that
seems to be always empty. You can achieve a similar effect doing this.

; cat </dev/null
;

Therefore, the input redirection here is redundant:
; cat </dev/null &
;

How can the shell redirect the standard input/output for a command? Think about
it. The program cat reads from file descriptor 0, when given no arguments. That is
the convention for standard input. For output, cat writes at file descriptor 1. If the
shell manages to get the file descriptor 1 for cat open for writing into
rememberthis, the bytes written by cat will go into rememberthis. And of
course cat would know nothing about where does its standard output go. They are
written into an open file descriptor that must lead to some file. Also, if the shell
manages to get the file descriptor 0 for cat open for reading from /dev/null,
cat would be reading from /dev/null.

Input/output redirection must be done in the process that is going to execute
the command. Otherwise, the shell would loose its own standard input or output. It
must be done before doing the exec for the new command. It would not make
sense to do it after, because there would be no I/O redirection, and because when
exec works, your program is gone!

Consider this program
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!iredir.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

switch(fork()){
case -1:

sysfatal("fork failed");
case 0:

close(0); // WRONG!
open("/NOTICE", OREAD);
execl("/bin/cat", "cat", nil);
sysfatal("exec: %r");

default:
waitpid();

}
exits(nil);

}

and its output.
; 8.iredir
Copyright © 2002 Lucent Technologies Inc.
All Rights Reserved

We supplied no argument to cat in the call to execl. Therefore, cat was read-
ing from standard input. However, because of the two previous calls, file descriptor
0 was open to read /NOTICE. The program cat reads from there, and writes a
copy to its output.

This is a real kludge. We do not know that open is going to return 0 as the
newly open file descriptor for /NOTICE. At the very least, the program should
check that this is the case, and abort its execution otherwise:

fd = open("/NOTICE", OREAD);
assert(fd == 0);

At least, if fd is not zero, assert receives false (i.e., 0) as a parameter and prints
the file and line number before calling abort.

The system call dup receives a file descriptor and duplicates it into another.
This is what we need. The code

fd = open("/NOTICE", OREAD);
dup(fd, 0);
close(fd);

opens /NOTICE for reading, then duplicates the descriptor just open into file
descriptor 0. After the call, file descriptor 0 leads to the same place fd was leading
to. It refers to the same file and shares the same offset. This is shown in figure 5.1,
which assumes that fd was 3 (As you can see, both descriptors refer now to the
same Chan). At this point, the descriptor whose number is in fd is no longer
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necessary, and can be closed. The program in cat is only going to read from 0. It
does not even know that we have other file descriptors open.

Child
process

File descriptor
table

0
1
2
3

...
n /NOTICE OREAD

offset: 0

/dev/cons ORDWR
offset: 3245

Child
process

File descriptor
table

0
1
2
3

...
n /NOTICE OREAD

offset: 0

/dev/cons ORDWR
offset: 3245

Before dup(3, 0) After dup(3, 0)

Figure 5.1: File descriptors before and after duplicating descriptor 3 into descriptor 0.

This is the correct implementation for the program shown before. Its output
remains the same, but the previous program could fail (Note that in this section we
are not checking for errors, to keep the programs’ purposes clearer to see).

void
main(int, char*[])
{

int fd;

switch(fork()){
case -1:

sysfatal("fork failed");
case 0:

fd = open("/NOTICE", OREAD);
dup(fd, 0);
close(fd);
execl("/bin/cat", "cat", nil);
sysfatal("exec: %r");

default:
waitpid();

}
exits(nil);

}

There are some pitfalls that you are likely to experience by accident in the future.
One of them is redirecting standard input to a file descriptor open for writing. That
is a violation of the convention that file descriptor 0 is open for reading. For exam-
ple, this code makes such mistake:
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fd = create("outfile", OWRITE, 0664); // WRONG!
dup(fd, 0);
close(fd);

Using this code in the previous program puts cat in trouble. A write call for a
descriptor open just for reading is never going to work:

; 8.iredir
cat: error reading <stdin>: inappropriate use of fd
;

Output redirections made by the shell use create to open the output file, because
most of the times the file would not exist. When the file exists, it is truncated by
the call and nothing bad happens:

fd = create("outfile", OWRITE, 0664);
dup(fd, 1);
close(fd);

A common mistake is redirecting both input and output to the same file in a com-
mand line, like we show here:

; cat <processlist >processlist
;

When the shell redirects the output, create truncates the file! There is nothing
there for cat to read, and your data is gone. If you ever want to do a similar thing,
it must be done in two steps

; cat <processlist >/tmp/temp
; cp /tmp/temp processlist
; rm /tmp/temp

5.2. Conventions
Why does standard error exist? Now you can know. Consider what happens when
we redirect the output for a program and it has a problem:

; lc /usr/nemos >/tmp/list
ls: /usr/nemos: ’/usr/nemos’ file does not exist
; cat /tmp/list

Clearly, the diagnostic printed by lc is not the output data we expect. If the pro-
gram had written this message to its standard output, the diagnostic message would
be lost between the data. Two bad things would happen: We would be unaware of
the failure of the command, and the command output would be mixed with weird
diagnostic messages that might be a problem if another program has to process
such output.

In the beginning, God created the Heaven and the Earth [ ... ], and God said,
Let there be Light, and there was Light. Yes, you are still reading the same operat-
ing systems book. This citation seemed appropriate because of the question, How
did my process get its standard input, output, and error? and, How can it be that the
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three of them go to /dev/cons?
The answer is simple. Child processes inherit a copy of the parent’s file

descriptors. In the beginning, Plan 9 created the first process that executes in the
system. This process had no file descriptor open, initially. At that point, this code
was executed:

open("/dev/cons", OREAD);
open("/dev/cons", OWRITE);
open("/dev/cons", OWRITE);

Later, all the descendents had their descriptors 0, 1, and 2 open and referring to
/dev/cons. This code would do the same.

open("/dev/cons", OREAD);
open("/dev/cons", OWRITE);
dup(1, 2);

5.3. Other redirections
Output can be redirected to a file appending to its contents. In this case, the shell
seeks to the end of the file used for output before executing the command. To redi-
rect output appending, use ">># instead of use ">#.

; echo hello >/tmp/note
; echo there >>/tmp/note
; echo and there >>/tmp/note
; cat /tmp/note
hello
there
and there
; echo again >/tmp/note
; cat /tmp/note
again

The code executed by the shell to redirect the output appending is similar to this
one,

fd = open("outfile", OWRITE);
if (fd < 0)

fd = create("outfile", OWRITE, 0664);
seek(fd, 0, 2);
dup(fd, 1);
close(fd);

which creates the output file only when it does not exist. If the program used
create, it would truncate the file to a zero-length. If it used just open, the output
redirection would not work when file does not exist. Also, the call to seek is
utterly important, to actually append to the file.

File descriptors other than 0 and 1 can be redirected from the shell. You must
write the descriptor number between square brackets after the operator. For exam-
ple, this discards any error message from the command by sending its standard



- 126 -

error to /dev/null.
; lc *.c >[2] /dev/null
open.c seek.c
;

This file is another invention of the system, like most other files in /dev. When
you write into it, it seems that the write was done. However, the system did not
write anything anywhere. That is why this file is used to throw away data sent to a
file.

The shell can do more things regarding I/O redirection. The "<># operator
redirects both standard input and output to the file whose name follows. However,
it opens the file just once for both reading and writing. For example, this leaves
file empty:

; echo hola>file
; cat <file >file
;

But this does not:
; echo hola >file
; cat <> file
hola
;

More useful is being able to redirect one file descriptor to another one. Errors are
to be written to standard error, but echo writes to standard output. To report an
error from a shell script, this can be done

; echo something bad happen >[1=2]

which is equivalent to a dup(1,2) in a C program.
Redirections are applied left to right, and these two commands do different

things:
; ls /blah >/dev/null >[2=1]
; ls /blah >[2=1] >/dev/null
ls: /blah: ’/blah’ file does not exist
;

The first one redirects its output to /dev/null, which throws away all the out-
put, and then sends its standard error to the same place. Throwing it away as well.
The second one send its standard error to where standard output is going (the con-
sole), and then throws away the output by sending it to /dev/null.

5.4. Pipes
There is a whole plethora of programs in Plan 9 that read some data, perform some
operation on it, and write some output. We already saw some. Many tasks can be
achieved by combining these programs, without having to write an entire new pro-
gram in C or other language.
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For example, this book is typeset using troff(1), and the input text is kept at
files named ch1.ms, ch2.ms, and so on, each one with the text for one chapter.
A rough estimate of the book size would be to count the number of words for all
the files containing troff input for chapters. We can use a program to count words.
Option -w for wc does just that:

; wc -w ch*.ms
12189 ch1.ms
9252 ch2.ms
8153 ch3.ms
6470 ch4.ms
3163 ch5.ms
61 ch6.ms
592 chXX.ms

39880 total

This gives a good break-down of the number of words in each file, and also of the
total (as of today, when we are writing this). However, to obtain just the total we
can give a single file to wc

; cat ch*.ms >/tmp/all.ms
; wc -w /tmp/all.ms
39880 /tmp/all.ms

If we suspect that we use the word file too many times in the book, and what to
check that out, we can count the number of lines that contain that word as an esti-
mate. The program grep writes to its output only those lines that contain a given
word. We can run

; grep file </tmp/all.ms >/tmp/lineswithfile
;

to generate a file lineswithfile that contains only the lines that mention
file, and then use wc on that file

; wc -w /tmp/lineswithfile
7355 /tmp/lineswithfile

This is inconvenient. We have to type a lot, and require temporary files just to use
the output of one program as the input for another. There is a better way:

; cat ch*.ms | wc -w
39880

executes both cat and wc. The standard output for cat is conveyed by the "|#
into the standard input for wc. We get the output we wanted in a simple way. This
is how we count just the lines using the word file:

; cat ch*.ms | grep file | wc -l
7355

;

Here, the output of cat was conveyed to grep, whose output was conveyed to
wc. A small command line performed a quite complex task. By the way, because
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grep accepts as arguments the names for its input files, a more compact command
could be used:

; grep file ch*ms | wc -l
7355

;

The conveyer represented by the vertical bar is called a pipe. Its function is the
same. Think of input as bytes flowing into a command, for processing, and output
as bytes flowing out the command. If you have a pipe, you can plumb one output to
one input. But you must use a pipe. Otherwise, bytes would pour on the floor!

Before, we have used ps to lists processes. Usually, there are many lines
printed by the command, but we can be interested in a particular one. There is no
need to scroll down the terminal and search through many lines just to find the
information for a broken process:

; ps | grep Broken
nemo 1633 0:00 0:00 24K Broken 8.out
;

The output of ps is sent into the pipe. It flows through it and becomes the input for
grep, which writes just those lines that contain the string Broken.

To get rid of this broken process, we can execute broke. This program
prints a command to kill the broken processes, but does not kill them itself (killing
is too dangerous and broke does not want to take responsibility for your actions):

; broke
echo kill>/proc/1633/ctl # 8.out
;

But to execute this command, we must use it as input for the shell. Now we can.
; broke |rc
; ps | grep Broken
;

Figure 5.2 shows what happens when you execute broke|rc The file descriptor 1
for broke gets sent to the input of the pipe. The output from the pipe is used as
source for file descriptor 0 in rc Therefore, rc reads from its standard input what
broke writes on its output. In the figure, processes are represented by circles.
Arrows going out from circles are file descriptors open for writing. The descriptor
number is the value or variable printed in the arrow. Arrows pointing into circles
are file descriptors open for reading. Of course, the process represented by the cir-
cle is the one who reads. Pipes and files do not read, they are not alive!

The pipe is an artifact provided by Plan 9 to let you interconnect processes. It
looks like two files connected to each other. What you write into one of them, is
what will be read from the the other. That is why in the figure, the input for one
process goes into one end of the pipe, and the output for the other process may go
to the other end of the pipe.

To create a pipe in a C program, you can use the pipe system call. It returns
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0 broke 1 pipe 0 rc 1

Figure 5.2: Using a pipe to connect the output of broke to the input of rc.

two descriptors, one for each end of the pipe. Both descriptors are stored at the inte-
ger array passed as a parameter to the function.

int fd[2];

pipe(fd);
// fd[0] has the fd for one end
// fd[1] has the fd for the other.

This program is trivial, but it helps in understanding pipes. It writes some text to
one end of the pipe, and reads it back from the other end. To see the outcome, it
prints what it did read to its standard output.
!pipe.c !" """""______

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int fd[2];
char buf[128];
int nr;

if (pipe(fd) < 0)
sysfatal("can’t create a pipe: %r");

write(fd[1], "Hello!\n", 7);
nr = read(fd[0], buf, sizeof(buf));
write(1, buf, nr);
exits(nil);

}

This is the output
; 8.pipe
Hello!
;

Because standard output is file descriptor 1, and standard input is file descriptor 0,
the tradition is to read from fd[0] and write into fd[1], as the program does.
Pipes are bi-directional in Plan 9, and doing it the other way around works as well.
It is said that Plan 9 pipes are full-duplex.

Let’s try now something slightly different. If we replace the single write in
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the program with two ones, like
write(fd[1], "Hello!\n", 7);
write(fd[1], "there\n", 6);

this is what the program prints now.
; 8.pipe
Hello!
;

the same! Plan 9 pipes preserve write boundaries (known also as message
delimiters). That is to say that for each read from a pipe, you will get data from a
single write made to the pipe. This is very convenient when you use the pipe to
speak a dialog between two programs, because different messages in the speech do
not get mixed. But beware, UNIX does not do the same. This is the output from the
same program in a UNIX system:

$ pipe
Hello!
there
$

In Plan 9, we need a second read to obtain the data sent through the pipe by the sec-
ond write.

The pipe has some buffering (usually, a few Kbytes), and that is where the
bytes written by the program were kept until they were read from the pipe. Plan 9
takes care of those cases when data is written to the pipe faster than it is read from
the pipe. If the buffer in the pipe gets full (the pipe is full of bytes), Plan 9 will
make the writer process wait until some data is read and there is room in the pipe
for more bytes. The same happens when data is read faster than written. If the pipe
is empty, a read operation on it will wait until there is something to read.

You can see this. This program fills a pipe. It keeps on writing into the pipe
until Plan 9 puts the process in the blocked state (because the pipe is full).
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!fill.c !" """"_____
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int fd[2];
char buf[1024];
int nw;

if (pipe(fd) < 0)
sysfatal("can’t create a pipe: %r");

for(;;){
nw = write(fd[0], buf, sizeof(buf));
print("wrote %d bytes\n", nw);

}
exits(nil);

}

This is the output. The pipe in my system can hold up to 30 Kbytes.
; 8.fill
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
... 29 lines including these two ones...
wrote 1024 bytes
... and it blocks forever

And this is what ps says for the process:
; ps | grep 8.fill
nemo 2473 0:00 0:00 24K Pwrite 8.fill

It is trying to write, but will never do.
In the shell examples shown above, it is clear that the process reading from

the pipe gets an end of file (i.e., a read of 0 bytes) after all data has gone through
the pipe. Otherwise, the commands on the right of a pipe would never terminate.
This is the rule: When no process can write to one end of the pipe, and there is
nothing inside the pipe, reading from the other end yields 0 bytes. Note that when
the pipe is empty, but a process can write to one end, reading from the other end
would block.

This is easy to check using our single-process program. If we do this
close(fd[1]);
nr = read(fd[0], buf, sizeof(buf));

the value of nr becomes zero, and read does not block. However, removing the
close line makes the program block forever.

Writing to a pipe when no one is going to read what we write is a nonsense.
Plan 9 kills any process doing such thing. For example executing this program
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!brokenpipe.c !" """""""""""____________
#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int fd[2];
char buf[128];
int nr;

if (pipe(fd) < 0)
sysfatal("can’t create a pipe: %r");

close(fd[0]);
write(fd[1], "Hello!\n", 7);
print("could write\n");
exits(nil);

}

yields
; 8.brokenpipe
; echo $status
8.out 2861: sys: write on closed pipe pc=0x00002b43

5.5. Using pipes
One useful thing would be to be able to send from a C program an arbitrary string
as the standard input for a command. This can be used for many things. For exam-
ple, the mail program is used to send electronic mail from the command line. The
body of the message is read from standard input, and the subject and destination
address can be supplied in the command line. This is an example using the shell.

; mail -s ’do you want a coffee?’ mero@lsub.org

Hi,
If you want a coffee, let’s meet down at 5pm.
see u.
control-d

To do something similar from a C program, we must create a child process to exe-
cute mail on it. Besides, we need a pipe to redirect to it the standard input for
mail and write what we want from the other end of the pipe.

This seems a general tool. We are likely to want to execute many different
commands in this way. Therefore, we try to write a function as general as possible
for doing this job. It accepts a string containing a shell command line as a parame-
ter, and executes it in a child process. It returns a file descriptor to write to a pipe
that leads to the standard input of this process.
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!pipeto.c !" """""""________
#include <u.h>
#include <libc.h>

int
pipeto(char* cmd)
{

int fd[2];

pipe(fd);
switch(fork()){
case -1:

return -1;
case 0:

close(fd[1]);
dup(fd[0], 0);
close(fd[0]);
execl("/bin/rc", "rc", "-c", cmd, nil);
sysfatal("execl");

default:
close(fd[0]);
return fd[1];

}
}

void
main(int, char*[])
{

int fd, i;
char* msgs[] = {

"warning: the world is over\n",
"spam: earn money real fast!\n",
"warning: it was not true\n" };

fd = pipeto("grep warning");
if (fd < 0)

sysfatal("pipeto: %r");
for (i = 0; i < nelem(msgs); i++)

write(fd, msgs[i], strlen(msgs[i]));
close(fd);
exits(nil);

}

To see a complete example, where this function is used, the main function uses
pipeto to send several messages to the input of a process running grep warn-
ing. Messages are sent by writing the the file descriptor returned from pipeto.
When nothing more has to be sent, the file descriptor is closed. The child process
will receive an end-of-file indication as soon as it consumes what may still be
going through the pipe. This is the output for the program.
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; 8.pipeto
; warning: the world is over
warning: it was not true

Because the parent process finishes before the child is still processing the input that
comes from the pipe, the shell prompt gets printed almost immediately. If this is a
problem, the parent must wait for the child after writing all the data to the pipe.
Otherwise, the waitpid call would block waiting for the child to die, and the
child would block waiting for the end of file indication (because the parent has the
pipe open for writing).

Figure 5.3 shows the processes involved, all their descriptors, and the pipe.
We use the same conventions used for the last figure, which we will follow from
now on.

0 Parent
Process

1

2

fd

pipe 0 grep 1

2

Figure 5.3: A process using a pipe to send input to a command.

All the interesting things happen in the function pipeto. It executes the
Plan 9 shell, supplying the command line as the argument for option -c, this asks
rc to execute the argument as a command, and not to read commands from stan-
dard input.

First, before creating the child process, the parent process makes a pipe. It is
very important to understand that the pipe must be created before we call fork.
Both processes must share the pipe. If the pipe is created after forking, in the child
process, the parent process does not have the descriptor to write to the pipe. If it is
created by the parent, after calling fork, the child will not have the descriptor to
read from the pipe.

Even if both processes create a pipe, after the child creation, there are two dif-
ferent pipes. Each process can use only its own pipe, but they cannot talk. It does
not matter if the numbers returned from pipe for the two descriptors are the same
(or not) for both processes: They are different descriptors because each process
made its own call to pipe. Therefore, pipes are created always by a common
ancestor of the processes communicating through the pipe.

Another important detail is that all the descriptors are closed (by all pro-
cesses) as soon as they are no longer useful. The child is going to call execl, and
the new program will read from its standard input. Thus, the child must close both
pipe descriptors after redirecting its standard input to the end for reading from the
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pipe. The parent process is going to write to the pipe, but it is not going to read. It
closes the end for reading from the pipe. Not doing so risks leaving open the pipe
for writing, and in this case the reader process would never get its end of file indi-
cation.

Why does the child redirect its standard input to the pipe and not the parent?
We wrote the code for the parent. We know that it has fd[1] open for writing,
and can just use that descriptor for writing. On the other hand, the child does not
know! After the child executes grep, how can grep possibly know that it should
use a file descriptor other than zero for reading?

The following example is a counterpart to what we made. This function cre-
ates a child process that is used to execute a command. However, this time, we
return the output produced by the command. For example, calling

nr = cmdoutput("wc *.c", buf, sizeof buf);

will fill in buf a string taken from what wc *.c prints to its standard output. This
is not the best interface for the task, because we do not know how much the com-
mand will print, but it is useful nevertheless. The caller must take the precaution of
supplying a buffer large enough. The number of bytes read is the result from the
function. This is its code:

long
cmdoutput(char* cmd, char*buf, long len)
{

int fd;
long tot;

if (pipe(fd) < 0)
return -1; // failed to create a pipe

switch(fork()){
case -1:

return -1;
case 0:

close(fd[0]);
dup(fd[1], 1);
close(fd[1]);
execl("/bin/rc", "-c", cmd, nil);
sysfatal("exec");

default:
close(fd[1]);
for(tot = 0; len - tot > 1; tot += nr){

nr = read(fd[0], buf+tot, len - tot);
if (nr <= 0)

break;
}
close(fd[0]);
waitpid();
buf[tot] = 0; // terminate string
return tot;

}
}
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In this function, we wait for the child to complete before returning, but after having
read all the data from the pipe. It is a serious mistake to wait for the child before
having read all its output. If the output does not fit into the pipe, the child will
block as soon as the pipe is full. It will be waiting forever, because the parent is not
going to read until waitpid completes, and this call is not going to complete
until the child dies.

This is called a deadlock. One process is waiting for another to do some-
thing, and that requires the former to do another thing, which cannot be done
because it is waiting. You know when you have a deadlock because the processes
involved freeze. Deadlocks must be avoided. We avoided one here simply by
doing the things in a sensible order, and waiting for the child after we have read all
its output.

What we have seen is very useful. Many programs do precisely this, or other
similar things. The editor Acme admits commands to be applied to a portion of text
selected by the user. For example, using the button-2 in Acme to run the command
|t+ asks Acme to execute the program t+ with the selected text as the input for
t+, and to replace that text with the output from the command. Of course, Acme
uses pipes to send text to the input of t+ and to read its output. The command t+
is a shell script used to indent text by inserting a tab character at the start of each
line.

The shell is also a heavy user of pipes, as you might expect. Rc includes sev-
eral interesting constructs that are implemented along the lines of what we saw
before.

When Rc finds a command inside ‘{...}, it executes the command, and
substitutes the whole ‘{...} text with the output printed by the command. We did
something alike in the C program when reading the output for a command using a
pipe. This time, Rc will do it for us, and relieve us from typing something that can
be generated using a program. This is an example.

; date
Fri Jul 21 16:36:37 MDT 2006
; today=‘{date}
; echo $today
Fri Jul 21 16:36:50 MDT 2006

Another example, using a command that writes numbers in sequence, follows.
; seq 1 5
1
2
3
4
5
; echo ‘{seq 1 5}
1 2 3 4 5
;

As you can see, the second command was equivalent to this one:
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; echo 1 2 3 4 5

The shell executed seq 1 5, and then did read the text printed by this command
through its standard output (using a pipe). Once all the command output was read,
Rc replaced the whole ‘{...} construct with the text just read. The resulting line
was the one executed, instead of the one that we originally typed. Because a new-
line character terminates a command, the shell replaced each \n in the command
output with a space. That is why executing seq directly yields 5 lines of output,
but using it with ‘{...} produces just one line of output.

A related expression provided by the shell is <{...}. Like before, Rc exe-
cutes the command within the brackets, when it finds this construct in a command
line. The output of the command is sent through a pipe, and the whole <{...} is
replaced by a file name that represents the other end of the pipe (pipes are also
files!, as we will see in a following chapter).

There are several interesting uses for <{...}, one of them is to be able to give
a file name for the input file for a command, but still use as input another command
that writes to its standard output.

; wc <{seq 1 5} /LICENSE
5 5 10 /fd/13 This is the pipe!

261 1887 13006 /LICENSE
266 1892 13016 total

;

But, perhaps, the most amazing use for this construct is to build non-linear pipe-
lines. That is, to use the output of several commands as input for another one. For
the latter, the output of the former ones would be just a couple of file names. An
interesting example is comparing the output of two commands. The shell command
cmp compares two files, and informs us whether they have the same contents or
not.

; cp /LICENSE /tmp/l
; cmp /LICENSE /tmp/l
; cmp /LICENSE /NOTICE
/LICENSE /NOTICE differ: char 1

Therefore, if you want to execute two commands and compare what they write to
their standard output, you can now use cmp as well.

; cmp <{seq 1 3} <{echo 1 ; echo 2 ; echo 3}
; cmp <{seq 1 3} <{echo 1 2 3}
/fd/14 /fd/13 differ: char 2
;

You will get used to ‘{...} and <{...} after using them in the couple of chapters
that discuss programming in Rc.
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5.6. Notes and process groups
Pipes are a synchronous communication mechanism. A process using a pipe must
call read or write to receive or send data through the pipe, and communication
happens only when the process makes these calls. Sometimes, the world is not so
nice and we need an asynchronous communication mechanism. For example, if a
process gets out of control and you want to stop it, you may want to post a note
saying "interrupt# to the process. The process is not reading from anywhere to
obtain the message you want to send, but you still can send the message at any
moment. The message will interrupt the normal execution of the process, so this
mechanism is to be used with care.

Posting notes can be dangerous, when the process is not paying attention to
the note posted it is killed by the system.

This is our first example, we are going to use the window system to interrupt
a process. When cat is given no arguments, it reads from the console. It will be
doing so unless you type a control-d to ask the window to signal a (fake) end of
file. This time, we are not going to do so. Run this command and press Delete.

; cat
cat waits reading...

Delete ...until you press delete,
; and cat is gone!.

What happen to cat? Let’s ask the shell:
; echo $status
cat 735: interrupt
;

According to the shell, cat died because of interrupt.
When you type characters, the window system reads them from the real con-

sole. Depending on which window has the focus, i.e. on which one did you click
last, it sends the characters to the corresponding window. If the window system
reads a Delete key, it understands that you want to interrupt the process in the win-
dow that has the focus, and it posts a note with the text interrupt for all the
processes sharing the window. The shell is paying attention (and ignoring) the note,
therefore it remains unaffected. However, cat is not paying attention to it, and
gets killed in action.

Let’s do it by hand. We need a victim.
; sleep 3600 &
;

And this one gives us one hour to play with it. The process is alive and well:
; ps | grep sleep
nemo 1157 0:00 0:00 8K Sleep sleep
; echo $apid
1157

We check that it is our process, looking at $apid. No tricks here. To post a note
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to a process, the note text is written to a file in /proc that provides the interface to
post notes to it. Remember that this file is just an interface for the process, and not
a real file. For this process, the file would be /proc/1157/note. To do exactly
the same that the window system is doing, we want to post the note to all processes
sharing its window. Writing the note to /proc/1157/notepg does this:

; echo interrupt >/proc/1157/notepg
; ps | grep 1157
;

It is gone!
The file is called notepg because it refers to a process group. Processes

belong to groups only for administrative reasons. For example, Delete should affect
all the processes active in a window. Otherwise, you would not be able to interrupt
a command line with more than one process, like a pipeline.

Usually, there is a process group per window, and it is used to deal with all
the programs on the window at once. When a window is deleted using the mouse,
you expect the programs running on it to die. The window system posts a hangup
note when the window is deleted. The note is posted to all the processes in the win-
dow, i.e., to the process group of the shell running in the window. We can also try
this.

; echo hangup >/proc/$pid/notepg
And the window is gone!

This required having an abstraction, i.e., a mechanism, to be able to group those
processes and post a note just for them. The process group is this abstraction.

By the way, notes are the mechanism used by the system to signal excep-
tional conditions, like dividing by zero. Notes posted by the system start with
suicide:, and put the process into the broken state, for debugging.

Processes can use atnotify to register a notification handler that listens for
notes. The function receives a note handler as a parameter, and installs the handler
if the second parameter is true, or removes the handler otherwise.

; sig atnotify
int atnotify(int (*f)(void*, char*), int in)

The handler is a function that receives a pointer to the process registers as they
were when it noted the note. This is usually ignored. The second parameter is more
interesting, it is a string with the text from the note. When the note is recognized
by the handler, it must return true, to indicate that the note was attended. Other-
wise, it must return false. This is required because there can be many handlers
installed for a process, e.g., one for each type of note. When a note is posted, each
handler is called until one returns true. If no handler does so, the note is not
attended, and the process is killed.

This program may provide some insight about notes. It registers a handler
that prints the note received and pretends that it was not attended (returning zero).
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!pnote.c !" """"""_______
#include <u.h>
#include <libc.h>

int
handler(void*, char* msg)
{

print("note: %s\n", msg);
return 0;

}

void
main(int, char*[])
{

atnotify(handler, 1);
sleep(3600 * 1000); // one hour to play
print("done (%r)\n");
exits(nil);

}

If we run the program, and press Delete while it is running, this is what happens:
; 8.pnote

the program runs until we press Delete. And then, ...
Delete
note: interrupt
; echo $status
8.pnote 1543: interrupt
;

The program is killed, because it did not handle the note. When we pressed Delete,
the program was executing whatever code it had to execute. In this case, it was
blocked waiting inside sleep for time to pass by. The note caused the system call
to be interrupted, and the process jumped to execute its handler where it printed its
message. Because no handler recognized the note, the process was killed.

Notes are asynchronous, and this means that the handler for a note may run at
any time, when it pleases Plan 9 to instruct your process to stop what it was doing
and jump into the note handler. This is similar to the model used for interrupts,
which is quite different from the process model: One single continuous flow of
control, easy to understand.

We are now going to modify the handler to return true, and not zero. This is
what the new program does.

; 8.pnote
the program runs until we press Delete. And then, ...

Delete
note: interrupt
done (interrupted)
; echo $status

;
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The program was executing the sleep system call, it was blocked waiting for
time to pass. After hitting Delete, a note was posted. The natural flow of control for
the process was interrupted, and it jumped to execute the note handler. It prints the
text for the note, interrupt, and returns true. The note was recognized and Plan 9 is
happy with that. The process is not killed. Instead, it continues where it was. Well,
mostly.

The process did not wait for one hour! Because of the note, the system call
was interrupted. It returns an error to report that. But it returns. The program is
still running at the same point it was when the note was posted. We printed the
error string reported from sleep to see that it is interrupted.

In general, notes are not to be used in your programs. In other systems, they
are used to remove temporary files if a program is interrupted. In Plan 9, there is a
better way for doing this. Any file that you open with the ORCLOSE flag, for exam-
ple,

fd = open("/tmp/tempfile", ORDWR|ORCLOSE);

is automatically removed by the system when the file descriptor is closed. If your
program dies because of a note, the descriptor is closed as part of the natural dying
process. At that point, the file is removed. Using notes it could be done by
installing a note handler like this one

int cleanup(void*, char* msg)
{

if (strcmp(msg, "interrupt") == 0)
remove("/tmp/tempfile");

return 0;
}

But this is an horrible idea. Notes can happen at any time, behind your back. You
are executing your nice single flow of control, and there are functions as nasty as
the pop-ups in other window systems, that run at unexpected times and may cause
your program to fail.

When are notes posted by Plan 9? The kernel is not a magic program. It can
post a note only when it executes. Besides, for simplicity, a note is handled from
within the process that receives it. A write into the note or the notepg file
records that the target process(es) has a note posted. Sooner or later, the target pro-
cess will be allowed to run (if only to process the pending note), At that point,
when returning from the kernel back to the user’s code, is when the note is pro-
cessed.

If the process receiving the note was performing a system call that does not
block, the system call is allowed to complete and the note is posted while returning
from the call. On the other hand, if the process was performing a slow system call,
and was blocked trying to read, or write, or any other thing, the system call is inter-
rupted, as we saw before.



- 142 -

5.7. Reading, notes, and alarms
You know how to read from a file. To read n bytes from a file the program must
call read until all the n bytes are read, because read may return less bytes than
requested. This is so common, that a library function readn exists that keeps on
calling read until all the n bytes have been read. However, This function may
return less bytes than requested, because of a note. Of course this would happen
only if the process is attending the note, because it would be killed otherwise, and
what readn does would not matter at all.

To actually read n bytes even when receiving notes, we can use this alternate
function:

long
robustreadn(int fd, char* buf, long n)
{

long nr, tot;
char err[128];

for (tot = 0; tot < n; tot += nr){
nr = read(fd, buf+tot, n-tot);
if (nr == 0)

break;
if (nr < 0){

rerrstr(err, sizeof(err));
if (strcmp(err, "interrupted") == 0)

nr = 0; // retry
else

break;
}

}
return tot;

}

It requires the process to install a handler for the interrupted note, or the pro-
cess will be killed.

Surprisingly enough, there are times when the problem is not that read is
interrupted, but, on the contrary, the problem is that it is not interrupted. For exam-
ple, a process may need to read a message sent from anywhere else in the network.
This is achieved by calling read on a file that is used to connect the process with
the one that is supposed to send it a message. Similar to a pipe, but crossing the
network. There is a problem in this case. If the other (remote) process hangs,
because of a bug or any other reason, it may never send its message. The poor pro-
cess that is reading will be blocked awaiting, forever, for the message to arrive.

To recover from this circumstance, it is usual to employ a timeout. A time-
out is an alarm timer used to be sure that there is a limit in the amount of time that
we wait for some operation to complete. In this case, it seems reasonable to use a
timeout of 30 seconds. That is an incredibly long time for a computer, even when
considering the delays involved in crossing the network to send or receive a mes-
sage.

Plan 9 provides an alarm timer for each process. The timer is started by



- 143 -

calling alarm, giving as a parameter the number of milliseconds that must pass
before the timer expires.

; sig alarm
long alarm(unsigned long millisecs)

There is no guarantee that the timer will last for exactly that time. It might take a
little bit more if the system is busy doing any other thing. However, real soon after
the specified number of milliseconds, an alarm note will be posted for the process
that did call alarm. And you know what happens, when the note is posted, any
system call that kept the process awaiting (e.g., read) will be interrupted. The fol-
lowing program reads a line from the terminal, and prints it to the standard output.
However, it will wait at most 30 seconds for a line to be typed.
!alarm.c !" """""""________

#include <u.h>
#include <libc.h>

int
handler(void*, char* msg)
{

if (!strcmp(msg, "alarm")){
fprint(2, "timed out\n");
return 1;

}
return 0;

}

void
main(int, char*[])
{

char buf[1024];
long nr;

atnotify(handler, 1);
print("type something: ");
alarm(30 * 1000); // 30 secs.
nr = read(0, buf, sizeof buf);
alarm(0);
if (nr >= 0)

write(1, buf, nr);
exits(nil);

}

Right before calling read, the program installs an alarm timer of 30 seconds. That
much time later, it will post the alarm note. If we type something and read com-
pletes before that time, the program calls alarm(0) to cancel the timer. Other-
wise, the timer expires and read is interrupted.
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; 8.alarm
type something: Hi there
Hi there
; 8.alarm
type something: timed out We did not type anything for 30secs
;

In general, timers are to be used with caution. They make programs unpredictable.
For example, it could happen that right after we typed our line the timer expires.
This could happen at any time, not necessarily while we are waiting in read, but
perhaps when we are in our way to cancel the timer. At least, it is wise to give
plenty of time for a timeout, to make things more predictable, and it is even better
not to use it unless it is absolutely necessary.

5.8. The file descriptor bulletin board
Sometimes, processes need to talk through a pipe, but they do not have an appro-
priate ancestor where to create the pipe. This happens when, after a process has
been created, a newcomer wants to talk to that process.

The program that implements the file system, fossil, is a perfect example.
It is started (in the file server machine) during the boot process. Once started, pro-
grams may use files by talking to the file server using the network.

But there is a problem. The file system, see fossil(4), has to be able to accept
commands from a human operator, to carry out administration tasks. For fossil,
a simple way is to create a pipe and attend one end of the pipe, reading commands
and writing replies (pipes are bi-directional). Any process used by a human at the
other end of the pipe may talk to the file system, to administer it. Here is an exam-
ple of a conversation between a human and the file system:

main: fsys
main

main: sync
main sync: wrote 0 blocks

main: who
console
/srv/boot nemo
/srv/fossil nemo
/srv/vfossil nemo
/srv/fboot nemo

When we wrote fsys, fossil replied with the list of file systems. When we typed
sync, fossil synchronized its changes with disk (any change to a file that was not
yet copied to the disk, was copied immediately). When we typed who, the file sys-
tem wrote the list of users using the file system.

How can we reach the pipe used to talk to fossil? The directory /srv is
special. It is a file descriptor bulletin board. A process can post a file descriptor into
this bulletin board by creating a file on it. For example, in my system,
/srv/fscons is a file that corresponds to the end of the pipe used to talk to fos-
sil.
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The idea is not complex, once you realize that files in Plan 9 are not real files,
most of the times. The file /srv/fscons is not a file, it looks like, but it is just a
file interface for a file descriptor that fossil has open. Because /srv/fscons
looks like a file, you can open it and gain access to the file descriptor. And you do
not require a common ancestor with fossil!

For example, this, when executed in the file server, asks fossil to write
any pending change to the disk.

; echo sync >>/srv/fscons

When the shell opens /srv/fscons, it is not opening yet another file. It is
obtaining a file descriptor that is similar to the one posted into /srv/fscons by
fossil. The result is the same of calling dup to duplicate the descriptor kept
inside /srv/fscons, however, you cannot call dup. You do not have the file
descriptor to duplicate, because it belongs to another process.

This program is an example of how to use this bulletin board. It creates one
pipe and reads text from it, printing a copy to standard output, so we could see
what is read. The other end of the pipe is posted at /srv/echo, for us to use.
!srvecho.c !" """"""""_________

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int fd[2];
int srvfd;
char buf[128];
int nr;

if (pipe(fd) < 0)
sysfatal("pipe: %r");

srvfd = create("/srv/echo", OWRITE, 0664);
if (srvfd < 0)

sysfatal("can’t create at /srv: %r");
if (fprint(srvfd, "%d", fd[1]) < 0)

sysfatal("can’t post file descriptor: %r");
close(fd[1]);
for (;;){

nr = read(fd[0], buf, sizeof buf);
if (nr <= 0)

break;
write(1, buf, nr);

}
print("exiting\n");
exits(nil);

}

The create call for /srv/echo creates a file where the program can post a file
descriptor. The way to do the post is by writing the file descriptor number into the



- 146 -

file, and closing it. The created file at /srv is just an artifact. What matters is that
now there is another way to get to the descriptor in fd[1]. Because the program
does not use that descriptor itself, it closes it. Note that the pipe end is not closed at
this point. The descriptor kept inside /srv/echo is also leading to that end of the
pipe, which therefore remains open. From now on, the program reads from the
other end of the pipe to do the echo.

; 8.srvecho &
; lc /srv
boot echo plumb.nemo.264 slashmnt
cs_net fscons slashdevs vol
; echo hi there! >>/srv/echo
hi there!
; ps | grep 8.srvecho
nemo 2553 0:00 0:00 24K Pread 8.srvecho

If we remove the file /srv/echo, and no process has the file descriptor open for
that end of the pipe, our program would receive an end of file indication at the
other end of the pipe, and terminate.

; rm /srv/echo
exiting
;

Files in /srv are just file descriptors. They only difference is that they are pub-
lished in a bulletin board for anyone to see. How is this done? In a simple way,
each file for /srv contains a reference to the Chan of the descriptor posted in it.
Figure 5.4 shows the elements involved in the session we have just seen.

Echo
process

File descriptor
table

0
1
2
3

...
n

file: pipe ORDWR
offset: 0

pipe

file: pipe ORDWR
offset: 0

File
/srv/echo

Figure 5.4: A file descriptor posted at /srv/echo used to talk to a process through a pipe.
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5.9. Delivering messages
Presenting every resource as a file may be an inconvenience when programs need
to act after some success happens. For example, the program faces (see figure
5.5) shows a small face image for each email received by the user, displaying an
image that describes the sender for each mail. When a mail arrives, faces must
show a new face to alert the user of the new incoming mail. In this case, usually,
the program must check out the files of interest to see if the thing of interest hap-
pen. This is called polling, and the thing of interest is called an event.

Figure 5.5: The program faces shows small faces for persons that sent email to us.

Polling has the problem of consuming resources each time a poll is made to
check out if an interesting event happen. Most of the times, nothing happens and
the poll is a waste. Therefore, it would be very inefficient to be all the time polling
for an event and, as a result, programs that poll usually call sleep between each
two polls. The following two programs wait until the file given as a parameter
changes, and then print a message to let us know. The first one performs a continu-
ous poll for the file, and the second one makes one poll each 5 seconds.
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!poll.c !" """""______
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

Dir* d;
ulong mtime, nmtime;

if (argc != 2){
fprint(2, "usage: %s file\n", argv[0]);
exits("usage");

}
d = dirstat(argv[1]);
if (d == nil)

sysfatal("dirstat: %r");
mtime = d->mtime;
free(d);
do {

d = dirstat(argv[1]);
if (d == nil)

break;
nmtime = d->mtime;
free(d);

} while(nmtime == mtime);
print("%s changed\n", argv[1]);
exits(nil);

}
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!pollb.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

Dir* d;
ulong mtime, nmtime;

if (argc != 2){
fprint(2, "usage: %s file\n", argv[0]);
exits("usage");

}
d = dirstat(argv[1]);
if (d == nil)

sysfatal("dirstat: %r");
mtime = d->mtime;
free(d);
do {

sleep(5 * 1000);
d = dirstat(argv[1]);
if (d == nil)

break;
nmtime = d->mtime;
free(d);

} while(nmtime == mtime);
print("%s changed\n", argv[1]);
exits(nil);

}

It is interesting to see how loaded is the system while executing each program. The
system load is a parameter that represents how busy the system is, and it is usually
indicative of how much work the system is doing. The load is measured by deter-
mining which percentage of the time the system is running a process and which
percentage of the time the system is not. In a typical system, most of the time there
is just nothing to do. Most processes will be blocked waiting for something to hap-
pen (e.g., inside a read waiting for the data to arrive). However, from time to
time, there will be some processes with a high demand of CPU time, like for exam-
ple, a compiler trying to compile a program, and the system load will increase
because there’s now some process that is often ready to run, or running.

We can use the stats tool to display the system load. This tool shows a
graphic depicting the system load and other statistics. For example, both figures 5.6
and 5.7 show a window running stats. Figure 5.6 shows the system load for our
first experiment regarding polling. It is hard to see in a book, but the graph dis-
played by stats is always scrolling from right to left as time goes by. Around the
middle of the graph it can be seen how the load increased sharply, and went to a
situation where almost always there was something to do. The system started to be
heavily loaded. This was the result of executing the following.
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; 8.poll poll.c
"...and the machine got very busy until we hit Delete

Delete
;

Figure 5.6: A window running stats while the intensive polling program increased the load.

The process 8.poll was always polling for a change on its file. Therefore, there
was always something to do. Despite being run on a very fast machine, 8.poll
never ceased to poll. When the system decided that 8.poll got enough processor
time, and switched to execute any other process, our polling process ceased to poll
for a tiny fraction of time. Later on, it will be put again in the processor and con-
sume all the time given to it by the system. When all processes are blocked wait-
ing for something to happen, 8.poll is still very likely to be ready to run. As a
result, the system load is at its maximum. Later, we pressed delete and killed
8.poll, and the system load came back to a more reasonable value.

Note that a high load does not mean that the system is unresponsive, i.e., that
it cannot cope with any more work to do. It just means that there is always some-
thing to do. Of course, given the sufficient amount of things to do, the system will
become unresponsive because no process will be given enough processor time to
complete soon enough. But that does not need to be the case if the load is high.

Figure 5.7: The system load is not altered if the program sleeps between polls.

Compare what you saw with the load while executing our second version for
the polling program, which calls sleep to perform one poll each 5 seconds. The
window running stats while we executed this program is shown in figure 5.7.
This program behaved nicely and did not alter much the system load. Most of the
time it was sleeping waiting for the time for its next poll. As an aside, it is
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interesting to say that Plan 9 typically exhibits a much lower system load than both
figures show. The system used to capture both images is a derivative of Plan 9,
called Plan B, which uses polling for many things. When there are many processes
polling, the load naturally increases even if the processes sleep between polls.

The sleep used by programs that poll introduces another problem: delays.
If the event does occurs and the polling program is sleeping, it will not take an
appropriate action until the sleep completes. And this is a delay. If the process
waiting for the event produces, as a result, another event, the delay of any other
process polling for the later event is added to the chain.

The consequence of what we have discussed so far is that most operating sys-
tems provide an abstraction to deliver events and to wait for them. The abstraction
is usually called an event channel, and is used to convey events from the ones that
produce them to the ones that await for them.

An event is a particular data structure, that contains the information about the
success it represents. This means that events can be used as a communication
means between the processes that produce them and the ones that consume them.

In Plan 9, there is a service called plumbing that provides a message delivery
service. The name of the program is plumber because it is meant to do the
plumbing to convey data from message producers to consumers. In effect, it pro-
vides a nice event delivery service. The plumber is built upon the assumption that
once you look at a particular piece of data it is clear what to do with it. For exam-
ple, if a message looks like http://lsub.org/... then it is clear that it should
probably be delivered to a web browser. If a message looks like pnote.c:15,
then it is likely that it should be delivered to an editor, to open that file and show
the line after the colon.

Like many other programs, the plumber is used through a file interface. The
files that make up the interface for the plumber are usually available at
/mnt/plumb.

; lc /mnt/plumb
edit msntalk rules showmail
exec msword seemail song
image none send voice
man postscript sendmail www

Each one of these files (but for rules and send) is called a port, and can be used
to dispatch messages to applications reading from them. The send file is used to
send a message to the plumber, which will choose an appropriate port for it and
then deliver the message to any process reading from it.

For example, figure 5.8 shows what would happen when a process writes to
the send port a message carrying the data http://lsub.org/. Because the
data looks like something for a www port, the plumber delivers the message to any
process reading from that port. If more than one process is reading from the port
(as shown in the figure for images), the message is delivered to all of them.

Even if you didn’t notice, you have been using the plumber a lot. Every time
you click with the mouse button-3 at something in Acme, the editor sends a mes-
sage to the plumber with the text where you did click. Most of the times, the
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Figure 5.8: The plumber provides ports, used to deliver messages to applications.

plumber determines that the message is for processes reading the port edit, i.e.,
editors. Thus, the message is conveyed back to Acme in many cases. You may try
it by hand. If you have an Acme running and you execute

; plumb /NOTICE
;

on a shell, the file /NOTICE will show up in your editor. The plumber even knows
that if there’s no editor reading from the edit port, an editor should be started.
You can try by executing again the plumb command above, but this time, while
no editor is running.

How does the plumber know what to do? The file $home/lib/plumbing
is read by the plumber when it starts (usually from your $home/lib/profile
while entering the system). This file has rules that instruct the plumber to which
port should each message be sent according to the message data. Furthermore, the
file may instruct the plumber to start a particular application (e.g., an editor) when
no one is listening at a given port. After the plumber has been started, its rules can
be updated by copying whatever rules are necessary to the /mnt/plumb/rules
file.

It is still too early for us to inspect this file, because it uses regular
expressions, that are yet to be discussed. However, it is useful to know that by
default certain messages are processed in a particular way:
% Files with particular formats, like MS Word files, are delivered usually to the

program page, which converts them to postscript and shows their contents
on a window.

% Most other files go to the editor. Optionally, there may be a : followed by an
address after the file name, to instruct the editor to go to a particular piece of
text in the file. For example, /NOTICE:2 would make an editor show line 2
of /NOTICE. There are other types of addresses, besides line numbers. A
very useful one is of the form /text. That is, some text after a /, like in
/NOTICE:/cent. This causes the editor to search for the text (for cent
in this case). The text that you type is actually a regular expression, and not
just a string. This is a more powerful mechanism to search for things, that
will be seen in a later chapter.
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% Mail addresses get a new window running the mail program.
% A file name ending in .h is looked for at /sys/include, and then passed

to the editor. For example, a plumb of libc.h would open
/sys/include/libc.h

% A name for a manual page, like ls(1) causes the editor to display the for-
matted manual page. Very convenient when using acme. Type the manual
page, and click with the button-3 on it.

We went this far, but we still do not know what a plumber message is. A plumber
message does not only carry data. Along with the data, there is some metadata that
supplies additional information about the data. Thus, each message has a set of
attributes and their values, besides the data. Some attributes are always present in a
message (although their values might be empty). Other attributes are used by pro-
grams using a particular kind of message, and there can be any number of them.
You may also invent any attribute that you need if you use plumber messages for a
particular thing. These are the standard attributes for a message:

src A string that names the source for the message, usually a program name.
dst A string that names the destination port for the message. If it is not sup-
plied, the plumber tries to choose using the rules file.
wdir The working directory used by a process that is sending a message car-
rying a file name. This is necessary to let the receipt of the message deter-
mine to which file the message refers to. Note that a file name may be a rela-
tive path, and you need to know with respect which (current working) direc-
tory it is relative to.
type A string describing the type of data. Most of the times the type is just
text, which is later, perhaps, interpreted as a file name or as the name for a
manual page.
ndata Number of bytes in the data for the message.

How can you use the plumber? From the shell, the plumb program lets you send
messages, as you saw. From a C program, there is a library called plumb(2) that
provides an interface for using the plumber. The following program listens for
plumb messages sent to the edit port, and prints the file name for each such mes-
sage.



- 154 -

!edits.c !" """"""_______
#include <u.h>
#include <libc.h>
#include <plumb.h>

void
main(int , char* [])
{

int fd;
Plumbmsg*m;
char* addr;

fd = plumbopen("edit", OREAD);
if (fd < 0)

sysfatal("edit port: %r");
while(m = plumbrecv(fd)){

addr = plumblookup(m->attr, "addr");
if (addr == nil)

addr = "none";
print("msg: wdir=’%s’ data=’", m->wdir);
write(1, m->data, m->ndata);
print("’ addr=’%s’\n", addr);
plumbfree(m);

}
fprint(2, "plumbrecv: %r");
close(fd);
exits(nil);

}

The function plumbopen opens the plumb port given as its first parameter (using
the open mode indicated by the second one). It returns an open file descriptor
where we can read or write plumb messages. In this case, we open the edit port.
The function opens /mnt/plumb/edit if we do not supply a path for the file
name. To receive a message, the program calls plumbrecv, which blocks reading
from the port until the plumber supplies the data from the message. This function
may have to read several times, until an entire message has been read. It returns a
pointer to the message read, which has this data structure:



- 155 -

typedef struct Plumbattr Plumbattr;
typedef struct Plumbmsg Plumbmsg;

struct Plumbmsg
{

char *src;
char *dst;
char *wdir;
char *type;
Plumbattr *attr; // list of attributes
int ndata;
char *data;

};

struct Plumbattr
{

char *name;
char *value;
Plumbattr *next;

};

The program looks in the attribute list for the message, pointed to by the attr
field, for an attribute named addr, which is the address following the file name in
the plumbed message. To do so, it calls plumblookup, giving the attr list and
the name of the desired attribute. The working directory for the message, the data,
and the address attribute’s value are printed next. At last, the message data struc-
ture is deallocated by a call to plumbfree.

We can deliver messages to our program by doing clicks on Acme, with the
mouse button 3, and also by running plumb from the shell like we do below.

; plumb /NOTICE:2
; plumb edits.c
; plumb /sys/doc/9/9.ps
; plumb edits.c:/main
;

The corresponding output for our program, which we did run at a different window,
follows. Note how the message for 9.ps was not sent to the edit port, and there-
fore is not received by our program. It was sent to a different program, page, to
display the postscript file.

; 8.edits
msg: wdir=’/usr/nemo/9intro’ data=’/NOTICE’ addr=’2’
msg: wdir=’/usr/nemo/9intro’ data=’/usr/nemo/9intro/edits.c’ addr=’’
msg: wdir=’/usr/nemo/9intro’ data=’/usr/nemo/9intro/edits.c’ addr=’/main’

One last question. Which format is used to actually write and read messages from
the file that is the plumb port? Is it a esoteric format? No. It is simply a set of lines
with the source application, destination port, working directory, message type,
message attributes, and number of bytes of data, followed by the indicated number
of bytes carrying the data. This is easy to see by using cat to read from the edit
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port while executing the same plumb commands used above.
; cat /mnt/plumb/edit
plumb
edit
/usr/nemo/9intro
text
addr=2
7
/NOTICE New line supplied by us
plumb
edit
/usr/nemo/9intro
text
addr=
24
/usr/nemo/9intro/edits.c New line supplied by us
plumb
edit
/usr/nemo/9intro
text
addr=/main
24
/usr/nemo/9intro/edits.c New line supplied by us
Delete
;

Sending a plumb message is very simple, given the helper routines in plumb(2).
The routine plumbsend sends a message as described by a Plumbmsg structure.
The routine plumbsendtext is a even more simple version, for those cases
when the message is just a text string.

; sig plumbsend plumbsendtext
int plumbsend(int fd, Plumbmsg *m)
int plumbsendtext(int , char *, char *, char *, char *)

For example, this would send a message with the text /NOTICE.
int fd;

fd = plumbopen("send", OWRITE);
if (fd < 0)

sysfatal("open: %r");
if (plumbsendtext(fd, argv0, nil, nil, "/NOTICE") < 0)

sysfatal("send: %r");

A similar effect can be achieved by initializing and sending a Plumbmsg as fol-
lows.
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Plumbmsg m;
int fd;

fd = plumbopen("send", OWRITE);
if (fd < 0)

sysfatal("open: %r");
m.src = m.dst = m.wdir = nil;
m.type = "text";
m.attr = nil;
m.data = "/NOTICE";
m.ndata = strlen(m.data);
if (plumbsend(fd, &m) < 0)

sysfatal("send: %r");

Problems
1 What would this command do?

cp /fd/1 /fd/0

2 Why do you think that the code to initialize standard input, output, and error
in the first process differs from this?
open("/dev/cons, ORDWR);
dup(0, 1);
dup(0, 2);

3 The code
fd = open("/NOTICE", OREAD);
dup(fd, 0);
close(fd);

may fail and leave standard input closed. When does this happen? Why do
you think this code was used for a program that redirected standard input to
/notice?

4 Show that a process that reads from an empty pipe gets blocked and will
never run. Which state is reported by ps for such process?

5 Modify the code for the srvecho program to perform the echo through the
pipe, and not to the console. Use the program con(1) to connect to the pipe
through /srv/echo and test that it works.
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6 ! Networking
______

6.1. Network connections
Plan 9 is a distributed system. But even if it was as its ancestor, UNIX, a central-
ized system that was designed just for one machine, it is very important to be able
to use the network to provide services for other machines and to use services from
others. All the operating systems that are in use today provide abstractions similar
to the one whose interface is described here, to let you use the network.

This chapter may be hard to understand if you have not attended a computer
networks course, but we try to do our best to explain how to use the network in any
case. All the programs you have used to browse the Web, exchange electronic mail,
etc. are implemented using interfaces that are similar to the ones described below
(they use to be more complex, though).

In general, things work as for any other service provided by the operating sys-
tem. First, the system provides some abstraction for using the network. As we will
be seeing, Plan 9 uses also the file abstraction as its primary interface for using net-
works. Of course, files used to represent a network have a special meaning, i.e.,
behave in a particular way, but they are still used like files. Other operating sys-
tems use a whole bunch of extra system calls instead, to provide the interface for
their network abstraction. Nevertheless, the ideas, and the programmatic interface
that we will see, are very similar.

Upon such system-provided abstraction, library functions may provide a
more convenient interface for the application programmer. And of course, in the
end, there are many programs already installed in the system that, using these
libraries, provide some services for the user.

A network in Plan 9 is a set of devices that provide the ability to talk with
other machines using some physical medium (e.g, some type of wire or the air for
radio communication).

A network device in Plan 9 may be an actual piece of hardware, but it can
also be a piece of software used to speak some protocol. For example, most likely,
your PC includes an ethernet card. It uses an RJ45 connector to plug your computer
to an ethernet network (just some type of cabling and conventions). The interface
for the ethernet device in Plan 9 is just a file tree, most likely found at
/net/ether0

; lc /net/ether0
0 1 2 addr clone ifstats stats

Machines attached to the wire have addresses, used by the network hardware to
identify different machines attached to the wire. Networks using wireless commu-
nication are similar, but use the air as their "wire#. We can use the file interface
provided by Plan 9 for our ethernet device to find out which one is its address:
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; cat /net/ether0/addr
000c292839fc;

As you imagine, this file is just an interface for using your ethernet device, in this
case, for asking for its address.

Once you have the hardware (e.g., the ethernet card) for exchanging messages
with other machines attached to the same medium (wiring or air), your machine
and exchange bytes with them. The problem remains of how to send messages to
any machine in the Internet, even if it is not attached to the same wire your
machine is attached at. One protocol very important to the Internet, IP (Internet
Protocol), is provided in Plan 9 by a device driver called IP. This protocol is called
a network protocol because it gives an address to each machine in the Internet, its
IP-address, and it knows how to reach any machine, given its address. The interface
for the IP network in Plan 9 is similar to the one we saw for Ethernet:

; lc /net/ipifc
0 1 clone stats

This is not yet enough for communicating with programs across the internet.
Using IP, you may talk to one machine (and IP cares about how to reach that
machine through the many different wires and machines you need to cross). But
you need to be able to talk to one process. This is achieved by using another proto-
col, built upon the network protocol. This kind of protocol gives addresses for
"mailboxes# within each machine, called ports. Therefore, an address for this pro-
tocol is a combination of a machine address (used to reach that machine through
the underlying network protocol) and a port number.

In few words, the network protocol gives addresses for each machine and
knows how to exchange messages between machines. Today, you are going to use
IP as your network protocol. The transport protocol gives port numbers for pro-
cesses to use, and knows how to deliver messages to a particular port at a particular
machine. Think of the network address as the address for a building, and the port
number as the number for a mailbox in the building.

Some transport protocols provide an abstraction similar to the postal service.
They deliver individual messages that may arrive out of order and may even get
lost in the way. Each such message is called a datagram, which is the abstraction
provided by this kind of transport. In the Internet, the datagram service is usually
UDP. The IP device driver in Plan 9 provides an interface for using UDP, similar
to the ones we saw for other protocols and network devices:

; lc /net/udp
0 1 clone stats

Other transports use the ability to send individual messages to build a more conve-
nient abstraction for maintaining dialogs, similar to a pipe. This abstraction is
called a connection. It is similar to a pipe, but differs from it in that it can go from
one port at one machine to another port at a different machine in the network. This
type of communication is similar to a phone call. Each end has an address (a phone
number), they must establish a connection (dial a number, pickup the phone), then
they can speak to each other, and finally, they hangup. The analogy cannot be



- 161 -

pushed too far, for example, a connection may be established if both ends call each
other, which would not be feasible when making a phone call. But you get the idea.
In the Internet, the most popular protocol that provides connections is TCP, it pro-
vides them using IP as the underlying transport protocol (hence the name TCP/IP
for this suite of protocols). The IP device driver in Plan 9 provides the interface for
using TCP. It has the now familiar file interface for using a network in Plan 9:

; lc /net/tcp
0 11 14 17 2 22 stats
1 12 15 18 20 23 26
10 13 16 19 21 24 clone

Each network is represented in Plan 9 as a directory, that has at least one clone
file, and several other directories, called line directories. Opening the clone file
reserves a new connection, and creates a directory that represents the interface for
the new line used to establish a connection. Line directories are named with a num-
ber, and kept within the directory for the network. For example, /net/tcp/14 is
the interface for our TCP connection number 14. It doesn’t need to be a fully estab-
lished connection, it may be in the process of getting established. But in any case,
the directory represents what can be a particular, individual, TCP connection. The
program that opens clone may read this file to discover the number assigned to
the line directory just created.

As shown in figure 6.1, for each connection Plan 9 provides at least a ctl
file and a data file. For example,

; lc /net/tcp/14
ctl data err listen local remote status

/net/tcp

clone 0

ctl data

1

ctl data

2

ctl data

...

n

ctl data

Figure 6.1: The file interface for a network (protocol) in Plan 9.

The file ctl can be used to perform control operations to the connection. For exam-
ple, to hangup (break) this connection, we can just

; echo hangup >/net/tcp/14

The data file is used to send and receive bytes through the connection. It can be
used very much like one end of a pipe. Writing to the data file delivers bytes
through the connection that are to be received at the other end. Reading from the
data file retrieves bytes sent from the process writing at the other end. Just like a
pipe. Only that, if a transport provides datagrams, each write to a data file will
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send a different datagram, and it may arrive out of order or get lost.
There are more differences. An important one is that many transport proto-

cols, including TCP, do not respect message boundaries. This means that data sent
through a connection by several writes may be received at the other end by a single
read. If your program has to receive messages from a network connection, it must
know how much to read for each message. A single call to read may return either
part of a message or perhaps more than one message.

In the line directory for our TCP connection, the local file has the local
address (including the port number) for the connection. This identifies the local end
of the pipe. The remote file serves the same purpose for the other end of the con-
nection.

A network address in Plan 9 is a string that specifies the network (e.g., the
protocol) to use, the machine address, and the port number. For example,
tcp!193.147.81.86!564 is a network address that says: Using the TCP pro-
tocol, the machine address is 193.147.81.86, and the port number is 564. Fortu-
nately, in most cases, we may use names as well. For example, the address
tcp!whale!9fs is equivalent to the previous one, but uses the machine name,
whale, and the service name, 9fs, instead of the raw addresses understood by the
network software. Often, ports are used by programs to provide services to other
programs in the network. As a result, a port name is also known as a service name.

From the shell, it is very easy to create connections. The srv program dials a
network address and, once it has established a connection to that address, posts a
file descriptor for the connection at /srv. This descriptor comes from opening the
data file in the directory for the connection, but you may even forget this. There-
fore,

; srv tcp!whale!9fs
post...

posts at /srv/tcp!whale!9fs a file descriptor that corresponds to an open
network connection from this machine to the port named 9fs at the machine
known as whale, in the network speaking the protocol tcp.

To connect to the web server for LSUB, we may just
; srv tcp!lsub.org!http
post...

Here, tcp is just a shorthand for /net/tcp, which is the real (file) name for such
network in Plan 9. Now we can see that /srv/tcp!lsub.org!http is indeed
a connection to the web server at lsub.org by writing an HTTP request to this
file and reading the server’s reply.
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; echo GET /index.html >>/srv/tcp!lsub.org!http Get the main web page
; cat /srv/tcp!lsub.org!http
<html>
<head>
<title> Laboratorio de Sistemas --- ls </title>
<link rev="made" href="mailto:ls@plan9.escet.urjc.es">
</head>
<body BGCOLOR=white>
<h1> ls --- Laboratorio de Sistemas [ubicuos] del GSyC </h1>
...and more output omitted here...
;

If we try to do the same again, it will not work, because the web server hangs up
the connection after attending a request:

; echo GET / >>/srv/tcp!lsub.org!http
; cat /srv/tcp!lsub.org!http
cat: error reading /srv/tcp!lsub.org!http: Hangup
; echo GET / >>/srv/tcp!lsub.org!http
echo: write error: Hangup

And, as you can see, it takes some time for our machine to notice. The first write
seemed to succeed. Our machine was trying to send the string GET... to the web
server, but it couldn’t really send it. The connection was closed and declared as
hung up. Any further attempt to use it will be futile. What remains is to remove the
file from /srv.

; rm /srv/tcp!lsub.org!http

There is a very popular command named telnet, that can be used to connect to
servers in the Internet and talk to them. It uses the, so called, telnet protocol. But
in few words, it dials an address, and thereafter it sends text from your console to
the remote process at the other end of the connection, and writes to your console
the text received. For example, this command connects to the e-mail server run-
ning at lsub.org, and we use our console to ask this server for help:

; telnet -r tcp!lsub.org!smtp
connected to tcp!lsub.org!smtp on /net/tcp/52
220 lsub.org SMTP
help
250 Read rfc821 and stop wasting my time
Delete

We gave the option -r to telnet, to ask it not to print carriage-return characters
(its protocol uses the same convention for new lines used by DOS). When telnet
connected to the address we gave, it printed a diagnostic message to let us know,
and entered a loop to send the text we type, and to print the text it receives from the
other end. Our mail server wrote a salutation through the connection (the line start-
ing 220...), and then we typed help, which put our mail server into a bad mood.
We interrupted this program by hitting Delete in the terminal, and the connection
was terminated when telnet died. A somewhat abrupt termination.

It is interesting to open several windows, and connect from all of them to the
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same address. Try it. Do you see how each telnet is using its own connection?
Or, to put it another way, all the connections have the same address for the other
end of the connection, yet they are different connections.

To name a connection, it does not suffice to name the address for one of its
ends. You must give both addresses (for the two ends) to identify a connection. It
is the four identifiers local address, local port, remote address, and remote port,
what makes a connection unique.

It is very important to understand this clearly. For example, in our telnet
example, you cannot know which connection are you talking about just by saying
"The connection to tcp!lsub.org!smtp#. There can be a dozen of such con-
nections, all different, that happen to reach that particular address. They would dif-
fer in the addresses for their other extremes.

6.2. Names
Above, we have been using names for machines and services (ports). However,
these names must be translated into addresses that the network software could
understand. For example, the machine name whale must be translated to an IP
address like 193.147.81.86. The network protocol (IP in Internet) knows
nothing about names. It knows about machine addresses. In the same way, the
transport protocol TCP knows nothing about the service with name http. But it
does know how to reach the port number 80, which is the one that corresponds to
the HTTP service.

Translating names into addresses (including machine and service names) is
done in a different way for each kind of network. For example, the Internet has a
name service known as DNS (domain name service) that knows how to translate
from a name like whale.lsub.org into an IP address and vice-versa. Besides,
for some machines and services there may be names that exist only within a partic-
ular organization. Your local system administrator may have assigned names to
machines that work only from within your department or laboratory. In any case,
all the information about names, addresses, and how to reach the Internet DNS is
kept in a (textual) database known as the network database, or just ndb. For
example, this is the entry in our /lib/ndb/local file for whale:

dom=whale.lsub.org ip=193.147.81.86 sys=whale

When we used whale in the examples above, that name was translated into
193.147.81.86 and that was the address used. Also, this is the entry in our
/lib/ndb/common file for the service known as 9fs when using the TCP pro-
tocol:

tcp=9fs port=564

When we used the service name 9fs, this name was translated into the port num-
ber 564, that was the port number used. As a result, the address
tcp!whale!9fs was translated into tcp!193.147.81.86!564 and this
was used instead. Names are for humans, but (sadly) the actual network software
prefers to use addresses.
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All this is encapsulated into a program that does the translation by itself,
relieving from the burden to all other programs. This program is known as the
connection server, or cs. We can query the connection server to know which
address will indeed be used when we write a particular network address. The pro-
gram csquery does this. It is collected at /bin/ndb along with other programs
that operate with the network data base.

; ndb/csquery
> tcp!whale!9fs
/net/tcp/clone 193.147.81.86!564
>

The "># sign is the prompt from csquery, it suggests that we can type an address
asking for its translation. As you can see, the connection server replied by giving
the path for the clone file that can be used to create a new TCP connection, and
the address as understood by TCP that corresponds to the one we typed. No one
else has to care about which particular network, address, or port number corre-
sponds to a network address.

All the information regarding the connections in use at your machine can be
obtained by looking at the files below /net. Nevertheless, the program netstat
provides a convenient way for obtaining statistics about what is happening with the
network. For example, this is what is happening now at my system:

; netstat
tcp 0 nemo Listen audio 0 ::
tcp 1 Established 5757 9fs whale.lsub.org
tcp 2 nemo Established 5765 ads whale.lsub.org
tcp 3 nemo Established 5759 9fs whale.lsub.org
tcp 4 nemo Listen what 0 ::
tcp 5 nemo Established 5761 ads whale.lsub.org
tcp 6 nemo Established 5766 ads whale.lsub.org
tcp 7 nemo Established 5763 9fs whale.lsub.org
tcp 8 nemo Listen kbd 0 ::
...many other lines of output for tcp...
udp 0 network Closed 0 0 ::
udp 1 network Closed 0 0 ::

Each line of output shows information for a particular line directory. For example,
the TCP connection number 1 (i.e., that in /net/tcp/1) is established. There-
fore, it is probably being used to exchange data. The local end for the connection is
at port 5757, and the remote end for the connection is the port for service 9fs at
the machine with name whale.lsub.org. This is a connection used by the
local machine to access the 9P file server at whale. It is being used to access our
main file server from the terminal where I executed netstat. The states for a
connection may depend on the particular protocol, and we do not discuss them
here.

In some cases, there may be problems to reach the name service for the Inter-
net (our DNS server), and it is very useful to call netstat with the -n flag,
which makes the program print just the addresses, without translating them into
(more readable) names. For example,
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; netstat -n
tcp 0 nemo Listen 11004 0 ::
tcp 1 Established 5757 564 193.147.71.86
tcp 2 nemo Established 5765 11010 193.147.71.86
tcp 3 nemo Established 5759 564 193.147.71.86
tcp 4 nemo Listen 11003 0 ::
tcp 5 nemo Established 5761 11010 193.147.71.86
...many other lines of output

It is very instructive to compare the time it takes for this program to complete with,
and without using -n.

To add yet another tool to your network survival kit, the ip/ping program
sends particular messages that behave like probes to a machine (to an IP address,
which is for a network interface found at a machine, indeed), and prints one line for
each probe reporting what happen. It is very useful because it lets you know if a
particular machine seems to be alive. If it replies to a probe, the machine is alive,
no doubt. If the machine does not reply to any of the probes, it might be either
dead, or disconnected from the network. Or perhaps, it is your machine the one dis-
connected. If only some probes get replied, you are likely to have bad connectivity
(your network is losing too many packets). Here is an example.

; ip/ping lsub.org
sending 32 64 byte messages 1000 ms apart
0: rtt 152 µs, avg rtt 152 µs, ttl = 255
1: rtt 151 µs, avg rtt 151 µs, ttl = 255
2: rtt 149 µs, avg rtt 150 µs, ttl = 255
...

In the output, rtt is for round trip time, the time for getting in touch and receiving
the reply.

6.3. Making calls
For using the network from a C program, there is a simple library that provides a
more convenient interface that the one provided by the file system from the net-
work device. For example, this is our simplified version for srv. It dials a given
network address to establish a connection and posts a file descriptor for the open
connection at /srv.
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!srv.c !" """"_____
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int fd, srvfd;
char* addr;
char fname[128];

if (argc != 2){
fprint(2, "usage: %s netaddr\n", argv[0]);
exits("usage");

}

addr = netmkaddr(argv[1], "tcp", "9fs");
fd = dial(addr, nil, nil, nil);
if (fd < 0)

sysfatal("dial: %s: %r", addr);

seprint(fname, fname+sizeof(fname), "/srv/%s", argv[1]);
srvfd = create(fname, OWRITE, 0664);
if (srvfd < 0)

sysfatal("can’t post %s: %r", fname);
if (fprint(srvfd, "%d", fd) < 0)

sysfatal("can’t post file descriptor: %r");
close(srvfd);
close(fd);
exits(nil);

}

Using argv[1] verbatim as the network address to dial, would make the program
work only when given a complete address. Including the network name and the ser-
vice name. Like, for example,

; 8.srv tcp!whale!9fs

Instead, the program calls netmkaddr which is a standard Plan 9 function that
may take an address with just the machine name, or perhaps the network name and
the machine name. This function completes the address using default values for the
network and the service, and returns a full address ready to use. We make tcp the
default value for the network (protocol) and 9fs as the default value for the service
name. Therefore, the program admits any of the following, with the same effect
that the previous invocation:

; 8.srv tcp!whale
; 8.srv whale

The actual work is done by dial. This function dials the given address and
returns an open file descriptor for the connection’s data file. A write to this descrip-
tor sends bytes through the connection, and a read can be used to receive bytes
from it. The function is used in the same way for both datagram protocols and
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connection-oriented protocols. The connection will be open as long as the file
descriptor returned remains open.

; sig dial
int dial(char *addr, char *local, char *dir, int *cfdp)

The parameter local permits specifying the local address (for network protocols
that allow doing so). In most cases, given nil suffices, and the network will
choose a suitable (unused) local port for the connection. When dir is not nil, it is
used by the function as a buffer to copy the path for the line directory representing
the connection. The buffer must be at least 40 bytes long. We changed the previous
program to do print the path for the line directory used for the connection:

fd = dial(addr, nil, dir, nil);
if (fd < 0)

sysfatal("dial: %s: %r", addr);
print("dial: %s0, dir);

And this is what it said:
; 8.srv tcp!whale!9fs
dial: /net/tcp/24

The last parameter for dial, cfdp points to an integer which, when passing a non-
nil value, can be used to obtain an open file descriptor for the connection. In this
case, the caller is responsible for closing this descriptor when appropriate. This can
be used to write to the control file requests to tune properties for the connection,
but is usually unnecessary.

There is a lot of useful information that we may obtain about a connection by
calling getnetconninfo. This function returns nothing that could not be
obtained by reading files from files in the line directory of the connection, but it is
a very nice wrap that makes things more convenient. In general, this is most useful
in servers, to obtain information to try to identify the other end of the connection,
(i.e., the client). However, because it is much easier to make a call than it is to
receive one, we prefer to show this functionality here instead.

Parameters for netconninfo are the path for a line directory, and one of
the descriptors for either a control or a data file in the directory. When nil is given
as a path, the function uses the file descriptor to locate the directory, and read all
the information to be returned to the caller. The function allocates memory for a
NetConnInfo structure, fills it with relevant data, and returns a pointer to it
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typedef struct NetConnInfo NetConnInfo;
struct NetConnInfo
{

char *dir; /* connection directory */
char *root; /* network root */
char *spec; /* binding spec */
char *lsys; /* local system */
char *lserv; /* local service */
char *rsys; /* remote system */
char *rserv; /* remote service */
char *laddr; /* local address */
char *raddr; /* remote address */

};

This structure must be released by a call to freenetconninfo once it is no
longer necessary. As an example, this program dials the address given as a param-
eter, and prints all the information returned by getnetconninfo. Its output for
dialing tcp!whale!9fs follows.
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!conninfo.c !" """""""""__________
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int fd, srvfd;
char* addr;
NetConnInfo*i;
if (argc != 2){

fprint(2, "usage: %s netaddr\n", argv[0]);
exits("usage");

}

addr = netmkaddr(argv[1], "tcp", "9fs");
fd = dial(addr, nil, nil, nil);
if (fd < 0)

sysfatal("dial: %s: %r", addr);
i = getnetconninfo(nil, fd);
if (i == nil)

sysfatal("cannot get info: %r");
print("dir:\t%s\n", i->dir);
print("root:\t%s\n", i->root);
print("spec:\t%s\n", i->spec);
print("lsys:\t%s\n", i->lsys);
print("lserv:\t%s\n", i->lserv);
print("rsys:\t%s\n", i->rsys);
print("rserv:\t%s\n", i->rserv);
print("laddr:\t%s\n", i->laddr);
print("raddr:\t%s\n", i->raddr);
freenetconninfo(i);
close(fd);
exits(nil);

}

; 8.out tcp!whale!9fs
dir: /net/tcp/46
root: /net
spec: #I0
lsys: 212.128.4.124
lserv: 6672
rsys: 193.147.71.86
rserv: 564
laddr: tcp!212.128.4.124!6672
raddr: tcp!193.147.71.86!564

The line directory for this connection was /net/tcp/46, which belongs to the
network interface at /net. This connection was using #I0, which is the first IP
interface for the machine. The remaining output should be easy to understand,
given the declaration of the structure above, and the example output shown.
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6.4. Providing services
We know how to connect to processes in the network that may be providing a par-
ticular service. However, it remains to be seen how to provide a service. In what
follows, we are going to implement an echo server. A client for this program would
be another process connecting to this service to obtain an echo service. This pro-
gram provides the service (i.e., provides the echo) and is therefore a server. The
echo service, surprisingly enough, consists on doing echo of what a client writes.
When the echo program reads something, writes it back through the same connec-
tion, like a proper echo.

The first thing needed is to announce the new service to the system. Think
about it. To allow other processes to connect to our process, it needs a port for
itself. This is like allocating a "mailbox# in the "building# to be able to receive
mail. The function announce receives a network address and announces it as an
existing place where others may send messages. For example,

announce("tcp!alboran!echo", dir);

would allocate the TCP port for the service named echo and the machine named
alboran. This makes sense only when executed in that machine, because the
port being created is an abstraction for getting in touch with a local process. To say
it in another way, the address given to announce must be a local address. It is a
better idea to use

announce("tcp!*!echo", dir);

instead. The special machine name "*# refers to any local address for our machine.
This call reserves the port echo for any interface used by our machine (not just for
the one named alboran). Besides, this call to announce now works when used
at any machine, no matter its name.

This function returns an open file descriptor to the ctl file of the line direc-
tory used to announce the port. The second parameter is updated with the path for
the directory. Note that this line directory is an artifact which, although has the
same interface, is not a connection. It is used just to maintain the reservation for the
port and to prepare for receiving incoming calls. When the port obtained by a call
to announce is no longer necessary, we can close the file descriptor for the ctl
file that it returns, and the port will be released.

This program announces the port 9988, and sleeps forever to let us inspect
what happen.



- 172 -

!ann.c !" """""______
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int cfd;
char dir[40];

cfd = announce("tcp!*!9988", dir);
if (cfd < 0)

sysfatal("announce: %r");
print("announced in %s\n", dir);
for(;;)

sleep(1000);
}

We may now do this
; 8.ann &
; announced in /net/tcp/52 We typed return here, to let you see
; netstat | grep 9988
tcp 52 nemo Listen 9988 0 ::

According to netstat, the TCP port number 9988 is listening for incoming calls.
Note how the path printed by our program corresponds to the TCP line number 52.

Now let’s try to run the program again, without killing the previous process.
; 8.out
announce: announce writing /net/tcp: address in use

It fails! Of course, there is another process already using the TCP port number
9988. This new process cannot announce that port number again. It will be able to
do so only when nobody else is using it:

; kill 8.ann|rc
; 8.ann &
; announced in /net/tcp/52

Our program must now await for an incoming call, and accept it, before it could
exchange data with the process at the other end of the connection. To wait for the
next call, you may use listen. This name is perhaps misleading because, as you
could see, after announce, the TCP line is already listening for calls. Listen
needs to know the line where it must wait for the call, and therefore it receives the
directory for a previous announce.

Now comes an important point, to leave the line listening while we are
attending a call, calls are attended at a different line than the one used to listen for
them. This is like an automatic transfer of a call to another phone line, to leave the
original line undisturbed and ready for a next call. So, after listen has received a
call, it obtains a new line directory for the call and returns it. In particular, it returns
an open file descriptor for its ctl file and its path.
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We have modified our program to wait for a single call. This is the result.
!listen.c !" """"""_______

#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int cfd, lfd;
char adir[40];
char dir[40];

cfd = announce("tcp!*!9988", adir);
if (cfd < 0)

sysfatal("announce: %r");
print("announced in %s (cfd=%d)\n", adir, cfd);
lfd = listen(adir, dir);
print("attending call in %s (lfd=%d)\n", dir, lfd);
for(;;)

sleep(1000); // let us see
}

When we run it, it waits until a call is received:
; 8.listen
announced in /net/tcp/52 (cfd=10)

At this point, we can open a new window and run telnet to connect to this
address

; telnet tcp!$sysname!9988
connected to tcp!alboran!9988 on /net/tcp/46

which makes our program receive the call:
attending call in /net/tcp/54 (lfd=11)

You can see how there are two lines used. The line number 52 is still listening, and
the call received is placed at line 54, where we might accept it. By the way, the line
number 46 is the other end of the connection.

Now we can do something useful. If we accept the call by calling accept,
this function will provide an open file descriptor for the data file for the connec-
tion, and we can do our echo business.
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!netecho.c !" """"""""_________
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int cfd, lfd, dfd;
long nr;
char adir[40];
char ldir[40];
char buf[1024];

cfd = announce("tcp!*!9988", adir);
if (cfd < 0)

sysfatal("announce: %r");
print("announced tcp!*!9988 in %s\n", adir);
for(;;){

lfd = listen(adir, ldir);
if (lfd < 0)

sysfatal("listen: %r");
dfd = accept(lfd, ldir);
if (dfd < 0)

sysfatal("can’t accept: %r");
close(lfd);
print("accepted call at %s\n", ldir);
for(;;){

nr = read(dfd, buf, sizeof buf);
if (nr <= 0)

break;
write(dfd, buf, nr);

}
print("terminated call at %s\n", ldir);
close(dfd);

}
}

If we do as before, and use telnet to connect to our server and ask for a nice
echo, we get the echo back. After quitting telnet, we can connect again to our
server and it attends the new call.

; telnet -r tcp!$sysname!9988
connected to tcp!alboran!9988 on /net/tcp/46
Hi there!
Hi there!
Delete
; telnet -r tcp!$sysname!9988
connected to tcp!alboran!9988 on /net/tcp/54
Echo echo...
Echo echo...
Delete
;
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And this is what our server said in its standard output:
; 8.netecho
announced tcp!*!9988 in /net/tcp/52
accepted call at /net/tcp/54
terminated call at /net/tcp/54
accepted call at /net/tcp/55
terminated call at /net/tcp/55

The program is very simple. To announce our port, wait for call, and accept it, it
has to call just announce, listen, and accept. At that point, you have an
open file descriptor that may be used as any other one. You just read and write as
you please. When the other end of the connection gets closed, a reader receives an
EOF indication in the conventional way. This means that connections are used like
any other file. So, you already know how to use them.

Our program has one problem left to be addressed. When we connected to it
using telnet, there was only one client at a time. For this program, when one
client is connected and using the echo, nobody else is attended. Other processes
might connect, but they will be kept on hold waiting for this process to call
listen and accept. This is what is called a sequential server, because it
attends one client after another. You can double check this by connecting from two
different windows. Only the first one will be echoing. The echo for the second to
arrive will not be done until you terminate the first client.

A sensible thing to do would be to fork a new process for each client that
connects. The parent process may be kept listening, waiting for a new client. When
one arrives, a child may be spawned to serve it. This is called a concurrent server,
because it attends multiple clients concurrently. The resulting code is shown
below.

There are some things to note. An important one is that, as you know, the
child process has a copy of all the file descriptors open in the parent, by the time of
the fork. Also, the parent has the descriptor open for the new call received after
calling listen, even though it is going to be used just by the child process. We
close lfd in the parent, and cfd in the child.

We might have left cfd open in the child, because it would be closed when
the child terminates by calling exits, after having received an end of file indica-
tion for its connection. But in any case, it should be clear that the descriptor is open
in the child too.

Another important detail is that the child now calls exits after attending its
connection, because that was its only purpose in life. Because this process has (ini-
tially) all the open file descriptors that the parent had, it may be a disaster if the
child somehow terminates attending a client and goes back to call listen. Well,
it would be disaster because it is not what you expect when you write the program.
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!cecho.c !" """"""_______
#include <u.h>
#include <libc.h>

void
main(int argc, char* argv[])
{

int cfd, lfd, dfd;
long nr;
char adir[40];
char ldir[40];
char buf[1024];

cfd = announce("tcp!*!9988", adir);
if (cfd < 0)

sysfatal("announce: %r");
print("announced tcp!*!9988 in %s\n", adir);
for(;;){

lfd = listen(adir, ldir);
if (lfd < 0)

sysfatal("listen: %r");
switch(fork()){
case -1:

sysfatal("fork: %r");
case 0:

close(cfd);
dfd = accept(lfd, ldir);
if (dfd < 0)

sysfatal("can’t accept: %r");
close(lfd);
print("accepted call at %s\n", ldir);
for(;;){

nr = read(dfd, buf, sizeof buf);
if (nr <= 0)

break;
write(dfd, buf, nr);

}
print("terminated call at %s\n", ldir);
exits(nil);

default:
close(lfd);

}
}

}

6.5. System services
You know that certain machines provide several services. For example, the
machine known as lsub.org in the Internet is a Plan 9 system. The machine
name is indeed aquamar, but it is registered in DNS as lsub.org. This particu-
lar machine provides web, mail, and several other services, including echo!
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; telnet tcp!lsub.org!echo
Hi
Hi
Delete
;

How can it be? Before reading this book, you might think that the operating system
was arranging for this services to run at that machine. But now you know that the
operating system is doing nothing, but for supplying the abstractions used to pro-
vide such services.

When this particular machine starts, Plan 9 executes an rc script as part of
the normal boot process. This script runs the program aux/listen, which listens
for incoming connections and executes programs to attend them. The machine pro-
vides services because certain programs are started to attend incoming connections
targeted to ports.

Following the modular design of the rest of the system, listen does not
even decide which ports are to be listened. This program looks at the
/rc/bin/service directory, for files with names like tcp7, tcp25, and so
on. Each file corresponds to a service provided by the machine, and has a name that
corresponds to the protocol and port number where connections for the service may
arrive.

; lc /rc/bin/service
il17007 tcp17007 tcp220 tcp9
il17009 tcp17009 tcp25 tcp993
il17010 tcp17010 tcp53 tcp995
tcp113 tcp17013 tcp565 telcodata
tcp143 tcp19 tcp7

For many services, there are conventions for which ports to use for them in the
Internet (you might call it a standard). For example, TCP port 7 corresponds to the
echo service. And this is how it is implemented in Plan 9:

; cat /rc/bin/service/tcp7
#!/bin/rc
/bin/cat
;

Indeed, each one of the files in the service directory is an executable program
that implements a service. All that listen has to do, is to listen for calls to the
ports determined by the file names, and execute the files to attend each incoming
call. Listen arranges for the standard input and output of the process attending a
call to be redirected to the connection itself. For a service, reading from standard
input is reading from the connection, and writing to standard output is writing to
the connection.

This is a nice example of how simple things can be. Listen is in charge of lis-
tening and spawning processes for attending services. The directory keeps the set
of files that corresponds to services. We can use familiar programs like lc to list
them! Each service is provided by a separate, independent program. And every-
thing fits together.
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By the way, there is an important lesson to be learned here. It is much more
simple to use cat to implement an echo server than it is to write our own program.
If we do not search the manual and try to see if what we are trying to do is already
done, we get a lot of extra work as a penitence for this sin.

6.6. Distributed computing
The time has come to reveal another lie we told. There are three kind of machines
in a Plan 9 network, not just two. You already know about terminals and file
servers. There are also CPU servers. A CPU server is meant to let the user execute
commands on it, in particular, commands that make intensive use of the processor.
Today, with the powerful machines that we have available, most terminals can cope
with anything you might want to execute on them.

But CPU servers have found their way in this new world and are still very
useful for running the file server program (which used to be a different kernel),
executing periodic user tasks automatically, and providing services like Web, mail,
and the like.

A CPU server runs the same system software used in a terminal, however, its
kernel is compiled with the variable cpuserver set to true, and it behaves
slightly differently. The main difference is that the boot program executes the
script /rc/bin/cpurc instead of /rc/bin/termrc to initialize the system
for operation. You may remember that one of the things this script does is running
aux/listen to run several system services upon incoming calls from clients.

Other systems, most notably UNIX, start most existing system services dur-
ing the boot process, in a similar way. That is why you can connect to a UNIX
machine to execute commands on it (e.g., using telnet or ssh), but you cannot
do the same to your Plan 9 terminal. If you want to connect to your terminal to use
a particular service, you must start that service first (i.e., run listen or its variant
that listens just for one service, listen1).

By the way, if you ever wondered what is the difference between the different
flavors of Windows running on a PC, it is the same. They compiled the system
with different parameters for "optimizing# the system for different kinds of usage.
Also, they arranged for the system to start different services depending on the kind
of edition.

The cpu command makes a connection to a CPU server, using by default that
named by $cpu, as set by your system administrator. The connection is used to
run a program in the CPU server, which is rc by default. The net effect is that you
can connect to a shell at any CPU server, and run commands on it. This is an exam-
ple:
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; echo $sysname
alboran
; cpu
cpu% echo $sysname
aquamar
control-d
; echo $sysname
alboran

Your profile, executed each time you enter the system, changes the prompt for
the shell to advise you that it is not running at your terminal. When an initial shell
is started for you at a machine (a CPU server, a terminal, etc.), it executes your
$home/lib/profile file. Now, the process that started the shell for you
defined a environment variable to indicate which kind of session you are using. For
terminals, the variable service has terminal as its value. However, on CPU
servers this variable may have cpu or rx as its value, depending on how you con-
nected to the CPU server. Your profile may do different things (like adjusting the
shell prompt), depending on $terminal.

A more rudimentary alternative is provided, for those cases when you want to
execute just one command at another machine. It is called rx, and accepts a
machine name and a command to run on it.

; rx aquamar ’echo $sysname’
aquamar
;

Note how we had to quote the whole command, which is to be executed verbatim
by the remote machine,

Problems
1 Use /net to see which networks are available at your terminal. Determine

the local address for your terminal for each one of the networks.
2 Repeat the second problem of chapter 1 for the terminals in your network.

Use /lib/ndb/local to locate other terminals.
3 Start the echo server implemented in this chapter, and try to hangup its con-

nection using the shell.
4 Which processes are listening to the network in your terminal? What do they

do? (use the manual)
5 Which one is the IP address for google.com? Is the machine alive? Try to

determine that in several different ways.
6 Implement a time of day service. It must return the local time to any client.

Use telnet to test it.
7 Implement a client program for the server from the previous problem.
8 Print all the information you can determine for all clients connecting to your

time of day server.
9 Change your server so it could be started using aux/listen1. Test it.
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10 Change your profile to adjust the shell prompt according to the machine
name. It must work both for terminals and connections to CPU servers.



7 ! Resources and Names
______

7.1. Resource fork
In chapter 4 we used fork to create new processes. We said that fork was a sys-
tem call. We lied. It is not a venial lie, like when saying that getenv is a system
call (because it is a library function). It is a terrible lie, because Plan 9 processes are
not just clones. Now it is time to tell the truth.

A Plan 9 process is mostly what you imagine because of what we have said
so far. It is a flow of control known by the kernel, which creates the illusion of hav-
ing a dedicated processor to run it. Each process has certain resources that are
abstractions provided by Plan 9 to let it perform its job. We have seen many of
such resources: Memory, environment variables, file descriptors, and note groups.

When we discussed fork, we said that a child process is a copy of the parent
process. Therefore, it seemed that all resources for the parent were copied to build a
(child) clone. Because fork is so hard to understand the first time you use it, we
decided to lie.

But the truth is that to create a Plan 9 process you do not have to copy all the
resources from the parent process. You may specify which resources are to be
copied, which ones are to be shared with the parent, and which ones are to be brand
new (and empty) just for the child.

The system call doing this is rfork, and fork is equivalent to a call to
rfork asking for a copy of the parent’s file descriptor table, a new flow of con-
trol, and a copy of the parent’s memory. On the other hand, environment variables,
and the note group are shared with the parent.

This is the complete list of resources for a process, which can be controlled
using rfork:
% The flow of control There is not much we can do about it, but to ask for new

one. Each one is called a process.
% The file descriptor table. Also known as the file descriptor group. You can

ask for a copy, or for sharing with the child when creating a process, or for a
new table with all descriptors closed.

% Environment variables. Also known as the environment group. Like
before, You can ask for a copy, or for sharing with the child when creating a
process, or for a new set of environment variables with no variable defined on
it.

% The name space. Utterly important, and central to Plan 9. We have been
ignoring this until now. This is the resource that maps file names to files. We
study it in this chapter.

% The working directory and the root directory, used to walk the file tree for
relative and absolute paths.

% The memory segments. You can ask for sharing the data with the child,
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when creating a process, or to make a copy for the child. The text, or code, is
always shared. It is read-only, and it would be a waste to copy memory that is
going to remain the same. The stack is never shared, because each process has
its own flow of control and needs its own stack.

% The note group. You can ask for sharing it with the child, when creating a
process, or to obtain your own group to be isolated from others.

% The rendezvous group. A resource used to make groups of processes that
can use the rendezvous system call to coordinate among them. This is yet
to be seen.

Besides the requests mentioned above, there are several other things that rfork
can do, that we will be seeing in this chapter along with them.

Before proceeding, we are going to do a fork, but in a slightly different
way:
!rforkls.c !" """""""________

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

switch(rfork(RFFDG|RFREND|RFPROC)){
case -1:

sysfatal("fork failed");
case 0:

execl("/bin/ls", "ls", nil);
break;

default:
waitpid();

}
exits(nil);

}

This program is like the one we saw, runls, which did run ls in a child process.
This time it is using the actual system call, rfork. This call receives a set of
flags, packaged into its single parameter using a bit-or. All the flags for rfork
have names that start with "RF#. The most important one here is RFPROC. It asks
for a new process, i.e., a new flow of control.

When you do not specify RFPROC, the operations you request with other
flags are done to your own process, and not to the child. When you do specify it,
the other flags refer to the child.

The default behavior of rfork is to make a copy of the memory for the
child, and to share most other things with the parent. To do exactly a fork, we
must ask for a copy of the file descriptor table including the RFFDG (RFork File
Descriptor Group). But for the memory, which is duplicated by default, other
resources are shared by default. When you give the flag for a resource to rfork,
you are asking for a copy. When you use a slightly different flag, that has a C in it
(for "clean#), you are asking for a brand new, clean, resource. Because of what we
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said, you can imagine that RFREND is asking for a another rendezvous group, but
this does not really matter by now.

Running this program executes ls, as expected.
; 8.rforkls
rforkls.c
rforkls.8
8.rforkls
;

But let’s change the call to rfork with this other one
rfork(RFCFDG|RFREND|RFPROC)

and try again
; 8.rforkls
;

Nothing!
The explanation is that RFCFDG provided a clean file descriptor table (or

group) to the child process. Because standard output was not open in the child, ls
could not print its output. Furthermore, because its standard error was closed as
well, it could not even complain about it.

Now we are going to do the same, to our own process.
!rforkhi.c !" """"""""_________

#include <u.h>
#include <libc.h>

void
main(int, char*argv[])
{

print("hi\n");
rfork(RFCFDG);
print("there\n");
exits(nil);

}

This produces this output
; 8.rforkhi
; hi
;

The second message was not shown. The RFCFDG flag to rfork asks for a clean
file descriptor set (group). This works like in the previous program, but this time
we did not specify RFPROC and therefore, the request was applied to our own pro-
cess.
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7.2. Protecting from notes
The note group is shared by default when doing a fork, because no flag is speci-
fied regarding this resource. This means that when we run our program in a win-
dow, pressing Delete in the window will kill our process. The window system posts
an interrupt note to the note group of the shell in the window, and our process
is a child of the shell, sharing its note group.

This may be an inconvenience. Suppose we are implementing a web server,
that is meant to be always running. This program is meant to run in the back-
ground, because it does not need a console to read commands. The user is expected
to run our server as in

; httpd &
;

to be able to type more commands in the shell. However, if the user now hits
Delete to stop another program, the web server is killed as well. This can be
avoided by calling

rfork(RFNOTEG);

in the program for httpd. This puts the process in a new note group. We are no
longer affected by notes to the group of the shell that runs in our window. To try
this, run this program commenting out the call to rfork, and hit Delete.
!noterfork.c !" """"""""""___________

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int i;

rfork(RFNOTEG);
for(i = 0; i < 5; i++){

sleep(1000);
print("%d ", i);

}
print("\n");
exits(nil);

}

The program gets killed.
; 8.noterfork
0 1 2 Delete
;

With the call in place, the program happily ignores us until it completes.
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; 8.noterfork
0 1 2 Delete 3 4 5
;

Imagine this program is our httpd server. If the user forgets to type the amper-
sand, it will block the shell forever (it is waiting for the child to die). The only way
to kill it is to open a new window and kill manually the process by writing to its
ctl file, as we saw before. To be nicer, our program could fork a child and let its
original process die. The shell prompt would be right back. Because we still want
to protect from notes, we must get a new note group as well.

The program, shown next, produces the same output, and convinces the shell
that it should read another line immediately after we start.

; 8.noterfork
; 0 1 2 Delete
; 3 4 5

Because the shell is reading a command line, when we type Delete, it understands
that we want to interrupt what we typed and prints another prompt, but our fake
httpd program is still alive. The RFNOTEG flag applies to our child process,
because we said RFPROC as well.
!httpd.c !" """"""_______

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

int i;

switch(rfork(RFPROC|RFNOTEG)){
case 0:

for(i = 0; i < 5; i++){
sleep(1000);
print("%d ", i);

}
print("\n");
exits(nil);

case -1:
sysfatal("rfork: %r");

default:
break;

}
exits(nil);

}



- 186 -

7.3. Environment in shell scripts
Environment variables are shared by default. This means that if we change any
environment variable, our parent and other sibling process sharing the environment
variables will be able to see our change.

Shell scripts are executed by a child shell process, and this applies to them as
well. when you define a variable in a shell script, the change remains in the envi-
ronment variable table after the script has died. For example, this script copies
some source and documentation files to several directories for a project. It defines
the projectdir environment variable.
!copy !" """"_____

#!/bin/rc
projectdir=/sys/src/planb
echo cp *.[ch] $projectdir/cmd
echo cp *.ms $projectdir/docs

Look what happens:
; copy
; lc /env/projectdir
projectdir

After executing copy, the environment variable is not yet known to our shell. The
reason is that the shell caches environment variables. Starting a new shell shows
that indeed, the variable projectdir is in our environment. This is also seen by
listing /env. The file representing the variable is defined there.

; echo $projectdir

; rc
; echo $projectdir
/sys/src/planb

How can we avoid polluting the set of environment variables for the parent shell?
By asking in the script for our own copy of the parent process’ environment. This,
in a C program, would be done calling rfork(RFENVG). In the shell, we can
run the command

rfork e

that achieves the same effect. The command is a builtin, understood and executed
by rc itself. it is very sensible to start most scripts doing this:

#!/bin/rc
rfork ne
...

This creates a copy of the environment variables table (e) and the name space (n)
for the process executing the request. Because it is a copy, any change does not
affect the parent. When the shell interpreting the script dies, the copy is discarded.
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7.4. Independent children
All the programs we have done, that create a child process and do not wait for it,
are wrong. They did not fail, but they were not too nice to Plan 9.

When a child process dies, Plan 9 must maintain its exit message until the
parent process waits for it. However, if the parent process is never going to wait for
the child, Plan 9 does not know for how long to keep the message. Sooner or later
the message will be disposed of, e.g., after the parent dies.

But if we are not going to wait, it is best to tell Plan 9 that the child is disas-
sociated from the parent. When the child dies, it will leave no message because no
one is going to wait for it. This is achieved by specifying the flag RFNOWAIT
along with RFPROC when the new, dissociated, child is being created. For exam-
ple, this is the correct version for our child program that used fork to create a
child process.

#include <u.h>
#include <libc.h>

void
main(int, char*[])
{

switch(rfork(RFFDG|RFREND|RFPROC|RFNOWAIT)){
case -1:

sysfatal("fork failed0);
case 0:

print("I am the child0);
break;

default:
print("I am the parent0);

}
exits(nil);

}

The flags RFFDG|RFREND|RFPROC are equivalent to calling fork, but this time
we say RFNOWAIT as well.

7.5. Name spaces
In Plan 9, we use file names like /usr/nemo. A name is just a string. It is a
sequence of characters. However, because it is a file name, we give some meaning
to the string. For example, the name /usr/nemo means:
1 Start at the file named /, which is also known as the root directory.
2 Walk down the file tree to the file with name usr,
3 Walk down again to the file named nemo. You have arrived.
This name specifies a path to walk through the tree of files to reach a particular file
of interest, as shown in figure 7.1. What is a file? Something that you can open,
read, write, etc. As long as the file implements these operations, both you and
Plan 9 are happy with it.
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/

386 arm usr n tmp

nemo glenda mero

Figure 7.1: A file name is a path to walk in the tree of files.

But how can "/#, which is just a name, refer to a file? Where does it come
from? And why can a name like /dev/cons refer to different files at different
windows? The answers come from the abstraction used to provide names for files,
the name space. In this case, names are for files, and we will not be saying this
explicitly. It should be clear by the context.

A name space is just a set of names that you can use (all the file paths that
you might ever use in your file tree). Somewhat confusingly, the abstraction that
provides a name space is also called a name space. To add more confusion, this is
also called a name service.

The name space takes a name, i.e., a string, and translates this name into
something that can be used as a file in Plan 9. This translation is called resolving a
name. It takes a name and yields a Chan, the data structure used to represent a file
within the Plan 9 kernel. Thus, you might say that resolving a name takes a string
and yields a file. The translation is done by walking through the file tree as shown
above.

Because Plan 9 is a distributed system, your kernel does not have any data
structure to implement files. This may be a surprise, because in Plan 9 everything is
a file, or at least looks like a file. But Plan 9 does not provide the files itself. Files
are provided by other programs that may be running far away in the network, at dif-
ferent machines. These programs are called file servers.

File servers implement and maintain file trees, and you may talk to them
across the network, to walk their trees and use their files. But you cannot even
touch nor see the files, they are kept inside a file server program, far away. What
you can do is to talk to the file server program to ask it to do whatever you may
want to do to the files it keeps. The protocol used to talk (i.e., the language spo-
ken) is called 9P. The section 5 of the system manual documents this protocol. Any
program speaking 9P can be used as a file server for Plan 9.

The conversation between Plan 9 and a file server is made through a network
connection. If you have not attended to a computer networks course, you can
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imagine it is a phone call, with Plan 9 at one end, and the file server at the other. In
the last chapter we saw how to establish network connections, i.e., how to make
calls. This makes a network connection to the program we use as our file server:

; srv tcp!whale!9fs
post...
; ls -l /srv/tcp!whale!9fs
--rw-rw-rw- s 0 nemo nemo 0 May 23 17:44 /srv/tcp!localhost!9988
;

The program srv dialed the address tcp!whale!9fs and, after establishing a
connection, posted the file descriptor for the connection at
/srv/tcp!whale!9fs. This file (descriptor) has a file server program that
speaks 9P at the other end of the connection.

However, to access files in the file server, we must be able to see those files
in our file tree, i.e., in our name space. Otherwise we would not be able to write
paths leading to such files. We can do it. The Plan 9 mount system call modifies
the name space and instructs it to jump to a new file when you reach a given file.
The shell command mount does the same.

/

386 arm usr tmp n

nemo glenda mero whale /

386 arm usr ...

mount

Figure 7.2: The file tree reached through tcp!whale!9fs is mounted at /n/whale.

This may seem confusing at first, but it is quite simple. For example, we may
change our name space so that when we walk through our file tree, and reach the
directory /n/whale, we continue our walk, not at /n/whale, but at the root
directory of the file server reached through /srv/tcp!whale!9fs. For exam-
ple,
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; lc /n/whale
; mount -c /srv/tcp!whale!9fs /n/whale
; lc /n/whale
386 acme cron mnt tmp
LICENSE adm dist n usr
LICENSE.afpl alpha lib power
LICENSE.gpl arm lp rc
NOTICE cfg mail sys

Before executing mount, the directory /n/whale was empty. After executing it,
the original directory is still empty, but our name space is instructed to jump to the
root directory of file server at /srv/tcp!whale!9fs, whenever we reach
/n/whale. Therefore, lc is not really listing /n/whale, but the root for our
file server. The nice thing is that lc is happy, because the name space keeps it
unaware of where the files might be. Figure 7.2 shows how lc walked the file
tree, and makes it clear why it listed the root directory in the file server. The dashed
boxes and the arrow represent the mount we made.

The data structure that implements the name space is called the mount table.
It is a table that maintains entries saying: Go from this file to this other file. This is
what we just saw. After calling mount in our example, our mount table contains a
new entry represented in the figure 7.3. The source for the translation is called the
mount point, the destination for the translation is called the mounted file.

Chan for
/n/whale

Chan for /
at tcp!whale!9fs

Figure 7.3: New entry in mount table after mounting tcp!whale!9fs at /n/whale.

Do not get confused by the Chans. For your Plan 9 kernel, a Chan is just a
file. It is the data structure used to speak 9P with a file server regarding a particular
file. Therefore, the figure might as well say "File for /n/whale#.

Each time the name space walks one step in the file tree to resolve a name,
the mount table is checked out to see if walking should continue at a different file,
as happen to /n/whale. If there is no such entry, the walk continues through the
file tree, as expected.

As a convenience, the program srv can mount a 9P file server, besides dial-
ing its address and posting the connection file descriptor at /srv. The following
command line dials tcp!whale!9fs, like before, but it also mounts that con-
nection at /n/whale, like we did. The file created at /srv is named by the sec-
ond parameter.

; srv tcp!whale!9fs whale /n/whale
post...
; lc /srv/whale
whale
;

By convention, there is a script called /bin/9fs, that accepts as an argument the
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file system to mount. It is customized for each local Plan 9 installation. Therefore,
looking into it is a good way of finding out which file servers you have around.
This command achieves the same effect of the previous command line, when used
at URJC:

; 9fs whale
post...
;

We have added new files to our file tree, by mounting a remote file tree from a 9P
file server into a directory that we already had. The mechanism used was a transla-
tion going from one file to another. When we have two files in our file tree, the
same mechanism can be applied to translate from one to another. That is, we can
ask our name space to jump to a file already in our tree when we reach another that
we also have in the tree. A mount for two files already in the tree is called a
binding.

The system call (and the shell command) used to do a bind is bind. For
example,

; bind -c /n/whale /n/other

installs a new entry in the mount table that says: When you reach /n/other, con-
tinue at /n/whale. But note, the names used are interpreted using the name
space! Therefore, /n/whale is not the old (empty) directory it used to be. It now
refers to the root of the file server at whale. And so, listing /n/other yields the
list for the root directory of our file server.

; lc /n/other
386 acme cron mnt tmp
LICENSE adm dist n usr
LICENSE.afpl alpha lib power
LICENSE.gpl arm lp rc
NOTICE cfg mail sys

Because our mount table includes now the entries shown in figure 7.4.

Chan for
/n/whale

Chan for /
at tcp!whale!9fs

Chan for
/n/other

Chan for /
at tcp!whale!9fs

Figure 7.4: Entries in the mount table after the bind from /n/other to /n/whale.

How can we know how our name space looks like? Or, how can we know
which entries are installed in our mount table? The name space is a resource, like
file descriptors, and environment variables. Each process may have its own name
space (as controlled by rfork), although the custom is that processes in the same
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window share their name spaces.
The file ns in the directory in /proc for a process, lists the mount table

used by that process. Each entry is listed using a text line similar to the command
used to install the entry. To obtain the entries we have installed, we can use grep,
to print lines in our ns file that contain the string whale:

; echo $pid
843
; grep whale /proc/843/ns
mount -c #s/tcp!whale!9fs /n/whale
mount -c #s/tcp!whale!9fs /n/other

Because lines at /proc/$pid/ns are not yet ready for use as shell commands,
there is a command called ns (name space) that massages them a little bit to make
them prettier and ready for use. Using ns is also more convenient because you do
not need to type so much:

; ns | grep whale
mount -c ’#s/tcp!whale!9fs’ /n/whale
mount -c ’#s/tcp!whale!9fs’ /n/other

The effect of a mount (or a bind) can be undone with another system call, called
unmount, or using the shell command of the same name:

; unmount /n/whale
; lc /n/whale
; grep whale /proc/843/ns
mount -c #s/tcp!whale!9fs /n/other
;

After executing unmount, the name space no longer jumps to the root of the file
server at whale when reaching /n/whale, because the entry in the mount table
for /n/whale has been removed. What would happen now to /n/other?

; lc /n/other
386 acme cron mnt tmp
LICENSE adm dist n usr
LICENSE.afpl alpha lib power
LICENSE.gpl arm lp rc
NOTICE cfg mail sys

Nothing! It remains as before. We removed the entry for /n/whale, but we did
not say anything regarding the bind for /n/other. This is simple to understand
if you think that your name space, i.e., your mount table, is just a set of translations
from one file to another file. Here, /n/other leads to the file that had the name
/n/whale. This file was the root of our file server, and not the empty directory.
To undo the mount for this directory, we know what to do:

; unmount /n/other
; lc /n/other
;

In some cases, a single file server may provide more than one file tree. For



- 193 -

example, the file system program used in Plan 9, fossil, makes a snapshot of the
entire file tree each day, at 5am, and archives it for the posterity. It archives only
the changes with respect to the last archive, but provides the illusion that the whole
tree was archived as it was that day.

Above, we mounted the active file tree provided by the fossil file server
running at whale. But we can mount the archive instead. This can be done sup-
plying an optional argument for mount, that specifies the name of the file tree that
you want to mount. When you do not name a particular file tree served from the
file server, its main file tree is mounted. For fossil, the name of the main file tree is
main/active. This command mounts the archive (also known as the dump) for
our main file server, and not the active file tree (i.e., that of today):

; mount /srv/tcp!whale!9fs /n/dump main/archive
; lc /n/dump
2001 2002 2003 2004 2005 2006
; ls /n/dump/2004
0101
0102
0103
0104
... and may more directories. One per day, until...
1230
1231
;

This is very useful. You may copy files you had years ago, you may compare them
to those you have today, and you may even used them! The following commands
change your name space to use the C library you were using on May 4th, 2006:

; bind /n/dump/2006/0504/386/lib/libc.a /386/lib/libc.a
; bind /n/dump/2006/0504/sys/include/libc.h /sys/include/libc.h

Remember what bind does. When your compiler and linker try to use libc.a,
and libc.h, the name space jumps to those archived in the dump. If you suspect
that a program is failing because of a recent bug in the C library, you can check that
out by compiling your program using the library you had time ago, and running it
again to see if it works this time.

The script 9fs also knows how to mount the dump. So, we could have said
; 9fs dump
; bind /n/dump/2006/0504/386/lib/libc.a /386/lib/libc.a
; bind /n/dump/2006/0504/sys/include/libc.h /sys/include/libc.h

instead of mounting the dump using srv and mount.

7.6. Local name space tricks
You must always take into account that name spaces, i.e., mount tables, are per-
process in Plan 9. Most processes in the same window share the same name space
(i.e., their mount table), and a mount, bind, or unmount done at a window will
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not in general be noticed at other ones. However, any process may have its own
name space. This catches many users that have not been using Plan 9 for some
time, when they try to change the namespace using Acme.

Figure 7.5 shows a window running Acme. Using this acme, we executed
mkdir /tmp/dir ; bind /usr/nemo /tmp/dir

Figure 7.5: Executing a bind on Acme does not seem to work. What is happening?

(by selecting the text and then doing a click on it with the mouse button-2). Later,
we asked Acme to open /tmp/dir, using the mouse button-3. It was empty!
What a surprise! Our home directory was not empty, and after performing the
bind, it seems that /tmp/dir was not bound to our home directory. Is Acme
broken?

Acme is behaving perfectly fine. When we used the mouse button 2 to exe-
cute the command line, it created a child process to execute the command. The
child process prepared to execute the command and called rfork with flags
RFNAMEG|RFENVG|RFFDG|RFNOTEG. Acme is just trying to isolate the child
process. The flag RFNAMEG caused the child process to obtain its own copy of the
name space used by Acme. As a result, any change performed to the name space by
the command you executed is unnoticed by Acme. The command starts, changes its
own name space, and dies.

To change this behavior, and ask Acme not to execute the child in its own
name space, you must use Acme’s built-in command Local. If a command is pre-
fixed by Local, Acme understands that it must execute the command sharing its
namespace with the child process that will run the command. In this case, the child
process will just call rfork(RFFDG|RFNOTEG), but it will share the namespace
and environment variables with its parent (i.e., with Acme). Figure 7.6 shows
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another attempt to change the name space in Acme. The command executed this
time was

Local mkdir /tmp/dir ; bind /usr/nemo /tmp/dir

and Acme executed
mkdir /tmp/dir ; bind /usr/nemo /tmp/dir

within its own name space. Note that Local refers to the whole text executed as a
command line, and not just to the first command. This time, opening /tmp/dir
after the bind shows the expected directory contents.

Figure 7.6: Commands executed with Local share their name space with Acme.

A related surprise may come from using the plumber, when you change the
name space after starting it. The plumber has its own name space, the one used by
the shell that executed your $home/lib/profile, in case it was started from
that file. When the window system starts, it takes that name space as well. How-
ever, the window system puts each window (process) in its own name space.

If there are three different windows running Acme, and you plumb a file
name, the file will be open by all the Acmes running. This is simple to understand,
because all the editors are sharing the files at /mnt/plumb. When you plumb a
file name, the plumber sends the message to all editors reading from the edit
port, as we saw.

But let’s change the name space in a window, for example, by executing
; 9fs whale

to mount at /n/whale the file server named whale. Here comes the surprise.
When we try to plumb /n/whale/NOTICE, this is what we get.
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; plumb /n/whale/NOTICE
; echo $status
plumb 1499: error

The plumber was unable to locate /n/whale/NOTICE. After we mounted
whale on /n/whale!

But reconsider what happen. The shell running in the window is the one that
mounted /n/whale, the plumber is running using its own name space, far before
our window was brought to life. Therefore, the plumber does not have anything
mounted at /n/whale. It is our shell the one that has something mounted on it.

To change the name space for the plumber, a nice trick is used. The
plumbing file (containing the rules to customize plumbing) usually has one spe-
cific rule for messages starting with the string Local. This rule asks the plumber
to execute the text after Local in a shell started by the plumber. For example, we
could do this:

; plumb ’Local 9fs whale’
; plumb /n/whale/NOTICE
; echo $status

;

The first command plumbs Local 9fs whale, which makes the plumber exe-
cute 9fs whale in a shell. Now, this shell is sharing the name space with the
plumber. Thus, the command plumbed changes the name space for the plumber.
Afterwards, if we plumb /n/whale/NOTICE the plumber will see that file and
there will be no problem.

Is the problem solved? Maybe. After an editor is running at a different win-
dow, receives the plumb message for /n/whale/NOTICE, it will not be able to
open this file, because its name space is also different. In general, this is not a
problem at all, provided that you understand how you are using your name spaces.

Another consequence of the per-process name spaces and the plumbing tool
is that you can isolate an editor regarding plumbing. Just do this:

; plumber
; acme

and the Acme will have its own set of plumbing files. Those files are supplied by
the plumber that you just started, which are different from the ones in use before
executing these commands.

7.7. Device files
If you understood the discussion in the last section, this is a legitimate question:
How could my name space get anything mounted in the first place? To do a mount,
you must have a file where to do the mount. That is, you need a mount point. Ini-
tially, your machine is not even connected to the file server and you have just what
is inside your machine. You must have something that you could mount as / in the
first place.
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Besides, you must be able to use your devices to reach the file server. This
includes at least the network, and maybe the disk if you have your files stored
locally in a laptop. In Plan 9, the interface for using devices is a file tree provided
by each device driver (Remember, a device driver is just the program that drives
your device, and is usually linked inside the kernel). That is to say that Plan 9
device drivers are tiny file servers that are linked to the system.

You need to use the files provided by your drivers, which are their interface,
if you want to use the devices. You want to use them to reach your file server
across the network. So, you have to mount these device file trees. And we are
where we started.

The answer to this chicken-and-the-egg problem is a new kind of name that
we have silently omitted until now. You have absolute paths that start walking at /,
you have relative paths that start walking at your current directory, and you also
have device paths that start walking at the root of the file tree of a device.

A device path starts with a hash "## sign and a character (a rune in unicode)
that is unique for each device. The file /dev/drivers lists your device drivers,
along with their paths:

; cat /dev/drivers
#/ root
#c cons
#P arch
#e env
#| pipe
#p proc
#M mnt
#s srv
... others omitted

For example, the path #e corresponds to the root directory of the file tree provided
by the device that keeps the environment variables. Listing #e (quoted, because
the # is special for the shell) gets the same file list than listing /env. That is
because #e is bound at /env by convention.

; lc /env
’*’ cpu init planb
0 cputype location plumbsrv
...and many others.
; lc ’#e’
’*’ cpu init planb
0 cputype location plumbsrv
...and many others.

We have also seen that files at /proc represent the processes in the system. Those
files are provided by the proc device. To list the files for the process running the
shell, we can
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; lc /proc/$pid
args fd kregs note notepg proc regs
ctl fpregs mem noteid ns profile segment
...and others.

But we can also
; lc ’#p’/$pid
args fd kregs note notepg proc regs
ctl fpregs mem noteid ns profile segment
...and others.

When a device path is used, the file tree for the device is automatically mounted by
the kernel. You might not even have where to mount it! The rest of the name is
resolved from there. Thus, device file names are always available, even if you have
no entries in your name space.

Where does / come from? It comes from #/, that is a tiny file tree that pro-
vides mount points to let you mount files from other places. The device is called
the root device and includes the few programs necessary to reach your file server.

; lc ’#/’
bin dev fd net proc srv
boot env mnt net.alt root

This directory is bound to /, a few other mounts and binds made, and now you
have your tree. The programs needed to do this are also in there:

; lc ’#//boot’
boot factotum fossil ipconfig

7.8. Unions
The mounts (and binds) we made so far have the effect of replacing the mount
point file with the mounted file. This is what a mount table entry does. However,
you can also add a mounted file to the mount point. To see how this works in a
controlled way, let’s create a few files.

; mkdir adir other
; touch adir/a adir/b adir/c
; touch other/a other/x other/y
; lc adir
a b c

If we bind other into adir, we know what happens. From now on, adir refers
to other.

; bind other adir
; lc adir
a x y

After undoing the effect of the bind, to leave adir undisturbed, we do another
bind. But this time, we bind other into adir after what it previously had, by
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using the -a flag for bind. And this is what we get:
; bind -a other adir
; lc adir
a a b c x y

You can see how the file that used to be adir now leads to a union of both the old
adir and other. Its contents appear to be the union of the contents for both
directories. Because there are two files named a, one at the old adir and another
at other, we see that file name twice. Furthermore, look what happens here:

; rm adir/b
; lc adir
a a c x y
; rm adir/y
; lc adir
a a c x
; lc other
a x

Removing adir/b removed the b file from the original adir. And removing the
file adir/y removed the file y, and of course the file is no longer at other
either. Let’s continue the game:

; echo hola >other/a
; cat other/a
hola
; cat adir/a
;

We modify the file a in other, and write something on it. Reading other/a
yields the expected result. However, adir/a is still an empty file. Because we
bound other after, using the -a flag for bind, the name a is found in the old
adir, which is before the file with the same name in other. Therefore, although
we see twice a, we can only use the one that is first found.

; rm adir/a
; lc adir
a c x
; lc other
a x

Removing adir/a removes the file a from the original adir. But there is
another file at other named a, and we still see that name. Because we bound
other into adir, after what it previously had, the remove system call finds first
the name adir/a at the old adir, and that is the one removed.

What happens to our name space? How can it be what we saw above? The
answer is that you can bind (or mount) more than one file for the same mount
point. The mount table entry added by the bind we made in this section is shown in
figure 7.7.

This entry has a mount point, adir. When that file is reached, the name
space jumps and continues walking at the mounted file. However, here we have
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Chan for
adir

Chan for
adir

Chan for
other

Figure 7.7: A union mount. The mount entry after bind -a other adir.

two mounted files for this entry. When we bound other after what was initially at
adir, Plan 9 added adir as a file mounted here, and then other was linked
after as another mounted file. This can be seen if you use ns to look for entries
referring to adir:

; ns | grep adir
bind /tmp/adir /tmp/adir
bind -a /tmp/other /tmp/adir

When a mount entry is a union, and has several mounted files, the name space tries
each one in order, until one works for the name being resolved. When reading the
directory, all of the feasible targets are read. Note that unions only make sense
when the files are directories. By the way, to mount or bind before the previous
contents of a union, use the flag -b for either program.

Unions can be confusing, and when you create files you want to be sure about
where in the union are you creating your files. To help, the flag -c can be supplied
to either bind or mount to allow you to create files in the file tree being mounted.
If you do not supply this flag, you are not allowed to create files in there. When
trying to create a file in a union, the first file in the union mounted with -c is the
one used.

7.9. Changing the name space
To adjust the name space in a C program, two system calls are available. They are
similar to the shell commands used above, which just call these functions accord-
ing to their command line arguments

; sig bind mount
int bind(char *name, char *old, int flag)
int mount(int fd, int afd, char *old, int flag, char *aname)

The system call used by the mount command we saw above is mount. It takes a
file descriptor, fd, used to reach the file server to mount. It must be open for read-
ing and writing, because a 9P conversation will go through it. The descriptor is
usually a pipe or a network connection, and must have a 9P speaker at the other end
of the pipe. To be on the safe side, Plan 9 closes fd for your process after the
mount has been done. This prevents you from reading and writing that descriptor,
which would disrupt the 9P conversation between Plan 9 and the file server.

After the call, the old file has the file server reached through fd mounted on
it. The parameter aname corresponds to the optional argument for the mount
command that names a particular file tree to be mounted. To mount the server’s
main file free, supply an empty (not null!) string.
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The options given to the shell command mount are specified here using a
bit-or of flags. You may use one of the integer constants MREPL, MBEFORE, and
MAFTER. Using MREPL asks for replacing the old file (the mount point) with the
new file tree. Using instead MBEFORE asks mount to mount the new file tree
before the previous contents for the old file (equivalent to -b in the shell com-
mand). Using MAFTER instead asks for mounting the file tree after the old one
(like giving a -a to the shell command). To allow creation of files in the mounted
tree, do a bit-or of the integer constant MCREATE with any other flag.

This program mounts the main file tree of our file server at /n/whale, and
the archive at /n/dump.
!whale.c !" """""""________

#include <u.h>
#include <libc.h>
#include <auth.h> // for amount
void
main(int, char*[])
{

int fd;

fd = open("/srv/tcp!whale!9fs", ORDWR);
if (fd < 0)

sysfatal("can’t open /srv/tcp!whale!9fs: %r");
if (amount(fd, "/n/whale", MREPL|MCREATE, "") < 0)

sysfatal("mount: %r");
if (amount(fd, "/n/dump", MREPL, "main/archive") < 0)

sysfatal("mount: %r");
exits(nil);

}

Because the dump cannot be modified, we do not use MCREATE for it, it would
make no sense to try to create files in the (read-only) archive. Running this pro-
gram is equivalent to executing

; mount -c /srv/tcp!whale!9fs /n/whale
; mount /srv/tcp!whale!9fs /n/dump main/archive

As you could see, the program calls amount and not mount. The function
amount is similar to mount, but takes care of authentication, i.e., convincing the
file server that we are who we say we are. This is necessary or the file server would
not allow attaching to its file tree with the access rights granted to our user name.
After amount convinces the file server, it calls mount supplying an
authentication file descriptor as the value for the mount parameter afd. The
other parameters for mount are just those we gave to amount.

The other system call, bind, is used in the same way. Its flags are the same
used for mount. However, unlike mount, it receives a file name instead of a file
descriptor. As you could expect after having using the shell command bind.



- 202 -

7.10. Using names
We have seen that the shell has an environment variable, path, to determine
where to search for commands. There are several interesting things to note about
this. First, there are only two directories where to search.

; echo $path
. /bin
;

This is really amazing if you compare this with the list of directories in the PATH
in other systems, which tends to be much larger. For example, this is the variable
used in a UNIX system we have around:

$ echo $PATH
/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/bin:/opt/bin:.
$

In UNIX, the PATH variable has the same name in upper-case, and directories are
separated by colons instead of space.

Also, how do you get at /bin only those binaries for the architecture you are
using?

After your machine has completed its boot process, and mounted the file
server, it runs a program called init. This program initializes a new namespace
for your terminal and runs /bin/rc within such namespace, to execute com-
mands in /rc/bin/termrc, that start system services necessary for using the
system. The namespace is initialized by a call to the function newns,

; sig newns
int newns(char *user, char *nsfile);

which reads a description for an entire namespace from a file, nsfile, and builds
a new namespace for a given user that matches such description. This is is an
excerpt from the file /lib/namespace, which is the nsfile used by default:
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# root
mount -aC #s/boot /root $rootspec
bind -a /root /

# kernel devices
bind #c /dev
bind #d /fd
bind -c #e /env
bind #p /proc
bind -c #s /srv
...several other binds...

# standard bin
bind /$cputype/bin /bin
bind -a /rc/bin /bin

# User mounts
bind -c /usr/$user/tmp /tmp
bind -bc /usr/$user/bin/$cputype /bin
bind -bc /usr/$user/bin/rc /bin
cd /usr/$user

As you can see, a namespace file for use with newns contains lines similar to shell
commands used to adjust the namespace, that are like the ones in /proc/*/ns
files. The file #s/boot is a connection to the file server used to boot the
machine. This is what you find at /srv/boot, after the line

bind -c #s /srv

in the namespace file has been processed. Ignoring some details, you can see how
this file server is mounted at /root, and then this directory is added to /. Both
directories come from your root device, #/, which is always available. The dance
around /root and / adds the root of the file server to those files already in
/root.

The next few lines bind device driver file trees at conventional places. For
example, #c is the cons driver, which is bound at /dev and provides files like
/dev/null, /dev/time, and other common files for the machine. Also, #d
provides the file interface for your file descriptors, and is bound at /fd as
expected. The same is done for other drivers.

Now look at the sections marked as standard bin, and user mounts. They
answer our question regarding /bin.

The program init defined several environment variables. For example,
$user holds your user name, $sysname your machine name, and $home your
home directory. It also defined another variable, $cputype, which holds the
name for the architecture it was compiled for. That is, for the architecture you are
using now! Therefore,

bind /$cputype/bin /bin
bind -a /rc/bin /bin
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binds /386/bin into /bin, on a PC. All the binaries compiled for a 386 are now
available at their conventional place, /bin. Besides, portable Rc scripts found at
/rc/bin, which can be interpreted by rc at any architecture, are added to /bin,
after the binaries just bound. You have now a complete /bin, all set for using. It
that was not enough, the lines

bind -bc /usr/$user/bin/$cputype /bin
bind -bc /usr/$user/bin/rc /bin

add your own binaries and Rc scripts, that are stored at bin/386 (in this case) and
bin/rc in your home directory.

If you want to add, or remove, more binaries at /bin, you can just use
bind, to customize /bin as you please. There is no need for a longer $path,
because /bin may have just what you want. And you always know where your
binaries are, i.e., just look at /bin.

Another detail that you see is that the directory /tmp is indeed
/usr/$user/tmp. You have your own directory for temporary files, although
all programs create them at /tmp, by convention. Even if the file system is being
shared by multiple users, each user has its own /tmp, to avoid disturbing others,
and to avoid being disturbed.

We are going to continue showing how to use the name space to do a variety
of things. Nevertheless, if you want to read a nice introduction to using name
spaces for doing things, refer to [3].

7.11. Sand-boxing
Being able to customize the name space for a particular process is a very powerful
tool. For example, the window system does a

rfork(RFNAMEG)

to make a duplicate of the namespace it runs in, for each window (actually, for each
shell that is started for a new window). The shell script

; window

creates a new Rio window, with a new shell on it. This shell is provided with its
own copy of the namespace, customized to use the console, mouse, and screen just
for that window. These are the commands:

rfork ne
mount /srv/rio.nemo.39 /mnt/wsys
bind -b /mnt/wsys /dev

Mounting the file server for the window system creates a new window, and binding
its file tree at /dev replaces the files that represent the console. All the programs
are unaware of this.

Many other things can be done. To freeze the time in your system, just pro-
vide a file interface that never changes:



- 205 -

; cp /dev/time /dev/bintime /tmp/
; bind /tmp/time /dev/time
; bind /tmp/bintime /dev/bintime

One interesting use of namespaces is in creating sandboxes for processes to run. A
sandbox is a container of some kind that isolates a process to prevent it from doing
any damage, like when you do a sand box in the beach to contain the water. This
program creates a sandbox to run some code inside. It uses newns to build a whole
new namespace according to a file given as a parameter. Because of the call to
rfork(RFNOMNT) that follows, the process will not be allowed to mount any
other file tree. It may access just those files that are in the namespace described in
the file. That is a very nice sand box.
!box.c !" """""______

#include <u.h>
#include <libc.h>
#include <auth.h> // for newns
void
main(int argc, char* argv[])
{

char* user;

if (argc != 2){
fprint(2, "usage: %s ns prog\n", argv0);
sysfatal("usage");

}
switch(rfork(RFPROC|RFNAMEG)){
case -1:

sysfatal("fork: %r");
default:

waitpid();
exits(nil);

case 0:
user = getuser();
if (newns(user, argv[1]) < 0)

sysfatal("newns: %r");
rfork(RFNOMNT);
execl(argv[1], argv[1], nil);
sysfatal("exec: %r");

}
}

The call to getuser returns a string with the user name. We have already seen all
other calls used in this program. The program can be used like in

; 8.box sandbox /bin/rc

Where sandbox is a file similar to /lib/namespace, but with mounts and
binds appropriate for a sandbox.
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7.12. Distributed computing revisited
In the last chapter, we learned about CPU servers and connected to one of them to
execute commands. But there is one interesting thing about that kind of connection.
Indeed, you have already seen it, but perhaps it went unnoticed. This thing may
become more visible if you connect to a cpu server and execute rio. The result is
shown in figure 7.8.

Figure 7.8: Rio run in a Rio window. The inner rio runs at a CPU server, not at your terminal.

; cpu
cpu% rio
...and you get a whole window system in your window!

You just started the window system, but it is running at the CPU server, and not at
your terminal. However, it is using your mouse, your keyboard, and your screen to
do its job! Not exactly, indeed, it is using the virtual mouse, keyboard, and screen
provided by the Rio in your terminal for the window you used to connect to the
CPU server. Is it magic?

The answer may come if you take a look at the name space used by a shell
obtained by connecting to a CPU server. This shell has a namespace that has at
/mnt/term the whole namespace you had available in the window where you did
run cpu. Furthermore, some of the files at /mnt/term/dev were bound to
/dev. Therefore, many of the devices used by the shell (or any other process) in
the CPU server do not come from the CPU server itself. They come from your ter-
minal!

The namespace at your terminal includes files like /dev/cons,
/dev/draw, and /dev/mouse. This name space was initialized by a process
that called newns using /lib/namespace, as we saw in another example
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before, and then perhaps you customized it further by doing mounts or binds in
your profile. The same happens for the shell started for you in the CPU server. It
gets a namespace initialized by a call to newns, and perhaps by your profile.
However, the program initializing a namespace for you in the CPU server mounted
at /mnt/term the name space exported from your terminal, and made a few
binds to adjust /dev to use your terminal’s devices instead.

This includes the files we mentioned above that are the interface for your con-
sole, for drawing graphics, and for using the mouse. At least, they are within your
terminal’s window. At a different window, you know that rio provides different
files that represent the interface for the console, graphics, and mouse for that other
window.

Now the question remains. How can a namespace be exported? Change the
question. How can a namespace be imported? To import anything into your names-
pace, you must mount a 9P file server. Therefore, if your namespace is exported
using a file server, it can be imported. It turns out that there is a program for doing
just that. Well, there are two.

The real work is done by exportfs. This program uses the venerable calls
open, close, read, write, etc. to access your namespace, and exports it by
speaking 9P through a network connection, like any other file server. When a 9P
client of exportfs asks this program to return the result of reading a file, it reads
the file and replies. When a 9P client asks exportfs to write into a file, by send-
ing a 9P write request to it, the program uses the write system call to write to the
file. The effect is that for anyone mounting the file tree provided by exportfs,
that file tree is exactly the same than the one in effect in the namespace where
exportfs runs.

The second program that can be used to export a namespace, srvfs, is just a
convenience wrapper, that calls exportfs in a way that is simpler to use from the
shell. It receives the name for a file to be created at /srv, that when mounted,
grants access to the file tree rooted at the directory given as the second argument.

To see that srvfs, i.e., exportfs, is indeed exporting a namespace, we
can rearrange a little bit our namespace, export a part of it, and see how after
mounting it we gain access to the rearranged file tree that we see, and not the real
one from the file server.
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; mkdir /tmp/exported /tmp/exported/doc /tmp/exported/src
; bind $home/doc /tmp/exported/doc
; bind $home/src /tmp/exported/src
;
; srvfs x /tmp/exported
;
; mount -c /srv/x /n/imported
; lc /n/imported
doc src
; lc /n/imported/src
9 gs misc
UGrad lang os
bbug limbo prj
chem mem sh

A nice example of a use for this program can be found in the srvfs(4) manual page.
; cpu
cpu% srvfs procs /mnt/term/proc
cpu%

This posts at /srv/procs, in the CPU server, a file descriptor that can be used to
mount the file tree seen at /mnt/term/proc in the namespace where srvfs is
executed. That is, the /proc file tree at the terminal used to run the cpu com-
mand. Therefore, mounting /srv/procs in the CPU server permits obtaining
access to the /proc interface for the user’s terminal.

cpu% mount -c /srv/proc /n/procs
cpu% lc /n/procs
1 20 257 30 33 367 662
10 21 259 300 330 37 663
11 213 26 305 334 38 669
111 214 260 306 335 387 674
12 22 265 310 34 389 676
13 23 266 311 346 39 677
;

Remember, because almost every resource looks like a file, you can now export
whatever resource you may want.

Indeed, we do not even need to use cpu to connect to the CPU server to
mount the exported /proc, we can import the directory /srv from the CPU
server, and mount it at our terminal:

; import $cpu /srv /n/cpusrv
; mount -c /n/cpusrv/proc /n/procs

The program import is the counterpart of exportfs. It imports a part of a
remote namespace into our namespace. What it does is to connect to the remote
system, and start an exportfs there, to export file tree of interest. And then, it
mounts the now exported file tree in our namespace.

For example, the file name #S is the root directory for the storage device
driver. This driver provides one directory per hard disk, which contains one file per
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partition in the disk. It doesn’t really matter how a disk interface looks like, or
how a disk is managed in Plan 9. What matters is that this is the way to get access
to the disks in your system, for example, to format them. My terminal has two hard
disks and a DVD reader.

; lc ’#S’
sdC0 sdC1 sdD0 sdctl

They are named sdC0, sdC1, and sdD0.Because #S is usually added to /dev
using bind, some of these files are likely to show up in your /dev.

If you want to format a hard disk found at a remote machine, you may do so
from your terminal. Imagine the disk is at your CPU server, you might do what fol-
lows.

; import $cpu ’#S’ /n/cpudisks
; lc /n/cpudisks
sdC0 sdC1 sdD0 sdD1 sdctl
;

If you do not have a floppy reader unit at your terminals (which is the common
case today for laptops), there is no need to worry. You can import #f, the root
directory for the floppy disk driver, from another machine. And then use the script
a:, which mounts the DOS formatted floppy of your terminal at /n/a.

; import -bc barracuda ’#f’ /dev
; a:
; cp afile /n/a/afile.txt
; unmount /n/a

As you could see, import admits the same familiar options for mount and
bind, to mount the imported tree before, after, or replacing part of your names-
pace.

This applies to the the serial port, the audio card, and any other resource that
any other machine might have, provided it is represented as a file. As a final exam-
ple, firewalls are machines that are connected to two different networks, one pro-
tected network for local use, and the internet. In many cases, connecting directly to
the internet from the local network is forbidden, to create a firewall for viruses and
malicious programs. Nevertheless, if the firewall network for connecting to the
Internet is /net.alt, at the firewall machine, this grants your machine direct
connection to the internet as well (at the price of some danger).

; import -c firewall /net.alt /net

Problems
1 Add the line

rfork(RFNAMEG);

to the program whale, before doing the calls to amount, and see what hap-
pens when you execute it. Explain.
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2 Enumerate the file servers available at your local Plan 9 site.
3 Print down the name space used by the plumber in your session.
4 Reproduce your name space at a different machine.
5 Make your system believe that it has an extra CD unit installed. Use it.
6 Put any server you have implemented in a sand-box. Try to break it.



8 ! Using the Shell
______

8.1. Programs are tools
In Plan 9, programs are tools that can be combined to perform very complex tasks.
In most other systems, the same applies, although it tends to be a little more com-
plex. The idea is inherited from UNIX, each program is meant to perform a single
task, and perform it well.

But that does not prevent you to combine existing programs to do a wide
variety of things. In general, when there is a new job to be done, these are your
options, listed from the easiest one to the hardest one:
1 Find a program that does the job. It is utterly important to look at the manual

before doing anything. In many cases, there will be a program that does what
we want to do. This also applies when programming in C, there are many
functions in the library that may greatly simplify your programs.

2 Combine some programs to achieve the desired effect. This is where the shell
gets relevance. The shell is the programming language you use to combine
the programs you have in a simple way. Knowing how to use it may relieve
you from your last resort.

3 The last resort is to write your own program for doing the task you are con-
sidering. Although the libraries may prove invaluable as helpers, this
requires much more time, specially for debugging and testing.

To be able to use shell effectively, it helps to follow conventions that may be useful
for automating certain tasks by using simple shell programs. For example, writing
each C function using the style

void
func(...args...)
{
}

permits using this command line to find where function foo is defined:
; grep -n ’^foo\(’ *.c

By convention, we declared functions by writing their names at the beginning of a
new line, immediately followed by the argument list. As a result, we can ask grep
to search for lines that have a certain name at the beginning of line, followed by an
open parenthesis. And that helps to quickly locate where a function is defined.

The shell is very good for processing text files, and even more if the data has
certain regularities that you may exploit. The shell provides a full programming
language where commands are to be used as elementary statements, and data is
handled in most cases as plain text.

In this chapter we will see how to use rc as a programming language, but no
one is going to help you if you don’t help yourself in the first place. Machines love
regular structures, so it is better to try to do the same thing in the same way
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everywhere. If it can be done in a way that can simplify your job, much better.
Plan 9 is a nice example of this is practice. Because all the resources are

accessed using the same interface (a file interface), all the programs that know how
to do particular things to files can be applied for all the resources in the system. If
many different interfaces were used instead, you would need many different tools
for doing the same operation to the many different resources you find in the com-
puter.

This explains the popularity of XML and other similar data representations,
which are attempts to provide a common interface for operating on many different
resources. But the idea is just the same.

8.2. Lists
The shell includes lists as its primary data structure, indeed its only data structure.
This data type is there to make it easier for you to write shell programs. Because
shell variables are just environment variables, lists are stored as strings, the only
value a environment variable may have. This is the famous abc list:

; x=(a b c)
; echo $x
a b c

It is just syntax. It would be the same if we had typed any of the following:
; x=(a (b c))
; echo $x
a b c
; x=(((a) (b)) (c))
; echo $x
a b c

It does not matter how you nest the same values using multiple parenthesis. All of
them will be the same, namely, just (a b c). What is the actual value of the
environment variable for x? We can see it.

; xd -c /env/x
0000000 a 00 b 00 c 00
0000006

Just the three strings, a, b, and c. Rc follows the C convention for terminating a
string, and separates all the values in the list with a null byte. This happens even
for environment variables that are a list of a single word.

; x=3
; xd -c /env/x
0000000 3 00
0000002

The implementation for the library function getenv replaces the null bytes with
spaces, and that is why a getenv for an rc list would return the words in the list
separated by white space. This is not harmful for C, as a 0 would be because 0 is
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used to terminate a string in C. And it is what you expect after using the variable
in the shell.

The variable holding the arguments for the shell interpreting a shell script is
also a list. The only difference is that the shell initializes the environment variable
for $* automatically, with the list for the arguments supplied to it, most likely, by
giving the arguments to a shell script.

Given a variable, we can know its length. For any variable, the shell defines
another one to report its length. For example,

; x=hola
; echo $#x
1
; x=(a b c)
; echo $#x
3

The first variable was a list with just one word in it. As a result, this is the way to
print the number of arguments given to a shell script,

echo $#*

because that is the length of $*, which is a list with the arguments (stored as an
environment variable).

To access the n-th element of a list, you can use $var(n). However, to
access the n-th argument in a shell script you are expected to use $n. An example
for our popular abc list follows:

; echo $x(2)
b
; echo $x(1)
a

Lists permit doing funny things. For example, there is a concatenation operator that
is best shown by example.

; x=(a b c)
; y=(1 2 3)
echo $x^$y
a1 b2 c3

The ^ operator, used in this way, is useful to build expressions by building separate
parts (e.g, prefixes and suffixes), and then combining them. For example, we could
write a script to adjust permissions that might set a variable ops to decide if we
should add or remove a permission, and then a variable perms to list the involved
permissions. Of course in this case it would be easier to write the result by hand.
But, if we want to generate each part separately, now we can:

; ops=(+ - +)
; perms=(r w x)
; echo $ops^$perms afile
+r -w +x afile
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Note that concatenating two variables of length 1 (i.e., with a single word each) is a
particular case of what we have just seen. Because this is very common, the shell
allows you to omit the ^, which is how you would do the same thing when using a
UNIX shell. In the example below, concatenating both variables is exactly the same
than it would have been writing a1 instead.

; x=a
; y=1
; echo $x^$y
a1
; echo $x$y
a1
;

A powerful use for this operator is concatenating a list with another one that has a
single element. It saves a lot of typing. Several examples follow. We use echo in
all of them to let you see the outcome.

; files=(stack run cp)
; echo $files^.c
stack.c run.c cp.c
; echo $files^.h
stack.h run.h cp.h
; rm $files^.8
; echo (8 5)^.out
8.out 5.out
; rm (8 5)^.out

Another example. These two lines are equivalent:
; cp (/source/dir /dest/dir)^/a/very/long/path
; cp /source/dir/a/very/long/path /dest/dir/a/very/long/path

And of course, we can use variables here:
; src=/source/dir
; dst=/dest/dir
; cp ($src $dst)^/a/very/long/path

Concatenation of lists that do not have the same number of elements and do not
distribute, because none of them has a single element, is illegal in rc. Concatena-
tion of an empty list is also forbidden, as a particular case of this rule.

; ops=(+ - +)
; perms=(w x)
; echo $ops^$perms
rc: mismatched list lengths in concatenation
; x=()
; echo (a b c)^$x
rc: null list in concatenation

In some cases it is useful to use the value of a variable as a single string, even if the
variable contains a list with several strings. This can be done by using a ""# before
the variable name. Note that this may be used to concatenate a variable that might
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be an empty list, because we translate the variable contents to a single word, which
happens to be empty.

; x=(a b c)
; echo $x^1
a1 b1 c1
; echo $"x^1
a b c1
; x=()
; echo (a b c)^$"x
a b c
;

There are two slightly different values that can be used to represent a null variable.
One is the empty string, and the other one is the empty list. Here they are, in that
order.

; x=’’
; y=()
; echo $x

; echo $y

; xd -c /env/x
0000000 00
0000001
; xd -c /env/y
0000000
0000000
; echo $#x $#y
1 0

Both values yield a null string when used, yet they are different. An empty string
is a list with just the empty string. When expanded by getenv in a C program, or
by using $ in the shell, the result is the empty string. However, its length is 1
because the list has one (empty) string. For an empty list, the length is zero. In
general, it is common to use the empty list as the nil value for environment vari-
ables.

8.3. Simple things
We are now prepared to start doing useful things. To make a start, we want to write
a couple of shell scripts to convert from decimal to hexadecimal and vice-versa.
We should start most scripts with

rfork e

to avoid modifying the set of environment variables in the calling shell.
The first thing needed is a program to perform arithmetic calculations. The

shell knows nothing about numbers, not to mention arithmetic. The shell knows
how to combine commands together to do useful work. Therefore, we need a
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program to do arithmetic if we want to do arithmetic with the shell. We may type
numbers, but for shell, they would be just strings. Lists of strings indeed. Let’s
search for that program.

; lookman arithmetic expression
man 1 2c # 2c(1)
man 1 awk # awk(1)
man 1 bc # bc(1)
man 1 hoc # hoc(1)
man 1 test # test(1)
man 8 prep # prep(8)

There are several programs shown in this list that we might use to do arithmetic. In
general, hoc is a very powerful interactive floating point calculation language. It is
very useful to compute arbitrary expressions, either by supplying them through its
standard input or by using its -e option, which accepts as an argument an expres-
sion to evaluate.

; hoc -e ’2 + 2’
4
; echo 2 + 2 | hoc
4

Hoc can do very complex arithmetic. It is a full language, using a syntax similar to
that of C. It reads expressions, evaluates them, and prints the results. The program
includes predefined variables for famous constants, with names E, PI, PHI, etc.,
and you can define your own, using the assignment. For example,

; hoc
r=3.2
PI * r^2
32.16990877276
control-d
;

defines a value for the radius of a circle, and computes the value for its area.
But to do the task we have at hand, it might be more appropriate another cal-

culation program, called bc. This is program is also a language for doing arith-
metic. The syntax is also similar to C, and it even allows to define functions (like
Hoc). Like before, this tool accepts expressions as the input. It evaluates them and
prints the results. The nice thing about this program is that it has a simple way of
changing the numeric base used for input and output. Changing the value for the
variable obase changes the base used for output of numeric values. Changing the
value for the variable ibase does the same for the input. It seems to be just the
tool. Here is a session converting some decimal numbers to hexadecimal.
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; bc
obase=16
10
a
20
14
16
10

To print a decimal value in hexadecimal, we can write obase=16 and the value as
input for bc. That would print the desired output. There are several ways of doing
this. In any case, we must send several statements as input for bc. One of them
changes the output base, the other prints the desired value. What we can do is to
separate both bc statements with a ";#, and use echo to send them to the standard
input of bc.

; echo ’obase=16 ; 512’ | bc
200

We had to quote the whole command line for bc because there are at least two
characters with special meaning for rc, and we want the string to be echoed verba-
tim. This can be packaged in a shell script as follows, concatenating $1 to the rest
of the command for bc.
!d2h !" """____

#!/bin/rc
echo ’obase=16; ’$1 | bc

Although we might have inserted a ^ before $1, rc is kind enough to insert one
for free for us. You will get used to this pretty quickly. We can now use the result-
ing script, after giving it execute permission.

; chmod +x d2h
; d2h 32
20

We might like to write each input line for bc using a separate line in the script, to
improve readability. The compound bc statement that we have used may become
hard to read if we need to add more things to it. It would be nice to be able to use a
different echo for each different command sent to bc, and we can do so. How-
ever, because the output for both echoes must be sent to the standard input of bc,
we must group them. This is done in rc by placing both commands inside brack-
ets. We must still quote the first command for bc, because the equal sign is special
for rc. The resulting script can be used like the one above, but this one is easier to
read.

#!/bin/rc
{ echo ’obase=16’

echo $1
} | bc

Here, the shell executes the two echoes but handles the two of them as it they
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were just one command, regarding the redirection of standard output. This group-
ing construct permits using several commands wherever you may type a single
command. For example,

; { sleep 3600 ; echo time to leave! } &
;

executes both sleep and echo in the background. Each command will be exe-
cuted one after another, as expected. The result is that in one hour we will see a
message in the console reminding that we should be leaving.

How do we implemented a script, called h2d, to do the opposite conversion?
That is, to convert from hexadecimal to decimal. We might do a similar thing.

#!/bin/rc
{ echo ’ibase=16’

echo $1
} | bc

But this has problems!
; h2d abc
syntax error on line 1, teletype
syntax error on line 1, teletype
0

The problem is that bc expects hexadecimal digits from A to F to be upper-case
letters. Before sending the input to bc, we would better convert our numbers to
upper-case, just in case. There is a program that may help. The program tr (trans-
late) translates characters. It reads its input files (or standard input), performs its
simple translations, and writes the result to the output. The program is very useful
for doing simple character transformations on the input, like replacing certain char-
acters with other ones, or removing them. Some examples follow.

; echo x10+y20+z30 | tr x y
y10+y20+z30
; echo x10+y20+z30 | tr xy z
z10+z20+z30
; echo x10+y20+z30 | tr a-z A-Z
X10+Y20+Z30
; echo x10+y20+z30 | tr -d a-z
10+20+30

The first argument states which characters are to be translated, the second argument
specifies to which ones they must be translated. As you can see, you can ask tr to
translate several different characters into a single one. When many characters are
the source or the target for the translation, and they are contiguous, a range may be
specified by separating the initial and final character with a dash. Under flag -d,
tr removes the characters from the input read, before copying the data to the out-
put. So, how could we translate a dash to other character? Simple.



- 219 -

; echo a-b-c | tr - X
aXbXc

This may be a problem we need to translate some other character, because tr
would get confused thinking that the character is an option.

; echo a-b-c | tr -a XA
tr: bad option

But this can be fixed reversing the order for characters in the argument.
; echo a-b-c | tr a- AX
AXbXc

Now we can get back to our h2d tool, and modify it to supply just upper-case hex-
adecimal digits to bc.
!h2d !" """____

#!/bin/rc
{ echo ’ibase=16’

echo print $1 | tr a-f A-F
} | bc

The new h2d version works as we could expect, even when we use lower-case
hexadecimal digits.

; h2d abc
2748

Does it pay to write h2d and d2h? Isn’t it a lot more convenient for you to use
your desktop calculator? For converting just one or two numbers, it might be. For
converting a dozen or more, for sure, it pays to write the script. The nice thing
about having one program to do the work is that we can now use the shell to auto-
mate things, and let the machine work for us.

8.4. Real programs
Our programs h2d and d2h are useful, for a casual use. To use them as building
blocks for doing more complex things, more work is needed. Imagine you need to
declare an array in C, and initialize it, to use the array for translating small integers
to their hexadecimal representation.

char* d2h[] = {
"0x00",
"0x11",
...
"0xff"

};

To obtain a printable string for a integer i in the range 0-255 you can use just
d2h[i]. Would you write that declaration by hand? No. The machine can do the
work. What we need is a command that writes the first 256 values in hexadecimal,
and adjust the output text a little bit before copying it to your editor.
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We could change d2h to accept more than one argument and do its work for
all the numbers given as argument. Calling d2h with all the numbers from 0 to
255 would get us close to obtaining an initializer for the array. But first things
first. We need to iterate through all the command line arguments in our script. Rc
includes a for construct that can be used for that. It takes a variable name and a
list, and executes the command in the body once for each word in the list. On each
pass, the variable takes the value of the corresponding word. This is an example,
using x as the variable and (a b c) as the list.

; for (x in a b c)
;; echo $x
a
b
c

Note how the prompt changed after typing the for line, rc wanted more input: a
command for the body. To use more than one command in the body, we may use
the brackets as before, to group them. First attempt:

; for (num in 10 20 30) {
;; echo ’obase=16’
;; echo $num
;; }
obase=16
10
obase=16
20
obase=16
30
;

It is useful to try the commands before using them, to see what really happens. The
for loop gave three passes, as expected. Each time, $num kept the value for the
corresponding string in the list: 10, 20, and 30. Remember, these are strings! The
shell does not know they mean numbers to you. Setting obase in each pass seems
to be a waste. We will do it just once, before iterating through the numbers. The
numbers are taken from the arguments given to the script, which are kept at $*.
!d2h2 !" """"_____

#!/bin/rc
rfork e
{

echo ’obase=16’
for (num in $*)

echo $num
} | bc

Now we have a better program. It can be used as follows.
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; d2h 10 20 40
a
14
28

We still have the problem of supplying the whole argument list, a total of 256 num-
bers. It happens that another program, seq, (sequences) knows how to write num-
bers in sequence. It can do much more. It knows how to print numbers obtained by
iterating between two numbers, using a certain step.

; seq 5 from 1 to 5
1
2
3
4
5

; seq 1 2 10 from 1 to 10 step 2
1
3
5
7
9
;

What we need is to be able to use the output of seq as an argument list for d2h.
We can do so! Using the ‘{...} construct that we saw while discussing how to use
pipes. We can do now what we wanted.

; d2h ‘{seq 0 255}
0
1
...and many other numbers up to...
fd
fe
ff

That was nice. However, most programs that accept arguments, work with their
standard input when no argument is given. If we do the same to d2h, we increase
the opportunities to reuse it for other tasks. The idea is simple, we must check if we
have arguments. If there are some, we proceed as before. Otherwise, we can read
the arguments using cat, and then proceed as before. We need a way to decide
what to do, and we need to be able to compare things. Rc provides both things.

The construction if takes a command as an argument (within parenthesis).
If the command’s exit status is all right (i.e., the empty string), the body is exe-
cuted. Otherwise, the body is not executed. This is the classical if-then, but using a
command as the condition (which makes sense for a shell), and one command (or a
group of them) as a body.
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; if (ls -d /tmp) echo /tmp is there!
/tmp
/tmp is there!
;
; if (ls -d /blah) echo blah is there
ls: /blah: ’/blah’ file does not exist

In the first case, rc executed ls -d /tmp. This command printed the first out-
put line, and, because its exit status was the empty string, it was taken as true
regarding the condition for the if. Therefore, echo was executed and it printed
the second line. In the second case, ls -d /blah failed, and ls complained to
its standard error. The body command for the if was not executed.

It can be a burden to see the output for commands that we use as conditions
for ifs, and it may be wise to send the command output to /dev/null, includ-
ing its standard error.

; if (ls -d /tmp >/dev/null >[2=1]) echo is there
is there
; if (ls -d /blah >/dev/null >[2=1]) echo is there
;

Once we know how to decide, how can we compare strings? The ~ operator in rc
compares one string to other ones$, and yields an exit status meaning true, or suc-
cess, when the compare succeeds, and one meaning false otherwise.

; ~ 1 1
; echo $status

; ~ 1 2
; echo $status
no match
; if (~ 1 1) echo this works
this works

So, the plan is as follows. If $#* (the number of arguments for our script) is zero,
we must do something else. Otherwise, we must execute our previous commands in
the script. Before implementing it, we are going to try just to do different things
depending on the number of arguments. But we need an else! This is done by
using the construct if not after an if. If the command representing the condi-
tion for an if fails, the following if not executes its body.
!args !" """"_____

#!/bin/rc
if (~ $#* 0)

echo no arguments
if not

echo got some arguments: $*

And we can try it.
________________
$ We will see how ~ is comparing a string to expressions, not just to strings.
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; args
no arguments
; args 1 2
got some arguments: 1 2

Now we can combine all the pieces.
!d2h !" """____

#!/bin/rc
rfork e
if (~ $#* 0)

args=‘{cat}
if not

args=$*
{

echo ’obase=16’
for (num in $args)

echo $num
} | bc

We try our new script below. When using its standard input to read the numbers, it
uses the ‘{...} construct to execute cat, which reads all the input, and to place the
text read in the environment variable args. This means that it will not print a sin-
gle line of output until we have typed all the numbers and used control-d to simu-
late an end of file.

; d2h3
20
30
control-d
14
1e
;
; d2h3 3 4
3
4
;

Our new command is ready for use, and it can be combined with other commands,
like in seq 10|d2h. It would work as expected.

An early exercise in this book asked to use ip/ping to probe for all
addresses for machines in a local network. Addresses were of the form
212.128.3.X with X going from 1 to 254. You now know how to do it fast!

; nums=‘{seq 1 254}
; for (n in $nums) ip/ping 212.128.3.$n

Before this example, you might have been saying: Why should I bother to write
several shell command lines to do what I can do with a single loop in a C program?
Now you may reconsider the question. The answer is that in rc it is very easy to
combine commands. Doing it in C, that is a different business.

By the way. Use variables! They might save a lot of typing, not to talk about
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making commands more simple to read. For instance, the next commands may be
better than what we just did. If we have to use 212.128.3 again, which is likely
if we are playing with that network, we might just say $net.

; nums=‘{seq 1 254}
; net=212.128.3.
; for (n in $nums) ip/ping $net^$n

8.5. Conditions
Let’s go back to commands used for expressing conditions in our shell programs.
The shell operator ~ uses expressions. They are the same expressions used for
globbing. The operator receives at least two arguments, maybe more. Only the first
one is taken as a string. The remaining ones are considered as expressions to be
matched against the string. For example, this iterates over a set of files and prints a
string suggesting what the file might be, according to the file name.
!file !" """____

#!/bin/rc
rfork e
for (file in $*) {

if (~ $file *.c *.h)
echo $file: C source code

if (~ $file *.gif)
echo $file: GIF image

if (~ $file *.jpg)
echo $file: JPEG image

}

And here is one usage example.
; file x.c a.h b.gif z
x.c: C source code
a.h: C source code
b.gif: GIF image

Note that before executing the ~ command, the shell expanded the variables, and
$file was replaced with the corresponding argument on each pass of the loop.
Also, because the shell knows that ~ takes expressions, it is not necessary to quote
them. Rc does it for you.

The script can be improved. It would be nice to state that file does not
know what a file is if its name does not match any of the expressions we have used.
We could add this if as a final conditional inside the loop of the script.

if (! ~ $file *.[ch] *.gif *.jpg)
echo $file: who knows

The builtin command ! in rc is used as a negation. It executes the command given
as an argument. If the command exit status meant ok, then ! fails. And vice-versa.

But that was a poor way of doing things. There is a switch construct in rc
that permits doing multiway branches, like the construct of the same name in C.



- 225 -

The one in rc takes one string as the argument, and executes the branch with a reg-
ular expression that matches the string. Each branch is labeled with the word
case followed by the expressions for the branch. This is an example that improves
the previous script.

#!/bin/rc
rfork e
for (file in $*) {

switch($file){
case *.c *.h

echo $file: C source code
case *.gif

echo $file: GIF image
case *.jpg

echo $file: JPEG image
case *

echo $file: who knows
}

}

As you can see, in a single case you may use more than one expression, like you
can with ~. As a matter of fact, this script is doing poorly what is better done with
a standard command that has the same name, file. This command prints a string
after inspecting each file whose name is given as an argument. It reads each file to
search for words or patterns and makes an educated guess.

; file ch7.ms ch8.ps src/hi.c
ch7.ms: Ascii text
ch8.ps: postscript
src/hi.c: c program

There is another command that was built just to test for things, to be used as a con-
dition for if expressions in the shell. This program is test. For example, the
option -e can be used to check that a file does exist, and the option -d checks that
a file is a directory.

; test -e /LICENSE
; echo $status

; test -e /blah
; echo $status
test 52313: false
; if (test -d /tmp) echo yes
yes
; if (test -d /LICENSE) echo yes
;

Rc includes two conditional operators that remind of the boolean operators in C.
The first one is &&, it represents an AND operation and executes the command on
its right only if the one on its left completed with success. Only when both com-
mands succeed, the operator does so. For example, we can replace the switch
with the following code in our naive file script.
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~ $file *.[ch] && echo $file: C source code
~ $file *.gif && echo $file: GIF image
~ $file *.jpg && echo $file: JPEG image

Here, on each line, echo is executed only if the previous command, i.e., ~, suc-
ceeds.

The other conditional is ||. It represents an OR operation, and executes the
command on the right only if the one on the left fails. It succeeds if any of the com-
mands do. As an example, this checks for an unknown file type in our simple
script.

~ $file *.[ch] *.gif *.jpg || echo $file: who knows

The next command is equivalent to the previous one, but it would execute ~ three
times and not just once.

~ $file *.[ch] || ~ $file *.gif || ~ $file *.jpg ||
echo $file: who knows

As you can see, the command is harder to read besides being more complex. But it
works just fine as an example.

Many times you would want to execute a particular command when some-
thing happens. For example, to send you an email when a print job completes, to
alert you when a new message is posted to a web discussion group, etc. We can
develop a tiny tool for the task. Let’s call it when. Our new tool can loop forever
and check the condition of interest from time to time. When the condition happens,
it can take an appropriate action.

To loop forever, we can use the while construct. It executes the command
used as the condition for the loop. If the command succeeds, the while continues
looping. Let’s try it.

; while(sleep 1)
;; echo one more loop
one more loop
one more loop
one more loop
Delete
;

The command sleep always succeeds! It is a lucky command. Now, how can we
express the condition we are watching for? And how do we express the action to
execute when the condition holds? It seems that supplying two commands for each
purpose is both general and simple to implement. The script when is going to
accept two arguments, a command to execute that must yield success when the con-
dition holds, and a command to perform the action. For example,

; when ’changed http://indoecencias.blogspot.com’ \
;; ’mail -s ’’new indoecencias’’ nemo’ &
;

sends a mail to nemo when there are changes in
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http://indoecencias.blogspot.com, provided that changed exits
with null status when there are changes in the URL. Also,

; when ’test /sys/src/9/pc/main.8 -older 4h’ \
;; ’cd /sys/src/9/pc ; mk clean’ &
;

watches out for an object file main.8 older than 4 hours. When this happens, we
assume that someone forgot to clean up the directory /sys/src/9/pc after
compiling a kernel, and we execute the command to do some clean up and remove
the object files generated by the compilation.

Nice, but, how do we do it? It is best to experiment first. First try.
; cond=’test -e /tmp/file’
; cmd=’echo file is there’
;
; $cond && $cmd
test -e /tmp/file: ’/bin/test -e ’ file does not exist

The aim was to execute the command in $cond and, when it succeeds, the one in
$cmd. However, the shell understood that $cond is a single word. This is per-
fectly reasonable, as we quoted the whole command. We can use echo to echo
our variable within a ‘{...} construct, that will break the string into words.

; lcond=‘{echo $cond}
; lcmd=‘{echo $cmd}
; echo $#lcond
3
; echo $#lcmd
4

And we get back our commands, split into different words as in a regular command
line. Now we can try them.

; $lcond && $lcmd
; There was no file named /tmp/file

And now?
; touch /tmp/file
; $lcond && $lcmd
file is there

We are now confident enough to write our new tool.
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!when !" """""______
#!/bin/rc
rfork e
if (! ~$#* 2){

echo usage $0 cond cmd >[1=2]
exit usage

}
cond=‘{echo $1}
cmd=‘{echo $2}
while(sleep 15){

{$cond} >/dev/null >[2=1] && { {$cmd} ; exit ’’ }
}

We placed braces around $cond and $cmd as a safety measure. To make it clear
how we want to group commands in the body of the while. Also, after executing
the action, the script exits. The condition held and it has no need to continue check-
ing for anything.

8.6. Editing text
Before, we managed to generate a list of numbers for an array initializer that we did
not want to write by ourselves. But the output we obtained was not yet ready for a
cut-and-paste into our editor. We need to convert something like

1
2
...

into something like
"0x1",
"0x2",
...

that can be used for our purposes. There are many programs that operate on text
and know how to do complex things to it. In this section we are going to explore
them.

To achieve our purpose, we might convert each number into hexadecimal,
and store the resulting string in a variable. Later, it is just a matter of using echo
to print what we want, like follows.

; num=32
; hexnum=‘{{ echo ’obase=16’ ; echo $num } | bc}
; echo "0x^$hexnum^",
"0x20",

We used the ‘{...} construct execute hexnum=..., with the appropriate string on
the right hand side of the equal sign. This string was printed by the command

{ echo ’obase=16’ ; echo $num } | bc

that we now know that prints 20. It is the same command we used in the d2h
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script.
For you, the ""# character may be special. For the shell, it is just another

character. Therefore, the shell concatenated the ""0x# with the string from
$hexnum and the string "",#. That was the argument given to echo. So, you
probably know already how to write a few shell command lines to generate the text
for your array initializer.

; for (num in ‘{seq 0 255}) {
;; number=‘{{ echo ’obase=16’ ; echo $num } | bc}
;; echo "0x^$number^",
;; }
"0x0",
"0x1",
"0x2",
...and many others follow.

Is the problem solved? Maybe. This is a very inefficient way of doing things. For
each number, we are executing a couple of processes to run echo and then another
process to run bc. It takes time for processes to start. You know what fork and
exec do. That must take time. Processes are cheap, but not free. Wouldn’t it be
better to use a single bc to do all the computation, and then adjust the output? For
example, this command, using our last version for d2h, produces the same output.
The final sed command inserts some text at the beginning and at the end of each
line, to get the desired output.

; seq 1 255 | d2h | sed -e ’s/^/"0x/’ -e ’s/$/",/’
"0x0",
"0x1",
"0x2",
...and many others follow.

To see the difference between this command line, and the direct for loop used
above, we can use time to measure the time it takes to each one to complete. We
placed the command above using a for into a /tmp/for script, and the last com-
mand used, using sed, at a script in /tmp/sed. This is what happen.

; time /tmp/sed >/dev/null
0.34u 1.63s 5.22r /tmp/sed
; time /tmp/for >/dev/null
3.64u 24.38s 74.30r /tmp/for

The time command uses the wait system call to obtain the time for its child (the
command we want to measure the time for). It reports the time spent by the com-
mand while executing user code, the time it spent while inside the kernel, execut-
ing system calls and the like, and the real (elapsed) time until it completed. Our
loop, starting several processes for each number being processed, takes 74.3 sec-
onds to generate the output we want! That is admittedly a lot shorter than doing it
by hand. However, the time needed to do the same using sed as a final processing
step in the pipeline is just 5.22 seconds. Besides, we had to type less. Do you think
it pays?

The program sed is a stream editor. It can be used to edit data as it flows
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through a pipeline. Sed reads text from the input, applies the commands you give
to edit that text, and writes the result to the output. In most cases, this command is
used to perform simple tasks, like inserting, deleting, or replacing text. But it can
be used for more. As with most other programs, you may specify the input for sed
by giving some file names as arguments, or you may let it work with the standard
input otherwise.

In general, editing commands are given as arguments to the -e option, but if
there is just one command, you may omit the -e. For example, this prints the first
3 lines for a file.

; sed 3q /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,
with the following notable exceptions:
;

All sed commands have either none, one, or two addresses and then the command
itself. In the last example there was one address, 3, and one command, q. The edi-
tor reads text, usually line by line. For each text read, sed applies all the editing
commands given, and copies the result to standard output. If addresses are given
for a command, the editor applies the command to the text selected by those
addresses.

A number is an address that corresponds to a line number. The command q,
quits. What happened in the example is that the editor read lines, and printed them
to the output, until the address 3 was matched. That was at line number 3. The
command quit was applied, and the rest of the file was not printed. Therefore, the
previous command can be used to print the first few lines for a file.

If we want to do the opposite, we may just delete some lines, from the one
with address 1, to the one with address 3. As you can see below, both addresses are
separated with a comma, and the command to apply follows. Therefore, sed
searched for the text matching the address pair 1,3 (i.e., lines 1 to 3), printing each
line as it was searching. Then it copied the text selected to memory, and applied the
d command. These lines were deleted. Afterwards, sed continued copying line by
line to its memory, doing nothing to each one, and copying the result to standard
output.

; sed 1,3d /LICENSE

1. No right is granted to create derivative works of or
to redistribute (other than with the Plan 9 Operating System)

...more useful stuff for your lawyer...

Supplying just one command, with no address, applies the command to all lines.
; sed d /LICENSE
;

Was the /LICENSE deleted? Of course not. This editor is a stream editor. It reads,
applies commands to the text while in the editor’s memory, and outputs the result-
ing text.
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How can we print the lines 3 to 5 from our input file? One strategy is to use
the sed command to print the text selected, p, selecting lines 3 to 5. And also, we
must ask sed not to print lines by default after processing them, by giving the -n
flag.

; sed -n 3,5p /LICENSE
with the following notable exceptions:

1. No right is granted to create derivative works of or

The special address $ matches the end of the file. Therefore, this deletes from line
3 to the end of the file.

; sed ’3,$d’ /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,

What follows deletes lines between the one matching /granted/, i.e., the first
one that contains that word, and the end of the file. This is like using 1,3d. There
are two addresses and a d command. It is just that the two addresses are more com-
plicated this time.

; sed ’/granted/,$d’ /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,
with the following notable exceptions:

;

Another interesting command for sed is r. This one reads the contents of a file,
and writes them to the standard output before proceeding with the rest of the input.
For example, given these files,

; cat salutation
Today I feel
FEEL
So be warned
; cat how
Really in bad mood
;

we can use sed to adjust the text in salutation so that the line with FEEL is
replaced with the contents of the file how. What we have to do is to give sed an
address that matches a line with the text FEEL in it. Then, we must use the d com-
mand to delete this line. And later we will have to insert in place the contents of the
other file.

; sed /FEEL/d <salutation
Today I feel
So be warned

The address /FEEL/ matches the string FEEL, and therefore selects that line. For
each match, the command d removes its line. If there were more than one line
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matching the address, all of such lines would have been deleted. In general, sed
goes line by line, doing what you want.

; cat salutation salutation | sed /FEEL/d
Today I feel
So be warned
Today I feel
So be warned

We also wanted to insert the text in how in place, besides deleting the line with
FEEL. Therefore, we want to execute two commands when the address /FEEL/
matches in a line in the input. This can be done by using braces, but sed is picky
regarding the format of its program, and we prefer to use several lines for the sed
program. Fortunately, the shell knows how to quote it all.

; sed -e ’/FEEL/{
;; r how
;; d
;; }’<salutation
Today I feel
Really in bad mood
So be warned

In general, it is a good idea to quote complex expressions that are meant not for
shell, but for the command being executed. Otherwise, we might use a character
with special meaning for rc, and there could be surprises.

This type of editing can be used to prepare templates for certain files, for
example, for your web page, and then automatically adjust this template to generate
something else. You can see the page at http://lsub.org/who/nemo,
which is generated using a similar technique to state whether Nemo is at his office
or not.

The most useful sed command is yet to be seen. It replaces some text with
another. Many people who do not know how to use sed, know at least how to use
sed just for doing this. The command is s (for substitute), and is followed by two
strings. Both the command and the strings are delimited using any character you
please, usually a /. For example, s/bad/good/ replaces the string bad with
good.

; echo Really in bad mood | sed ’s/bad/good/’
Really in good mood

The quoting was unnecessary, but it does not hurt and it is good to get used to
quote arguments that may get special characters inside. There are two things to see
here. The command, s, applies to all lines of input, because no address was given.
Also, as it is, it replaces only the first appearance of bad in the line. Most times
you will add a final g, which is a flag that makes s substitute all occurrences (glob-
ally) and not just the first one.

This lists all files terminating in .h, and replaces that termination with .c, to
generate a list of files that may contain the implementation for the things declared
in the header files.
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; ls *.h
cook.h
gui.h
; ls *.h | sed ’s/.h/.c/g’
cook.c
gui.c

You can now do more things, like renaming all the files terminated in .cc to files
terminated in .c, (in case you thought it twice and decided to use C instead of
C++). We make some attempts before writing the command that does it.

; echo foo.cc | sed ’s/.cc/.c/g’
foo.c
; f=foo.cc
; nf=‘{echo $f | sed ’s/.cc/.c/g’}
; echo $nf
foo.c
; for (f in *.cc) {
;; nf=‘{echo $f | sed ’s/.cc/.c/g’}
;; mv $f $nf
;; }
; all of them renamed!

At this point, it should be easy for you to understand the command we used to gen-
erate the array initializer for hexadecimal numbers

sed -e ’s/^/"0x/’ -e ’s/$/",/’

It had two editing commands, therefore we had to use -e for both ones. The first
one replaced the start of a line with "0x#, thus, it inserted this string at the begin-
ning of line. The second inserted "",# at the end of line.

8.7. Moving files around
We want to copy all the files in a file tree to a single directory. Perhaps we have
one directory per music album, and some files with songs inside.

; du -a
1 ./alanparsons/irobot.mp3
2 ./alanparsons
1 ./pausini/trateilmare.mp3
1 ./pausini
1 ./supertramp/logical.mp3
1 ./supertramp
4 .

But we may want to burn a CD and we might need to keep the songs in a single
directory. This can be done by using cp to copy each file of interest into another
one at the target directory. But file names may not include /, and we want to pre-
serve the album name. We can use sed to substitute the / with another character,
and then copy the files.
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; for (f in */*.mp3) {
;; nf=‘{echo $f | sed s,/,_,g}
;; echo cp $f /destdir/$nf
;; }
cp alanparsons/irobot.mp3 /destdir/alanparsons_irobot.mp3
cp pausini/trateilmare.mp3 /destdir/pausini_trateilmare.mp3
cp supertramp/logical.mp3 /destdir/supertramp_logical.mp3
;

Here, we used a comma as the delimiter for the sed command, because we wanted
to use the slash in the expression to be replaced.

To copy the whole file tree to a different place, we cannot use cp. Even
doing the same thing that we did above, we would have to create the directories to
place the songs inside. That is a burden. A different strategy is to create an archive
for the source tree, and then extract the archive at the destination. The command
tar, (tape archive) was initially created to make tape archives. We no longer use
tapes for achieving things. But tar remains a very useful command. A tape
archive, also known as a tar-file, is a single file that contains many other ones
(including directories) bundled inside.

What tar does is to write to the beginning of the archive a table describing
the file names and permissions, and where in the archive their contents start and
terminate. This header is followed by the contents of the files themselves. The
option -c creates one archive with the named files.

; tar -c * >/tmp/music.tar

We can see the contents of the archive using the option t.
; tar -t </tmp/music.tar
alanparsons/
alanparsons/irobot.mp3
pausini/
pausini/trateilmare.mp3
supertramp/
supertramp/logical.mp3

Option -v, adds verbosity to the output, like in many other commands.
; tar -tv </tmp/music.tar
d-rwxr-xr-x 0 Jul 21 00:02 2006 alanparsons/
--rw-r--r-- 13 Jul 21 00:01 2006 alanparsons/irobot.mp3
d-rwxr-xr-x 0 Jul 21 00:02 2006 pausini/
--rw-r--r-- 13 Jul 21 00:02 2006 pausini/trateilmare.mp3
d-rwxr-xr-x 0 Jul 21 00:02 2006 supertramp/
--rw-r--r-- 13 Jul 21 00:02 2006 supertramp/logical.mp3

This lists the permissions and other file attributes. To extract the files in the
archive, we can use the option -x. Here we add an v as well just to see what hap-
pens.
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; cd otherdir
; tar xv </tmp/music.tar
alanparsons
alanparsons/irobot.mp3
pausini
pausini/trateilmare.mp3
supertramp
supertramp/logical.mp3
; lc
alanparsons pausini supertramp

The size of the archive is a little bit more than the size of the files placed in it. That
is to say that tar does not compress anything. If you want to compress the con-
tents of an archive, so it occupies less space in the disk, you may use gzip. This
is a program that uses a compression algorithm to exploit regularities in the data to
use more efficient representation techniques for the same data.

; gzip music.tar
; ls -l music.*
--rw-r--r-- M 19 nemo nemo 10240 Jul 21 00:17 music.tar
--rw-r--r-- M 19 nemo nemo 304 Jul 21 00:22 music.tgz

The file music.tgz was created by gzip. In most cases, gzip adds the exten-
sion .gz for the compressed file name. But tradition says that compressed tar files
terminate in .tgz.

Before extracting or inspecting the contents of a compressed archive, we must
uncompress it. Below we also use the option -f for tar, that permits specifying
the archive file as an argument.

; tar -tf music.tgz
/386/bin/tar: partial block read from archive
; gunzip music.tgz
; tar -tf music.tar
alanparsons/
alanparsons/irobot.mp3
...etc...

So, how can we copy an entire file tree from one place to another? You now know
how to use tar. Here is how.

; @{cd /music ; tar -c *} | @{ cd /otherdir ; tar x }

The output for the first compound command goes to the input of the second one.
The first one changes its directory to the source, and then creates an archive sent to
standard output. In the second one, we change to the destination directory, and
extract the archive read from standard input.

A new thing we have seen here is the expression ,@{...} which is like ,{...}
but executes the command block in a child shell. We need to do this because each
block must work at a different directory.
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Problems
1 The file /lib/ndb/local lists machines along with their IP addresses.

Suppose all addresses are of the form, 121.128.1.X. Write a script to edit
the file and change all the addresses to be of the form 212.123.2.X.

2 Write a script to generate a template for a /lib/ndb/local, for machines
named alphaN, where N must correspond to the last number in the machine
address.

3 Write a script to locate in /sys/src the programs using the system call
pipe. How many programs are using it? Do not do anything by hand.

4 In many programs, errors are declared as strings. Write a script that takes an
error message list and generates both an array containing the message strings
and an enumeration to refer to entries in the array.
Hint: Define a common format for messages to simplify your task.

5 Write a script to copy just C source files below a given directory to
$home/source/. How many source files do you have? Again, do not do
anything by hand.

6 Write a better version for the file script developed in this chapter. Use
some of the commands you know to inspect file contents to try to determine
the type of file for each argument of the script.



9 ! More tools
______

9.1. Regular expressions
We have used sed to replace one string with another. But, what happens here?

; echo foo.xcc | sed ’s/.cc/.c/g’
foo..c
; echo focca.x | sed ’s/.cc/.c/g’
f.ca.x

We need to learn more.
In addresses of the form /text/ and in commands like s/text/other/,

the string text is not a string for sed. This happens to many other programs that
search for things. For example, we have used grep to print only lines containing a
string. Well, the string given to grep, like in

; grep string file1 file2 ...

is not a string. It is a regular expression. A regular expression is a little language.
It is very useful to master it, because many commands employ regular expressions
to let you do complex things in an easy way.

The text in a regular expression represents many different strings. You have
already seen something similar. The *.c in the shell, used for globbing, is very
similar to a regular expression. Although it has a slightly different meaning. But
you know that in the shell, *.c matches with many different strings. In this case,
those that are file names in the current directory that happen to terminate with the
characters ".c#. That is what regular expressions, or regexps, are for. They are
used to select or match text, expressing the kind of text to be selected in a simple
way. They are a language on their own. A regular expression, as known by sed,
grep, and many others, is best defined recursively, as follows.
% Any single character matches the string consisting of that character. For

example, a matches a, but not b.
% A single dot, ".#, matches any single character. For example, ".# matches a

and b, but not ab.
% A set of characters, specified by writing a string within brackets, like

[abc123], matches any character in the string. This example would match
a, b, or 3, but not x. A set of characters, but starting with ^, matches any
character not in the set. For example, [^abc123] matches x, but not 1,
which is in the string that follows the ^. A range may be used, like in
[a-z0-9], which matches any single character that is a letter or a digit.

% A single ^, matches the start of the text. And a single $, matches the end of
the text. Depending on the program using the regexp, the text may be a line
or a file. For example, when using grep, a matches the character a at any
place. However, ^a matches a only when it is the first character in a line, and
^a$ also requires it to be the last character in the line.
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% Two regular expressions concatenated match any text matching the first reg-
exp followed by any text matching the second. This is more hard to say than
it is to understand. The expression abc matches abc because a matches a, b
matches b, and so on. The expression [a-z]x matches any two characters
where the first one matches [a-z], and the second one is an x.

% Adding a * after a regular expression, matches zero or any number of strings
that match the expression. For example, x* matches the empty string, and
also x, xx, xxx, etc. Beware, ab* matches a, ab, abb, etc. But it does not
match abab. The * applies to the preceding regexp, with is just b in this
case.

% Adding a + after a regular expression, matches one or more strings that match
the previous regexp. It is like *, but there has to be at least one match. For
example, x+ does not match the empty string, but it matches every other
thing matched by x*.

% Adding a ? after a regular expression, matches either the empty string or one
string matching the expression. For example, x? matches x and the empty
string. This is used to make parts optional.

% Different expressions may be surrounded by parenthesis, to alter grouping.
For example, (ab)+ matches ab, abab, etc.

% Two expressions separated by | match anything matched either by the first,
or the second regexp. For example, ab|xy matches ab, or xy.

% A backslash removes the special meaning for any character used for syntax.
This is called a escape character. For example, ( is not a well-formed regular
expression, but \( is, and matches the string (. To use a backslash as a plain
character, and not as a escape, use the backslash to escape itself, like in \\.

That was a long list, but it is easy to learn regular expressions just by using them.
First, let’s fix the ones we used in the last section. This is what happen to us.

; echo foo.xcc | sed ’s/.cc/.c/g’
foo..c
; echo focca.x | sed ’s/.cc/.c/g’
f.ca.x

But we wanted to replace .cc, and not any character and a cc. Now we know that
the first argument to the sed command s, is a regular expression. We can try to
fix our problem.

; echo foo.xcc | sed ’s/\.cc/.c/g’
foo.xcc
; echo focca.x | sed ’s/\.cc/.c/g’
focca.x

It seems to work. The backslash removes the special meaning for the dot, and
makes it match just one dot. But this may still happen.

; echo foo.cc.x | sed ’s/\.cc/.c/g’
foo.c.x

And we wanted to replace only the extension for file names ending in .cc. We
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can modify our expression to match .cc only when immediately before the end of
the line (which is the string being matched here).

; echo foo.cc.x | sed ’s/\.cc$/.c/g’
foo.cc.x
; echo foo.x.cc | sed ’s/\.cc/.c/g’
foo.x.c

Sometimes, it is useful to be able to refer to text that matched part of a regular
expression. Suppose you want to replace the variable name text with word in a
program. You might try with s/text/word/g, but it would change other identi-
fiers, which is not what you want.

; cat f.c
void
printtext(char* text)
{

print("[%s]", text);
}
; sed ’s/text/word/g’ f.c
void
printword(char* word)
{

print("[%s]", word);
}

The change is only to be done if word is not surrounded by characters that may be
part of an identifier in the program. For simplicity, we will assume that these char-
acters are just [a-z0-9_]. We can do what follows.

; sed ’s/([^a-z0-9_])text([^a-z0-9_])/\1word\2/g’ f.c
void
printtext(char* word)
{

print("[%s]", word);
}

The regular expression [^a-z0-9_]text[^a-z0-9_] means "any character
that may not be part of an identifier#, then text, and then "any character that may
not be part of an identifier#. Because the substitution affects all the regular expres-
sion, we need to substitute the matched string with another one that has word
instead of text, but keeping the characters matching [^a-z0-9_] before and
after the string text. This can be done by surrounding in parentheses both
[^a-z0-9_]. Later, in the destination string, we may use \1 to refer to the text
matching the first regexp within parenthesis, and \2 to refer to the second.

Because printtext is not matched by [^a-z0-9_]text[^a-z0-9_],
it was untouched. However, "!text)# was matched. In the destination string, \1
was a white space, because that is what matched the first parenthesized part. And
\2 was a right parenthesis, because that is what matched the second one. As a
result, we left those characters untouched, and used them as context to determine
when to do the substitution.
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Regular expressions permit to clean up source files in an easy way. In may
cases, it makes no sense to keep white space at the end of lines. This removes
them.

; sed ’s/[ ]*$//’

We saw that a script t+ can be used to indent text in Acme. Here it is.
; cat /bin/t+
#!/bin/rc
sed ’s/^/ /’
;

This other script removes one level of indentation.
; cat /bin/t-
#!/bin/rc
sed ’s/^ //’
;

How many mounts and binds are performed by the standard namespace? How
many others of your own did you add? The file /lib/namespace is used to
build an initial namespace for you. But this file has comments, on lines starting
with #, and may have empty lines. The simplest thing would be to search just for
what we want, and count the lines.

; sed 7q /lib/namespace
# root
mount -aC #s/boot /root $rootspec
bind -a $rootdir /
bind -c $rootdir/mnt /mnt

# kernel devices
bind #c /dev
; grep ’^(bind|mount)’ /lib/namespace
mount -aC #s/boot /root $rootspec
bind -a $rootdir /
bind -c $rootdir/mnt /mnt
...
; grep ’^(bind|mount)’ /lib/namespace | wc -l

41
; grep ’^(bind|mount)’ /proc/$pid/ns | wc -l

72

We had 41 binds/mounts in the standard namespace, and the one used by our shell
(as reported by its ns file) has 72 binds/mounts. It seems we added many ones in
our profile.
There are many other useful uses of regular expressions, as you will be able to see
from here to the end of this book. In many cases, your C programs can be made
more flexible by accepting regular expressions for certain parameters instead of
mere strings. For example, an editor might accept a regular expression that deter-
mines if the text is to be shown using a constant width font or a
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proportional width font. For file names matching, say .*\.[ch], it could use a
constant width font.

It turns out that it is trivial to use regular expressions in a C program, by
using the regexp library. The expression is compiled into a description more
amenable to the machine, and the resulting data structure (called a Reprog) can be
used for matching strings against the expression. This program accepts a regular
expression as a parameter, and then reads one line at a time. For each such line, it
reports if the string read matches the regular expression or not.
!match.c !" """""""________

#include <u.h>
#include <libc.h>
#include <regexp.h>

void
main(int argc, char* argv[])
{

Reprog* prog;
Resub sub[16];
char buf[1024];
int nr, ismatch, i;

if (argc != 2){
fprint(2, "usage: %s regexp\n", argv[0]);
exits("usage");

}
prog = regcomp(argv[1]);
if (prog == nil)

sysfatal("regexp ’%s’: %r", buf);
for(;;){

nr = read(0, buf, sizeof(buf)-1);
if (nr <= 0)

break;
buf[nr] = 0;
ismatch = regexec(prog, buf, sub, nelem(sub));
if (!ismatch)

print("no match\n");
else {

print("matched: ’");
write(1, sub[0].sp, sub[0].ep - sub[0].sp);
print("’\n");

}
}
exits(nil);

}

The call to regcomp compiles the regular expression into prog. Later,
regexec executes the compiled regular expression to determine if it matches the
string just read in buf. The parameter sub points to an array of structures that
keeps information about the match. The whole string matching starts at the charac-
ter pointed to by sub[0].sp and terminates right before the one pointed to by
sub[0].ep. Other entries in the array report which substring matched the first
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parenthesized expression in the regexp, sub[1], which one matched the second
one, sub[2], etc. They are similar to \1, \2, etc. This is an example session
with the program.

; 8.match ’*.c’
regerror: missing operand for * The * needs something on the left!

; 8.match ’\.[123]’
x123
no match
.123
matched: ’.1’
x.z
no match
x.3
matched: ’.3’

9.2. Sorting and searching
One of the most useful task achieved with a few shell commands is inspecting the
system to find out things. In what follows we are going to learn how to do this,
using several assorted examples.

Running out of disk space? It is not likely, given the big disks we have today.
But anyway, which ones are the biggest files you have created at your home direc-
tory?

The command du (disk usage) reports disk usage, measured in disk blocks. A
disk block is usually 8 or 16 Kbytes, depending on your file system. Although du
-a reports the size in blocks for each file, it is a burden to scan by yourself through
the whole list of files to search for the biggest one. The command sort is used to
sort lines of text, according to some criteria. We can ask sort to sort the output of
du numerically (-n) in decreasing order (-r), with biggest numbers first, and then
use sed to print just the first few lines. Those ones correspond to the biggest files,
which we are interested in.
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; du -a bin | sort -nr | sed 15q
4211 bin
3085 bin/arm
864 bin/arm/enc
834 bin/386
333 bin/arm/madplay
320 bin/arm/madmix
319 bin/arm/deco
316 bin/386/minimad
316 bin/arm/minimad
280 bin/arm/mp3
266 bin/386/minisync
258 bin/rc
212 bin/arm/calc
181 bin/arm/mpg123
146 bin/386/r2bib
;

This includes directories as well, but point us quickly to files like bin/arm/enc
that seem to occupy 864 disk blocks!

But in any case, if the disk is filling up, it is a good idea to locate the users
that created files (or added data to them), to alert them. The flag -m for ls lists the
user name that last modified the file. We may collect user names for all the files in
the disk, and then notify them. We are going to play with commands until we com-
plete our task, using sed to print just a few lines until we know how to process all
the information. The first step is to use the output of du as the initial data, the list
of files. If we remove everything up to the file names, we obtain a list of files to
work with.

; du -a bin | sed ’s/.* //’ | sed 3q
bin/386/minimad
bin/386/minisync
bin/386/r2bib

Now we want to list the user who modified each file. We can change our data to
produce the commands that do that, and send them to a shell.

; du -a bin | sed ’s/.* //’ | sed ’s/^/ls -m /’ | sed 3q
ls -m bin/386/minimad
ls -m bin/386/minisync
ls -m bin/386/r2bib
;
; du -a bin | sed ’s/.* //’ | sed ’s/^/ls -m /’ | sed 3q | rc
[nemo] bin/386/minimad
[none] bin/386/minisync
[nemo] bin/386/r2bib
;

We still have to work a little bit more. And our command line is growing. Being
able to edit the text at any place in a Rio window does help, but it can be conve-
nient to define a shell function that encapsulates what we have done so far. A shell
function is like a function in any other language. The difference is that a shell
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function receives arguments as any other command, in the command line. Besides,
a shell function has command lines in its body, which is not a surprise. Defining a
function for what we have done so far can save some typing in the near future.
Furthermore, the command we have just built, to list all the files within a given
directory, is useful by itself.

; fn lr {
;; du -a $1 | sed ’s/.* //’ | sed ’s/^/ls -m /’ | rc
;; }
;

This defined a function, named lr, that executes exactly the command line we
developed. In the function lr, we removed the sed 3q because it is not reason-
able for a function listing all files recursively to stop after listing three of them. If
we want to play, we can always add a final sed in a pipeline. Arguments given to
the function are accessed like they would be in a shell script. The difference is that
the function is executed by the shell where we call it, and not by a child shell. By
the way, it is preferable to create useful commands by creating in a shell, functions
can not be edited as scripts, and are not automatically shared among all shells like
files are. Functions are handy to make modular scripts.

Rc stores the function definition using an environment variable. Thus, most
things said for environment variables apply for functions as well (e.g., think about
rfork e).

; cat /env/’fn#lr’
fn lr {du -a $1|sed ’s/.* //’|sed ’s/^/ls -m /’|rc}
;

The builtin function whatis is more appropriate to find out what a name is for
rc. It prints the value associated to the name in a form that can be used as a com-
mand. For example, here is of whatis says about several names, known to us.

; whatis lr
fn lr {du -a $1|sed ’s/.* //’|sed ’s/^/ls -m /’|rc}
; whatis cd
builtin cd
; whatis echo path
/bin/echo
path=(. /bin)
;

This is more convenient than looking through /bin, /env, and the rc(1) manual
page to see what a name is. Let’s try our new function.

; lr bin
[nemo] bin/386/minimad
[none] bin/386/minisync
[nemo] bin/386/r2bib
[nemo] bin/386/rc2bin
...and many other lines of output...
;
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To obtain our list of users, we may remove everything but the user name.
; lr bin | sed ’s/.([a-z0-9]+).*/\1/’ | sed 3q
nemo
none
nemo
;

And now, to get a list of users, we must drop duplicates. The program uniq knows
how to do it, it reads lines and prints them, lines showing up more than once in the
input are printed once. This program needs an input with sorted lines. Therefore,
we do what we just did, and sort the lines and remove duplicate ones.

; lr bin | sed ’s/.([a-z0-9]+).*/\1/’ | sort | uniq
esoriano
nemo
none
;

Note that we removed sed 3q from the pipeline, because this command does
what we wanted to do and we want to process the whole file tree, and not just the
first three ones. It happens that sort also knows how to remove duplicate lines,
after sorting them. The flag -u asks sort to print a unique copy of each output
line. We can optimize a little bit our command to list file owners.

; lr bin | sed ’s/.([a-z0-9]+).*/\1/’ | sort -u

What if we want to list user names that own files at several file trees? Say,
/n/fs1 and /n/fs2. We may have several file servers but might want to list
file owners for all of them. It takes time for lr to scan an entire file tree, and it is
desirable to process all trees in parallel. The strategy may be to use several com-
mand lines like the one above, to produce a sorted user list for each file tree. The
combined user list can be obtained by merging both lists, removing duplicates.
This is depicted in figure 9.1.

lr /n/fs1 sed sort

lr /n/fs2 sed sort

sort -mu sorted

Figure 9.1: Obtaining a file owner list using sort to merge two lists for fs1 and fs2

We define a function lrusers to run each branch of the pipeline. This pro-
vides a compact way of executing it, saves some typing, and improves readability.
The output from the two pipelines is merged using the flag -m of sort, which
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merges two sorted files to produce a single list. The flag -u (unique) must be
added as well, because the same user could own files in both file trees, and we want
each name to be listed once.

; fn lrusers { lr $1 | sed ’s/.([a-z0-9]+).*/\1/’ | sort }
; sort -mu <{lrusers /n/fs1} <{lrusers /n/fs2}
esoriano
nemo
none
paurea
;

For sort, each <{...} construct is just a file name (as we saw). This is a simple
way to let us use two pipes as the input for a single process.

To do something different, we can revisit the first example in the last chapter,
finding function definitions. This script does just that, if we follow the style con-
vention for declaring functions that was shown at the beginning of this chapter.
First, we try to use grep to print just the source line where the function cat is
defined in the file /sys/src/cmd/cat.c. Our first try is this.

; grep cat /sys/src/cmd/cat.c
cat(int f, char *s)

argv0 = "cat";
cat(0, "<stdin>");

cat(f, argv[i]);

Which is not too helpful. All the lines contain the string cat, but we want only the
lines where cat is at the beginning of line, followed by an open parenthesis. Sec-
ond attempt.

; grep ’^cat\(’ /sys/src/cmd/cat.c
cat(int f, char *s)

At least, this prints just the line of interest to us. However, it is useful to get the file
name and line number before the text in the line. That output can be used to point
an editor to that particular file and line number. Because grep prints the file name
when more than one file is given, we could use /dev/null as a second file
where to search for the line. It would not be there, but it would make grep print
the file name.

; grep ’^cat\(’ /sys/src/cmd/cat.c /dev/null
/sys/src/cmd/cat.c:cat(int f, char *s)

Giving the option -n to grep makes it print the line number. Now we can really
search for functions, like we do next.

; grep -n ’^cat\(’ /sys/src/cmd/*.c
/sys/src/cmd/cat.c:5: cat(int f, char *s)

And because this seems useful, we can package it as a shell script. It accepts as
arguments the names for functions to be located. The command grep is used to
search for such functions at all the source files in the current directory.
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#!/bin/rc
rfork e
for (f in $*)

grep -n ’^’$f’\(’ *.[cCh]

How can we use grep to search for -n? If we try, grep would get confused,
thinking that we are supplying an option. To avoid this, the -e option tells grep
that what follows is a regexp to search for.

; cat text
Hi there
How can we grep for -n?
Who knows!
; grep -n text
; grep -e -n text
how can we grep for -n?

This program has other useful options. For example, we may want to locate lines in
the file for a chapter of this book where we mention figures. However, if the word
figure is in the middle of a sentence it would be all lower-case. When it is start-
ing a sentence, it would be capitalized. We must search both for Figure and
figure. The flag -i makes grep become case-insensitive. All the text read is
converted to lower-case before matching the expression.

; grep -i figure ch1.ms
Each window shows a file or the output of commands. Figure
figure are understood by acme itself. For commands
shown in the figure would be
...and other matching lines

A popular searching task is determining if a file containing a mail message is spam
or not. Today, it would not work, because spammers employ heavy armoring, and
even send their text encoded in multiple images sent as HTML mail. However, it
was popular to see if a mail message contained certain expressions, if it did, it was
considered spam. Because there will be many expressions, we may keep them in a
file. The option -f for grep takes as an argument a file containing all the expres-
sions to search for.

; cat patterns
Make money fast!
Earn 10+ millions
(Take|use) viagra for a (better|best) life.
; if (grep -i -f patterns $mail ) echo $mail is spam

9.3. Searching for changes
A different kind of search is looking for differences. There are several tools that
can be used to compare files. We saw cmp, that compares two files. It does not
give much information, because it is meant to compare files that are binary and not
textual, and the program reports just which one is the first byte that makes the files
different. However, there is another tool, diff, that is more useful than cmp when
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applied to text files. Many times, diff is used just to compare two files to search
for differences. For example, we can compare the two files /bin/t+ and
/tmp/t-, that look similar, to see how they differ. The tool reports what changed
in the first file to obtain the contents in the second one.

; diff /bin/t+ /bin/t-
2c2,3
< exec sed ’s/^/ /’
---
> exec sed ’s/^ //’
>

The output shows the minimum set of differences between both files, here we see
just one. Each difference reported starts with a line like 2c2,3, which explains
which lines differ. This tool tries to show a minimal set of differences, and it will
try to aggregate runs of lines that change. In this way, it can simply say that sev-
eral (contiguous) lines in the first file have changed and correspond to a different
set of lines in the second file. In this case, line 2 in the first file (t+) has changed in
favor of lines 2 and 3 in the second file. If we replace line 2 in t+ with lines 2 and
3 from t-, both files have be the same contents.

After the initial summary, diff shows the relevant lines that differ in the
first file, preceded by an initial < sign to show that they come from the file on the
left in the argument list, i.e., the first file. Finally, the lines that differ in this case
for the second file are shown. The line 3 is an extra empty line, but for diff that
is a difference. If we remove the last empty line in t-, this is what diff says:

; diff /bin/t^(+ -)
2c2
< exec sed ’s/^/ /’
---
> exec sed ’s/^ //’

Let’s improve the script. It does not accept arguments, and it would be better to
print a diagnostic and exit when arguments are given.
!tab !" """____

#!/bin/rc
if (! ~ $#* 0){

echo usage: $0 >[1=2]
exit usage

}
exec sed ’s/^/ /’

This is what diff says now.
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; diff /bin/t+ tab
1a2,5
> if (! ~ $#* 0){
> echo usage: $0 >[1=2]
> exit usage
> }
;

In this case, no line has to change in /bin/t+ to obtain the contents of tab.
However, we must add lines 2 to 5 from tab after line 1 of /bin/t+. This is
what 1a2,5 means. Reversing the arguments of diff produces this:

; diff tab /bin/t+
2,5d1
< if (! ~ $#* 0){
< echo usage: $0 >[1=2]
< exit usage
< }

Lines 2 to 5 of tab must be deleted (they would be after line 1 of /bin/t+), if
we want tab to have the same contents of /bin/t+.

Usually, it is more convenient to run diff supplying the option -n, which
makes it print the file names along with the line numbers. This is very useful to
easily open any of the files being compared by addressing the editor to the file and
line number.

; diff -n /bin/t+ tab
/bin/t+:1 a tab:2,5
> if (! ~ $#* 0){
> echo usage: $0 >[1=2]
> exit usage
> }

Although some people prefer the -c (context) flag, that makes it more clear what
changed by printing a few lines of context around the ones that changed.

; diff -n /bin/t+ tab
/bin/t+:1,2 - tab:1,6
#!/bin/rc

+ if (! ~ $#* 0){
+ echo usage: $0 >[1=2]
+ exit usage
+ }
exec sed ’s/^/ /’

;

Searching for differences is not restricted to comparing just two files. In many
cases we want to compare two file trees, to see how they differ. For example, after
installing a new Plan 9 in a disk, and using it for some time, you might want to see
if there are changes that you made by mistake. Comparing the file tree in the disk
with that used as the source for the Plan 9 distribution would let you know if that is
the case.
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This tool, diff, can be used to compare two directories by giving their
names. If works like above, but compares all the files found in one directory with
those in the other. Of course, now it can be that a given file might be just at one
directory, but not at the other. We are going to copy our whole $home/bin to a
temporary place to play with changes, instead of using the whole file system.

; @{ cd ; tar c bin } | @{ cd /tmp ; tar x }
;

Now, we can change t+ in the temporary copy, by copying the tab script we
recently made. We will also add a few files to the new file tree and remove a few
other ones.

; cp tab /tmp/bin/rc/t+
; cp rcecho /tmp/bin/rc
; rm /tmp/bin/rc/^(d2h h2d)
;

So, what changed? The option -r asks diff to go even further and compare two
entire file trees, and not just two directories. It descends when it finds a directory
and recurs to continue the search for differences.

; diff -r ($home /tmp)^/bin
Only in /usr/nemo/bin/rc: d2h
Only in /usr/nemo/bin/rc: h2d
Only in /tmp/bin/rc: rcecho
diff /usr/nemo/bin/rc/t+ /tmp/bin/rc/t+
1a2,5
> if (! ~ $#* 0){
> echo usage: $0 >[1=2]
> exit usage
> }
;

The files d2h and h2d are only at $home/bin/rc, we removed them from the
copied tree. The file rcecho is only at /tmp/bin/rc instead. We created it
there. For diff, it would be the same if it existed at $home/bin/rc and we
removed rcecho from there. Also, there is a file that is different, t+, as we could
expect. Everything else remains the same.

It is now trivial to answer questions like, which files have been added to our
copy of the file tree?

; diff -r ($home /tmp)^/bin | grep ’^Only in /tmp/bin’
Only in /tmp/bin/rc: rcecho
;

This is useful for security purposes. From time to time we might check that a Plan
9 installation does not have files altered by malicious programs or by user mis-
takes. If we process the output of diff, comparing the original file tree with the
one that exists now, we can generate the commands needed to restore the tree to its
original state. Here we do this to our little file tree. Files that are only in the new
tree, must be deleted to get back to our original tree.
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; diff -r ($home /tmp)^/bin >/tmp/diffs
; grep ’^Only in /tmp/’ /tmp/diffs | sed -e ’s|Only in|rm|’ -e ’s|: |/|’
rm /tmp/bin/rc/rcecho

Files that are only in the old tree have probably been deleted in the new tree,
assuming we did not create them in the old one. We must copy them again.

; d=/usr/nemo/bin
; grep ’^Only in ’^$d /tmp/diffs |
;; sed ’s|Only in ’^$d^’/(.+): ([^ ]+)|cp ’^$d^’/\1/\2 /tmp/bin/\1|’
cp /usr/nemo/bin/rc/d2h /tmp/bin/rc
cp /usr/nemo/bin/rc/h2d /tmp/bin/rc

In this command, \1 is the path for the file, relative to the directory being com-
pared, and \2 is the file name. We have not used $home to keep the command as
clear as feasible. To complete our job, we must undo any change to any file by cop-
ing files that differ.

; grep ’^diff ’ /tmp/diffs | sed ’s/diff/cp/’
cp /usr/nemo/bin/rc/t+ /tmp/bin/rc/t+

All this can be packaged into a script, that we might call restore.
!restore !" """"""_______

#!/bin/rc
rfork e
if (! ~ $#* 2){

echo usage $0 olddir newdir >[1=2]
exit usage

}
old=$1
new=$2
diffs=/tmp/restore.$pid
diff -r $old $new >$diffs
grep ’^Only in ’^$new /tmp/diffs | sed -e ’s|Only in|rm|’ -e ’s|: |/|’
fromstr=’Only in ’^$old^’/(.+): ([^ ]+)’
tostr=’cp ’^$old^’/\1/\2 ’^$new^’/\1’
grep ’^Only in ’^$old $diffs | sed -e ’s|’^$fromstr^’|’^$tostr^’|’
grep ’^diff ’ $diffs | sed ’s/diff/cp/’
rm $diffs
exit ’’

And this is how we can use it.
; restore
rm /tmp/bin/rc/rcecho
cp /usr/nemo/bin/rc/d2h /tmp/bin/rc
cp /usr/nemo/bin/rc/h2d /tmp/bin/rc
cp /usr/nemo/bin/rc/t+ /tmp/bin/rc/t+
; restore|rc after having seen what this is going to do!

We have a nice script, but pressing Delete while the script runs may leave an
unwanted temporary file.
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; restore $home/bin /tmp/bin
Delete
; lc /tmp
A1030.nemoacme omail.2558.body
ch6.ms restore.1425
;

To fix this problem, we need to install a note handler like we did before in C. The
shell gives special treatment to functions with names sighup, sigint, and
sigalrm. A function sighup is called by rc when it receives a hangup note.
The same happens for sigint with respect to the interrupt note and
sigalrm for the alarm note. Adding this to our script makes it remove the tem-
porary file when the window is deleted or Delete is pressed.

fn sigint { rm $diffs }
fn sighup { rm $diffs }

This must be done after defining $diffs.

9.4. AWK
There is another tool is use extremely useful, which remains to be seen. It is a pro-
gramming language called AWK. Awk is meant to process text files consisting of
records with multiple fields. Most data in system and user databases, and much
data generated by commands looks like this. Consider the output of ps.

; ps | sed 5q
nemo 1 0:00 0:00 1392K Await bns
nemo 2 1:09 0:00 0K Wakeme genrandom
nemo 3 0:00 0:00 0K Wakeme alarm
nemo 5 0:00 0:00 0K Wakeme rxmitproc
nemo 6 0:00 0:00 268K Pread factotum

We have multiple lines, which would be records for AWK. All the lines we see
contain different parts carrying different data, tabulated. In this case, each different
part in a line is delimited by white space. For AWK, each part would be a field.
This is our first AWK program. It prints the user names for owners of processes
running in this system. Similar to what could be achieved by using sed.

; ps | awk ’{print $1}’
nemo
nemo
...
; ps | sed ’s/ .*//’
nemo
nemo
...

The program for AWK was given as its only argument, quoted to escape it from the
shell. AWK executed the program to process its standard input, because no file to
process was given as an argument. In this case, the program prints the first field for
any line. As you can see, AWK is very handy to cut columns of files for further
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processing. There is a command in most UNIX machines named cut, that does
precisely this, but using AWK suffices. If we sort the set of user names and
remove duplicates, we can know who is using the machine.

; ps | awk ’{print $1}’ | sort -u
nemo
none
;

In general, an AWK program consists of a series of statements, of the form
pattern { action }.

Each record is matched against the pattern, and the action is executed for all
records with a matching one. In our program, there was no pattern. In this case,
AWK executes the action for all the records. Actions are programmed using a syn-
tax similar to C, using functions that are either built into AWK or defined by the
user. The most commonly used one is print, which prints its arguments.

In AWK we have some predefined variables and we can define our own ones.
Variables can be strings, integers, floating point numbers, and arrays. As a conve-
nience, AWK defines a new variable the first time you use it, i.e., when you initial-
ize it.

The predefined variable $1 is a string with the text from the first field.
Because the action where $1 appears is executed for a record, $1 would be the first
field of the record being processed. In our program, each time print $1 is exe-
cuted for a line, $1 refers to the first field for that line. In the same way, $2 is the
second field and so on. This is how we can list the names for the processes in our
system.

; ps | awk ’{print $7}’
genrandom
alarm
rxmitproc
factotum
fossil
...

It may be easier to use AWK to cut fields than using sed, because splitting a line
into fields is a natural thing for the former. White space between different fields
might be repeated to tabulate the data, but AWK managed nicely to identify field
number 7.

The predefined variable $0 represents the whole record. We can use it along
with the variable NR, which holds an integer with the record number, to number the
lines in a file.
!number !" """""""________

#!/bin/rc
awk ’{ printf("%4d %s\n", NR, $0); }’ $*

We have used the AWK function printf, which works like the one in the C
library. It provides more control for the output format. Also, we pass the entire
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argument list to AWK, which would process the files given as arguments or the
standard input depending on how we call the script.

; number number
1 #!/bin/rc
2 awk ’{ printf("%4d %s0, NR, $0); }’ $*

;

In general, it is usual to wrap AWK programs using shell scripts. The input for
AWK may be processed by other shell commands, and the same might happen to
its output.

To operate on arbitrary records, you may specify a pattern for an action. A
pattern is a relational expression, a regular expression, or a combination of both
kinds od expressions. This example uses NR to print only records 3 to 5.

; awk ’NR >= 3 && NR <=5 {print $0}’ /LICENSE
with the following notable exceptions:

1. No right is granted to create derivative works of or

Here, NR >=3 && NR <= 5 is a relational expression. It does an and of two
expressions. Only records with NR between 3 and 5 match the pattern. As a result,
print is executed just for lines 3 through 5. Because syntax is like in C, it is easy
to get started. Just try. Printing the entire record, i.e., $0, is so common, that
print prints that by default. This is equivalent to the previous command.

; awk ’NR >=3 && NR <= 5 {print}’ /LICENSE

Even more, the default action is to print the entire record. This is also equivalent to
our command.

; awk ’NR >=3 && NR <= 5’ /LICENSE

By the way, in this particular case, using sed might have been more simple.
; sed -n 3,5p /LICENSE
with the following notable exceptions:

1. No right is granted to create derivative works of or
;

Still, AWK may be preferred if more complex processing is needed, because it pro-
vides a full programming language. For example, this prints only even lines and
stops at line 6.

; awk ’NR%2 == 0 && NR <= 6’ /LICENSE
Lucent Public License, Version 1.02, reproduced below,

to redistribute (other than with the Plan 9 Operating System)

It is common to search for processes with a given name. We used grep for this task.
But in some cases, unwanted lines may get through
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; ps | grep rio
nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 2602 0:00 0:00 248K Await rioban
nemo 277 0:00 0:00 1160K Pread rio
nemo 2607 0:00 0:00 248K Await brio
nemo 280 0:00 0:00 1160K Pread rio
...

We could filter them out using a better grep pattern.
; ps | grep ’rio$’
nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 277 0:00 0:00 1160K Pread rio
nemo 2607 0:00 0:00 248K Await brio
nemo 280 0:00 0:00 1160K Pread rio
...
; ps | grep ’ rio$’
nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 277 0:00 0:00 1160K Pread rio
nemo 280 0:00 0:00 1160K Pread rio
...

But AWK just knows how to split a line into fields.
; ps | awk ’$7 ~ /^rio$/’
nemo 39 0:04 0:16 1160K Rendez rio
nemo 275 0:01 0:07 1160K Pread rio
nemo 277 0:00 0:00 1160K Pread rio
nemo 280 0:00 0:00 1160K Pread rio
...

This AWK program uses a pattern that requires field number 7 to match the pattern
/^rio$/. As you know, by default, the action is to print the matching record.
The operator ~ yields true when both arguments match. Any argument can be a
regular expression, enclosed between two slashes. The pattern we used required all
of field number 7 to be just rio, because we used ^ and $ to require rio to be
right after the start of the field, and before the end of the field. As we said, ^ and $
mean the start of the text being matched and its end. Whether the text is just a field,
a line, or the entire file, it depends on the program using the regexp.
It is easy now to list process pids for rio that belong to user nemo.

; ps | awk ’$7 ~ /^rio$/ && $1 ~ /^nemo$/ {print $2}’
39
275
277
280
...

How do we kill broken processes? AWK may help.
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; ps |awk ’$6 ~ /Broken/ {printf("echo kill >/proc/%s/ctl0, $2);}’
echo kill >/proc/1010/ctl
echo kill >/proc/2602/ctl

The 6th field must be Broken, and to kill the process we can write kill to the
process control file. The 2nd field is the pid and can be used to generate the file
path. Note that in this case the expression matched against the 6th field is just
/Broken/, which matches with any string containing Broken. In this case, it
suffices and we do not need to use ^ and $.

Which one is the biggest process, in terms of memory consumption? The 6th
field from the output of ps reports how much memory is using a process. We
could use our known tools to answer this question. The argument +4r for sort
asks for a sort of lines but starting in the field 4 as the sort key. This is a lexical
sort, but it suffices. The r means reverse sort, to get biggest processes first. And
we can use sed to print just the first line and only the memory usage.

; ps | sort +4r
nemo 3899 0:01 0:00 11844K Pread gs
nemo 18 0:00 0:00 9412K Sleep fossil
...and more fossils
nemo 33 0:00 0:00 1536K Sleep bns
nemo 39 0:09 0:33 1276K Rendez rio
nemo 278 0:00 0:00 1276K Rendez rio
nemo 275 0:02 0:14 1276K Pread rio
...and many others.
; ps | sort +4r | sed 1q
nemo 3899 0:01 0:00 11844K Pread gs
; ps | sort +4r | sed -e ’s/.* ([0-9]+K).*/1/’ -e 1q
11844K

We exploited that the memory usage field terminates in an upper-case K, and is
preceded by a white space. This is not perfect, but it works. We can improve this
by using AWK. This is more simple and works better.

; ps | sort +4r | sed 1q | awk ’{print $5}’
11844K

The sed can be removed if we ask AWK to exit after printing the 5th field for the
first record, because that is the biggest one.

; ps | sort +4r | awk ’{print $5; exit}’
11844K

And we could get rid of sort as well. We can define a variable in the AWK pro-
gram to keep track of the maximum memory usage, and output that value after all
the records have been processed. But we need to learn more about AWK to achieve
this.

To compute the maximum of a set of numbers, assuming one number per
input line, we may set a ridiculous low initial value for the maximum and update
its value as we see a bigger value. It is better to take the first value as the initial
maximum, but let’s forget about it. We can use two special patterns, BEGIN, and
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END. The former executes its action before processing any field from the input.
The latter executes its action after processing all the input. Those are nice place-
holders to put code that must be executed initially or at the end. For example, this
AWK program computes the total sum and average for a list of numbers.

; seq 5000 | awk ’
;; BEGIN { sum=0.0 }
;; { sum += $1 }
;; END { print sum, sum/NR }
;; ’
12502500 2500.5

Remember that ;; is printed by the shell, and not part of the AWK program. We
have used seq to print some numbers to test our script. And, as you can see, the
syntax for actions is similar to that of C. But note that a statement is also delimited
by a newline or a closed brace, and we do not need to add semicolons to terminate
them. What did this program do? Before even processing the first line, the action
of BEGIN was executed. This sets the variable sum to 0.0. Because the value is a
floating point number, the variable has that type. Then, field after field, the action
without a pattern was executed, updating sum. At last, the action for END printed
the outcome. By dividing the number of records (i.e., of lines or numbers) we com-
pute the average.

As an aside, it can be funny to note that there are many AWK programs with
only an action for BEGIN. That is a trick played to exploit this language to evalu-
ate complex expressions from the shell. Another contender for hoc.

; awk ’BEGIN {print sqrt(2) * log(4.3)}’
2.06279
; awk ’BEGIN {PI=3.1415926; print PI * 3.7^2}’
43.0084

This program is closer to what we want to do to determine which process is the
biggest one. It computes the maximum of a list of numbers.

; seq 5000 | awk ’
;; BEGIN { max=0 }
;; { if (max < $1)
;; max=$1
;; }
;; END { print max }
;; ’
5000 Correct?

This time, the action for all the records in the input updates max, to keep track of
the biggest value. Because max was first used in a context requiring an integer
(assigned 0), it is integer. Let’s try now our real task.
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; ps | awk ’
;; BEGIN { max=0 }
;; { if (max < $5)
;; max=$5
;; }
;; END { print max }
;; ’
9412K Wrong! because it should have said...
; ps | sort +4r | awk ’{print $5; exit}’
11844K

What happens is that 11844K is not bigger than 9412K. Not as a string.
; awk ’BEGIN { if ("11844K" > "9412K") print "bigger" }’
;

Watch out for this kind of mistake. It is common, as a side effect of AWK efforts
to simplify things for you, by trying to infer and declare variable types as you use
them. We must force AWK to take the 5th field as a number, and not as a string.

; ps | awk ’
;; BEGIN { max=0 }
;; { mem= $5+0
;; if (max < mem)
;; max=mem
;; }
;; END { print max }
;; ’
11844

Adding 0 to $5 forced the (string) value in $5 to be understood as a integer value.
Therefore, mem is now an integer with the numeric value from the 5th field. Where
is the "K#? When converting the string to an integer, AWK stopped when it found
the "K#. Therefore, this forced conversion has the nice side effect of getting rid of
the final letter after the memory size. It seems simple to compute the average pro-
cess (memory) size, doesn’t it? AWK lets you do many things, easily.

; ps | awk ’
;; BEGIN { tot=0}
;; { tot += $5+0 }
;; END { print tot, tot/NR }
;; ’
319956 2499.66

9.5. Processing data
Each semester, we must open student accounts to let them use the machines. This
seems to be just the job for AWK and a few shell commands, and that is the tool
we use. We take the list for students in the weird format that each semester the
bureaucrats in the administration building invent just to keep us entertained. This
format may look like this list.
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!list !" """____
# List of students in the random format for this semester
# you only know the format when you see it.

2341|Rodolfo Martínez|Operating Systems|B|ESCET
6542|Joe Black|Operating Systems|B|ESCET
23467|Luis Ibáñez|Operating Systems|B|ESCET
23341|Ricardo Martínez|Operating Systems|B|ESCET
7653|José Prieto|Computer Networks|A|ESCET

We want to write a program, called list2usr that takes this list as its input and
helps to open the student accounts. But before doing anything, we must get rid of
empty lines and the comments nicely placed after # signs in the original file.

; awk ’
;; /^#/ { next }
;; /^$/ { next }
;; { print }
;; ’ list
2341|Rodolfo Martínez|Operating Systems|B|ESCET
6542|Joe Black|Operating Systems|B|ESCET
23467|Luis Ibáñez|Operating Systems|B|ESCET
23341|Ricardo Martínez|Operating Systems|B|ESCET
7653|José Prieto|Computer Networks|A|ESCET

There are several new things in this program. First, we have multiple patterns for
input lines, for the first time. The first pattern matches lines with an initial #, and
the second matches empty lines. Both patterns are just a regular expression, which
is a shorthand for matching it against $0. This is equivalent to the first statement
of our program.

$0 ~ /^#/ { next }

Second, we have used next to skip an input record. When a line matches a com-
mentary line, AWK executes next. This skips to the next input record, effectively
throwing away the input line. But look at this other program.

; awk ’
;; { print }
;; /^#/ { next }
;; /^$/ { next }
;; ’ list
# List of students in the random format for this semester
# you only know the format when you see it.
...

It does not ignore comments nor empty lines. AWK executes the statements in the
order you wrote them. It reads one record after another and executes, in order, all
the statements with a matching pattern. Lines with comments match the first and
the third statement. But it does not help to skip to the next input record once you
printed it. The same happens to empty lines.

Now that we know how to get rid of weird lines, we can proceed. To create
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accounts for all students in the course in Operating Systems, group B, we must first
select lines for that course and group. This semester, fields are delimited by a verti-
cal bar, the course field is the 3rd, and the group field is the 4th. This may help.

; awk ’-F|’ ’
;; /^#/ { next }
;; /^$/ { next }
;; $3 ~ /Operating Systems/ && $4 ~ /B/ { print $2 }
;; ’ list
Rodolfo Martínez
Joe Black
Luis Ibáñez
Ricardo Martínez
;

We had to tell AWK how fields are delimited using -F|, quoting it from the shell.
This option sets the characters used to delimit fields, i.e., the field delimiter.
Although it admits as an argument a regular expression, saying just | suffices for
us now. We also had to match the 3rd and 4th fields against desired values, and
print the student name for matching records.

Our plan is a follows. We are going to assume that a program adduser
exists. If it does not, we can always create it for our own purposes. Furthermore,
we assume that we must give the desired user name and the full student name as
arguments to this program, like in

; adduser rmartinez Rodolfo Martínez

Because it is not clear how to do all this, we experiment using the shell before plac-
ing all the bits and pieces into our list2usr shell script.

One way to invent a user name for each student is to pick the initial for the
first name, and add the last name. We can use sed for the job.

; name=’Luis Ibáñez’
; echo $name | sed ’s/(.)[^ ]+[ ]+(.*)/\1\2/’
LIbáñez
; name=’José Martínez’
; echo $name | sed ’s/(.)[^ ]+[ ]+(.*)/\1\2/’
JMartínez

But the user name looks funny, we should translate to lower case and, to avoid
problems for this user name when used in UNIX, translate accented characters to
their ascii equivalents. Admittedly, this works only for spanish names, because
other names might use different non-ascii characters and we wouldn’t be helping
our UNIX systems.

; echo LIbáñez | tr A-Z a-z | tr ’[áéíóúñ]’ ’[aeioun]’
libanez
;

But the generated user name may be already taken by another user. If that is the
case, we might try to take the first name, and add the initial from the last name. If
this user name is also already taken, we might try a few other combinations, but we
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won’t do it here.
; name=’Luis Ibáñez’
; echo $name | sed ’s/([^ ]+)[ ]+(.).*/\1\2/’ |
;; tr A-Z a-z | tr ’[áéíóúñ]’ ’[aeioun]’
luisi

How do we now if a user name is taken? That depends on the system where the
accounts are to be created. In general, there is a text file on the system that lists
user accounts. In Plan 9, the file /adm/users lists users known to the file server
machine. This is an example.

; sed 4q /adm/users
adm:adm:adm:elf,sys
aeverlet:aeverlet:aeverlet:
agomez:agomez:agomez:
albertop:albertop::

The second field is the user name, according to the manual page for our file server
program, fossil(4). As a result, this is how we can know if a user name can be used
for a new user.

; grep -s ’^[^:]+:’^$user^’:’ /adm/users && echo $user exists
nemo exists
; grep -s ’^[^:]+:’^rjim^’:’ /adm/users && echo rjim exists

The flag -s asks grep to remain silent, and only report the appropriate exits sta-
tus, which is what we want. In our little experiment, searching for $user in the
second field of /adm/users succeeds, as it could be expected. On the contrary,
there is no rjim known to our file server. That could be a valid user name to add.

There is still a little bit of a problem. User names that we add can no longer
be used for new user names. What we can do is to maintain our own users file,
created initially by copying /adm/users, and adding our own entry to this file
each time we produce an output line to add a new user name.

We have all the pieces. Before discussing this any further, let’s show the
resulting script.
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!list2usr !"""""""_______
#!/bin/rc

rfork e
users=/tmp/list2usr.$pid
cat /adm/users > $users
fn sigint { rm $users } ; fn sighup { rm -f $users }

fn listusers {
awk ’-F|’ ’
/^#/ { next }
/^$/ { next }
$3 ~ /Operating Systems/ && $4 ~ /B/ { print $2 }
’ $*

}

fn uname1 {
echo $* | sed ’s/(.)[^ ]+[ ]+(.*)/\1\2/’

}

fn uname2 {
echo $* | sed ’s/([^ ]+)[ ]+(.).*/\1\2/’

}

fn add {
if (grep -s ’^[^:]+:’^$1^’:’ $users)

status=exist
if not {

echo $1:$1:$1: >>$users
echo adduser $*
status=’’

}
}

listusers $* | tr A-Z a-z | tr ’[áéíóúñ]’ ’[aeioun]’ |
while(name=‘{read}){

add ‘{uname1 $name} $name ||
add ‘{uname2 $name} $name ||
echo ’#’ cannot determine user name for $name

}

rm -f $users
exit ’’

We have defined several functions, instead of merging it all in a single, huge, com-
mand line. The listusers function is our starting point. It encapsulates nicely
the AWK program to list just the student names for our course and group. The
script arguments are given to the function, which passes them to AWK. The next
couple of commands are our translations to use only lower-case ascii characters for
user names.

The functions uname1 and uname2 encapsulate our two methods for gener-
ating a user name. They receive the full student name and print the proposed user
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name. But we may need to try both if the first one yields an existing user name.
What we do is to read one line at a time the output from

listusers $* | tr A-Z a-z | tr ’[áéíóúñ]’ ’[aeioun]’

using a while loop and the read command, which reads a single line from the
input. Each line read is placed in $name, to be processed in the body of the
while. And now we can try to add a user using each method.

To try to add an account, we defined the function add. It determines if the
account exists as we saw. If it does, it sets status to a non-null value, which is
taken as a failure by the one calling the function. Otherwise, it sets a null status
after printing the command to add the account, and adding a fake entry to our
users file. In the future, this user name will be considered to exist, even though it
may not be in the real /adm/users.

Finally, note how the script catches interrupt and hangup notes by
defining two functions, to remove the temporary file for the user list. Note also
how we print a message when the program fails to determine a user name for the
new user. And this is it!

; list2usr list
adduser rmartinez rodolfo martinez
adduser jblack joe black
adduser libanez luis ibanez
adduser ricardom ricardo martinez

We admit that, depending on the number of students, it might be more trouble to
write this program than to open the accounts by hand. However, in all semesters to
follow, we can prepare the student accounts amazingly fast! And there is another
thing to take into account. Humans make mistakes, programs do not so as often.
Using our new tool we are not likely to make mistakes by adding an account with a
duplicate user name.

After each semester, we must issue grades to students. Depending on the
course, there are several separate parts (e.g., problems in a exam) that contribute to
the total grade. We can reuse a lot from our script to prepare a text file where we
can write down grades.
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!list2grades !" """""""""__________
#!/bin/rc

rfork e
nquestions=3
fn listusers {

awk ’-F|’ ’
/^#/ { next }
/^$/ { next }
$3 ~ /Operating Systems/ && $4 ~ /B/ { print $2 }
’ $*

}

listusers $* | awk ’
BEGIN { printf("%-30s\t", "Name");

for (i = 0; i < ’$nquestions’; i++)
printf("Q-%d\t", i+1);

printf("Total\n");
}
{ printf("%-30s\t", $0);

for (i = 0; i < ’$nquestions’; i++)
printf("-\t", i+1);

printf("-\n");
}

exit ’’

Note how we integrated $nquestions in the AWK program, by closing the
quote for the program right before it, and reopening it again. This program pro-
duces this output.

; list2grades list
Name Q-1 Q-2 Q-3 Total
Rodolfo Martínez - - - -
Joe Black - - - -
Luis Ibáñez - - - -
Ricardo Martínez - - - -

We must just fill the blanks, with the grades. And of course, it does not pay to
compute the final (total) grade by hand. The resulting file may be processed using
AWK for doing anything you want. You might send the grades by email to stu-
dents, by keeping their user names within the list. You might convert this into
HTML and publish it via your web server, or any other thing you see fit. Once the
scripts are done after the first semesters, they can be used forever.

And what happens when the bureaucrats change the format for the input list?
You just have to tweak a little bit listusers, and it all will work. If this hap-
pens often, it might pay to put listusers into a separate script so that you do
not need to edit all the scripts using it.
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9.6. File systems
There are many other tools available. Perhaps surprisingly (or not?) they are just
file servers. As we saw, a file server is just a process serving files. In Plan 9, a file
server serves a file tree to provide some service. The tree is implemented by a par-
ticular data organization, perhaps just kept in the memory of the file server process.
This data organization used to serve files is known as a file system. Before reading
this book, you might think that a file system is just some way to organize files in a
disk. Now you know that it does not need to be the case. In many cases, the pro-
gram that understands (e.g., serves) a particular file system is also called a file sys-
tem, perhaps confusingly. But that is just to avoid saying "the file server program
that understands the file system...#

All device drivers, listed in section 3 of the manual, provide their interface
through the file tree they serve. Many device drivers correspond to real, hardware,
devices. Others provide a particular service, implemented with just software. But in
any case, as you saw before, it is a matter of knowing which files provide the inter-
face for the device of interest, and how to use them. The same idea is applied for
many other cases. Many tools in Plan 9, listed in section 4 of the manual, adopt the
form of a file server.

For example, various archive formats are understood by programs like
fs/tarfs (which understands tape archives with tar(1) format), fs/zipfs
(which understands ZIP files), etc. Consider the tar file with music that we created
some time ago,

; tar tf /tmp/music.tar
alanparsons/
alanparsons/irobot.mp3
alanparsons/whatgoesup.mp3
pausini/
pausini/trateilmare.mp3
supertramp/
supertramp/logical.mp3

We can use tarfs to browse through the archive as if files were already extracted.
The program tarfs reads the archive and provides a (read-only) file system that
reflects the contents in the archive. It mounts itself by default at /n/tapefs, but
we may ask the program to mount itself at a different path using the -m option.

; fs/tarfs -m /n/tar /tmp/music.tar
; ns | grep tar
mount -c ’#|/data1’ /n/tar

The device #| is the pipe(3) device. Pipes are created by mounting this device (this
is what pipe(2) does). The file ’#|/data1’ is an end for a pipe, that was
mounted by tar at /n/tar. At the other end of the pipe, tarfs is speaking 9P,
to supply the file tree for the archive that we have mounted.

The file tree at /n/tar permits browsing the files in the archive, and doing
anything with them (other than writing or modifying the file tree).
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; lc /n/tar
alanparsons pausini supertramp
; lc /n/tar/alanparsons
irobot.mp3 whatgoesup.mp3
; cp /n/tar/alanparsons/irobot.mp3 /tmp
;

The program terminates itself when its file tree is finally unmounted.
; ps | grep tarfs
nemo 769 0:00 0:00 88K Pread tarfs
; unmount /n/tar
; ps | grep tarfs
;

The shell along with the many commands that operate on files represent a useful
toolbox to do things. Even more so if you consider the various file servers that are
included in the system.

Imagine that you have an audio CD and want to store its songs, in MP3 for-
mat, at /n/music/album. The program cdfs provides a file tree to operate on
CDROMs. After inserting an audio CD in the CD reader, accessed through the file
/dev/sdD0, we can list its contents at /mnt/cd.

; cdfs -d /dev/sdD0
; lc /mnt/cd
a000 a002 a004 a006 a008 a010
a001 a003 a005 a007 a009 ctl

Here, files a000 to a010 correspond to audio tracks in the CD. We can convert
each file to MP3 using a tool like mp3enc.

; for (track in /mnt/cd/a*) {
;; mp3enc $track /n/music/album/$track.mp3
;; }
...all tracks being encoded in MP3...

It happens that cdfs knows how to (re)write CDs. This example, taken from the
cdfs(4) manual page, shows how to duplicate an audio CD.

First, insert the source audio CD.
; cdfs -d /dev/sdD0
; mkdir /tmp/songs
; cp /mnt/cd/a* /tmp/songs
; unmount /mnt/cd
Now, insert a blank CD.
; cdfs -d /dev/sdD0
; lc /mnt/cd
; ctl wa wd
; cp /tmp/songs/* /mnt/cd/wa to copy songs as audio tracks
; rm /mnt/cd/wa to fixate the disk contents
; unmount /mnt/cd

For a blank CD, cdfs presents two directories in its file tree: wa and wd. Files
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copied into wa are burned as audio tracks. File copied into wd are burned as data
tracks. Removing either directory fixates the disk, closing the disk table of con-
tents.

If the disk is re-writable, and had some data in it, we could even get rid of the
previous contents by sweeping through the whole disk blanking it. It would be as
new (a little bit more thinner, admittedly).

; echo blank >/mnt/cd/ctl
blanking in progress...

When you know that it will not be the last time you will be doing something, writ-
ing a small shell script will save time in the future. Copying a CD seems to be the
case for a popular task.
!cdcopy !" """"""_______

#!/bin/rc
rfork ne
fn prompt { echo -n $1 ; read }

prompt insert the source CD
cdfs -d /dev/sdD0 || exit failed
if (! test -e /mnt/cd/a* ) {

echo not an audio CD
exit failed

}

echo copying CD contents...
mkdir /tmp/songs.$pid
cp /mnt/cd/a* /tmp/songs.$pid
unmount /mnt/cd

prompt insert a blank CD
cdfs -d /dev/sdD0 || exit failed
if (! test -e /mnt/cd/wa ) {

echo not a blank CD
exit failed

}

echo burning...
cp /tmp/songs.$pid/* /mnt/cd/wa
echo fixating...
rm /mnt/cd/wa
rm -r /tmp/songs.$pid
echo eject >/mnt/cd/ctl
unmount /mnt/cd

The script copies a lot of data at /tmp/songs.$pid. Hitting Delete,
might leave those files there by mistake. One fix would be to define a sigint
function. However, provided that machines have plenty of memory, there is another
file system that might help. The program ramfs supplies a read/write file system
that is kept in-memory. It uses dynamic memory to keep the data for the files cre-
ated in its file tree. Ramfs mounts itself by default at /tmp. So, adding a line
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ramfs -c

before using /tmp in the script will ensure that no files are left by mistake in
$home/tmp (which is what is mounted at /tmp by convention).

Like most other file servers listed in section 4 of the manual, ramfs accepts
flags -abc to mount itself after, before, and allowing file creation. Two other
popular options are -m dir, to choose where to mount its file tree, and -s srvfile, to
ask ramfs to post a file at /srv, for mounting it later. Using these flags, we may
able to compile programs in directories where we do not have permission to write.

; ramfs -bc -m /sys/src/cmd
; cd /sys/src/cmd
; 8c -FVw cat.c
; 8l -o 8.cat cat.8
; lc 8.* cat.*
8.cat cat.8 cat.c
; rm 8.cat cat.8

After mounting ramfs with -bc at /sys/src/cmd, new files created in this
directory will be created in the file tree served by ramfs, and not in the real
/sys/src/cmd. The compiler and the loader will be able to create their output
files, and we will neither require permission to write in that directory, nor leave
unwanted object files there.

The important point here is not how to copy a CD, or how to use ramfs.
The important thing is to note that there are many different programs that allow
you to use devices and to do things through a file interface.

When undertaking a particular task, it will prove to be useful to know which
file system tools are available. Browsing through the system manual, just to see
which things are available, will prove to be an invaluable help, to save time, in the
future.

Problems
1 Write a script that copies all the files at $home/www terminated in .htm to

files terminated in .html.
2 Write a script that edits the HTML in those files to refer always to .html

files and not to .htm files.
3 Write a script that checks that URLs in your web pages are not broken. Use

the hget command to probe your links.
4 Write a script to replace duplicate empty lines with a single empty line.
5 Write a script to generate (empty) C function definitions from text containing

the function prototypes.
6 Do the opposite. Generate C function prototypes from function definitions.
7 Write a script to alert you by e-mail when there are new messages in a web

discussion group. The mail must contain a portion of the relevant text and a
link to jump to the relevant web page.

8 Hint: The program htmlfmt may be of help.
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9 Improve the scripts resulting from answers to problems for the last chapter
using regular expressions.



.



10 ! Concurrency
______

10.1. Synchronization
In the discussion of rfork that we had time ago, we did not pay attention to what
would happen when a new process is created sharing the parent’s memory. A call
like

rfork(RFPROC|RFMEM)

is in effect creating a new flow of control within our program. This is not new, but
what may be new is the nasty effects that this might have if we are not careful
enough.

We warned you that, in general, when more than one process is sharing some
data, there may be race conditions. You could see how two processes updating the
same file could lead to very different contents in the file after both processes com-
plete, depending on when they did their updates with respect to each other. Sharing
memory is not different.

What happens is that the idea that you have of sequential execution for your
program in an isolated world is no longer true. We saw that when more than one
process was trying to update the same file, the resulting file contents might differ
from one run to another. It all depends on when did each process change the data.
And this is what we called a race condition. Consider this program.
!rincr.c !" """"""_______

#include <u.h>
#include <libc.h>

int cnt;

void
main(int, char*[])
{

int i;

if (rfork(RFPROC|RFMEM|RFNOWAIT) < 0)
sysfatal("fork: %r");

for (i = 0; i < 2; i++)
cnt++;

print("cnt is %d\n", cnt);
exits(nil);

}

It creates a child process, and each one of the processes increment a counter twice.
The counter is shared, because the call to rfork uses the RFMEM flag, which
causes all the data to be shared between parent and child. Note that only cnt,
which is a global, is shared. The local variable i lives on the stack which is private,
as it should be.
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Executing the program yields this output.
; 8.rincr
cnt is 2
cnt is 4
;

We now declare an integer local variable, loc, and replace the body of the loop
with this code, equivalent to what we were doing.

loc = cnt;
loc++;
cnt = loc;

It turns out that this is how cnt++ is done, by copying the memory value into a
temporary variable (kept at a register), then incrementing the register, and finally
updating the memory location for the variable with the incremented value. The
result for this version of the program remains the same.

; 8.rincr
cnt is 2
cnt is 4
;

But let’s change a little bit more the program. Now we replace the body of the loop
with these statements.

loc = cnt;
sleep(1);
loc++;
cnt = loc;

The call to sleep does not change the meaning of the program, i.e., what it does.
However, it does change the result! The call to sleep exposed a race condition
present in all the versions of the program.

; 8.rincr
cnt is 2
cnt is 2

Both processes execute one instruction after another, but you do not know when
the operating system (or any external event) will move one process out of the pro-
cessor or move it back to it. The result is that we do not know how the two
sequences of instructions (one for each process), will be merged in time. Despite
having just one processor that executes only a sequence of instructions, any merge
of instructions from the first and the second process is feasible. Such a merge is
usually called an interleaving.

Perhaps one process executes all of its statements, and then the second. This
happen to the for loop in all but the last version of the program. On the other
hand, perhaps one process executes some instructions, and then the other, and so
on. Figure 10.1 shows the interleaving of statements that resulted from our last
modification to the program, along with the values for the two local variables loc,
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and the global cnt. The initial call to rfork is not shown. The statements corre-
sponding to the loop itself are not shown either.

Parent Child

loc: ? cnt: 0 loc: ?

loc = cnt
sleep

loc: 0 cnt: 0 loc: ?

loc = cnt
sleep

loc: 0 cnt: 0 loc: 0

loc++
cnt = loc
loc = cnt
sleep

loc: 1 cnt: 1 loc: 0

loc++
cnt = loc
loc = cnt
sleep

loc: 1 cnt: 1 loc: 1

loc++
cnt = loc
loc = cnt
sleep

loc: 2 cnt: 2 loc: 1

loc++
cnt = loc
loc = cnt
sleep

loc: 2 cnt: 2 loc: 2

print

print

Figure 10.1: One interleaving of statements for the two processes (last version of the program).

What you see is that something happens while one process is happily incre-
menting the variable, by copying the global counter to its local, incrementing the
local, and copying back the local to the shared counter, While one process is per-
forming its increment, the other process gets in the way. In the sequence of state-
ments
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loc = cnt;
loc++;
cnt = loc;

we assume that right after the the first line, loc has the value that is kept in the
shared variable. We further assume that when we execute the last line, the global
variable cnt has the value it had when we executed the first line.

That is no longer true. Because there is another process that might change
cnt while we are doing something else. The net effect in this case is that we lose
increments. The counter should end up with a value of 4. But it has the value 2 at
the end. The same would happen if the interleaving had been like follows.
1 Process 1: Consult the variable
2 Process 2: Consult the variable
3 Process 1: Increment
4 Process 2: Increment
5 Process 1: Update the variable
6 Process 2: Update the variable
This interleaving also loses increments. This is because of the race condition result-
ing from using the shared cnt in two different processes without taking any pre-
caution.

Why did our last program exhibit the race condition but others did not?
Because calling sleep puts the process to sleep, in the blocked state, and the sys-
tem is very likely to let the other process run while we sleep. We are forcing a con-
text switch at the place where we call sleep. Nevertheless, the previous versions
for the program are broken as well. We do not know if the system is going to
decide to switch from one process to another in the middle of our loop. What hap-
pened is that in our case, the system did not switch. It was not too probable to have
a context switch right in the middle, but it could happen.

Instructions are said to execute atomically, because one instruction is not
interrupted in the middle to do something else. Interrupts happen at the end of
instructions, but not in the middle. However, even cnt++ is implemented using
several instructions, along the lines of our late versions for the program. This
means that another process may get in the way, even in the middle of something
like cnt++. The same applies to if conditions and to any other statement.

What we need is some way to synchronize multiple processes. That is, to
arrange for multiple processes to agree regarding when is a good time to do particu-
lar operations. In the rest of this chapter, and in the following one, we are going to
explore some abstractions provided by Plan 9 that can be used to synchronize pro-
cesses. We are going to focus on synchronizing processes that share memory.
When they do not share memory, pipes are excellent synchronization means, and
you have already used them.
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10.2. Locks
How do we solve the problem? The race condition happens because more than one
process may simultaneously use a shared resource, i.e. the global counter. This is
what breaks the assumption that cnt does not change between lines (1) and (3) in

(1) loc = cnt;
(2) loc++;
(3) cnt = loc;

Furthermore, the reason why more than one process may use cnt simultaneously
is because this block of code is not atomic. It is not a single instruction, which
means that in the middle of the block there may be a context switch, and the other
process may change cnt or consult it while we are in the middle of a change.

On the contrary, the executions for the first two versions of our program
behaved as if this block of code was atomic. It just happen that one process exe-
cuted the problematic code, and then the other. The code was executed without
being interrupted by the other process in the middle of the update for cnt. And
the net effect is that the program worked! We now know that we were just lucky,
because there could have been a context switch in the middle. But the point is that
when the block of code behaves as an atomic instruction, there are no races, and the
program behaves nicely.

Parent Child

cnt: 0

cnt++

cnt: 1

cnt++

cnt: 2

(a)

Parent Child

cnt: 0

cnt++

cnt: 1

cnt++

cnt: 2

(b)

Figure 10.2: Incrementing a shared counter using an atomic increment operation. No races.

Why is this so? Consider our two processes trying to increment the global
counter, as shown in figure 10.2. Imagine also that cnt++ was a single instruc-
tion. One of the two processes is going to execute cnt++ before the other. It could
happen what figure 10.2 (a) shows, or what is shown in 10.2 (b). There is no other
case. As we are assuming that this is an atomic (non divisible) instruction, the
increment is performed correctly. There can be no context switch in the middle.
Now, when the other process executes its cnt++, it finds cnt already incre-
mented, and no increment is missed. There is no race. The only two possibilities
are those depicted in figure 10.2.

Of course, we do not know the order in which increments are going to be
made. Perhaps the parent in our program does its two increments, and then the
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child, or perhaps the other way around, or perhaps in some interleaved way. No
matter the order, the program will yield the expected result if the increments are
atomic, as we just discussed.

The code where we are using a shared resource, which poses problems when
not executed atomically, is called a critical region. It is just a piece of code
accessing a shared resource. A context switch while executing within the critical
region may be a problem. More precisely, the problem is not having a context
switch, but switching to any other process that might also use or change the shared
resource. For example, it does not matter if while we are incrementing our counter,
Acme runs for a while. Acme does not interfere because we are not sharing our
counter with it. This is the last program, with the critical region shown inside a
box.
!rincr2.c !" """""""________

#include <u.h>
#include <libc.h>

int cnt;

void
main(int, char*[])
{

int i;
int loc;

if (rfork(RFPROC|RFMEM|RFNOWAIT) < 0)
sysfatal("fork: %r");

for (i = 0; i < 2; i++){
loc = cnt;
sleep(1);
loc++;
cnt = loc;

}
print("cnt is %d\n", cnt);
exits(nil);

}

Given our critical region, If we could guarantee that at most one process is execut-
ing inside it, there would be no race conditions. The reason is that the region
would appear to be atomic, at least with respect to the processes trying to execute
it. There could be any number of context switches while executing the region, but
no other process would be allowed to enter it until the one executing it does leave
the region. Thus, only one process would be using the shared resource at a given
time and that is why there would be no races.

Guaranteeing that no more than one process is executing code within the criti-
cal region is called achieving mutual exclusion, because one process executing
within the region excludes any other one from executing inside (when there is
mutual exclusion).

How can we achieve mutual exclusion for our critical region? The idea is
that when a process is about to enter the critical region, it must wait until it is sure
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that nobody else is executing code inside it. Only in that case it may proceed. To
achieve this we need new abstractions.

A lock is a boolean variable (or an integer used as a boolean) used to indicate
if a critical region is occupied or not. A process entering the critical region sets the
lock to true, and resets the lock to false only after leaving the region. To enter the
region, a process must either find the lock set to false or wait until it becomes false,
otherwise there would be more than one process executing within the critical region
and we would have race conditions.

The intuition is that the lock is a variable that is used to lock a resource (the
region). A process wanting to use the shared resource only does so after locking it.
After using the resource, the process unlocks it. While the resource is locked,
nobody else will be able to lock it and use it.

Using locks, we could protect our critical region by declaring a Lock vari-
able, cntlck, calling lock on it (to set the lock) before entering the critical
region, and calling unlock on it (to release the lock) after leaving the region. By
initializing the variable to zero, the lock is initially released (remember that globals
are initialized to zero by default).

; sig lock unlock
void lock(Lock *l)
void unlock(Lock *l)

The resulting program is shown next.
!lock.c !" """""______

#include <u.h>
#include <libc.h>

int cnt;
Lock cntlck;

void
main(int, char*[])
{

int i;

if (rfork(RFPROC|RFMEM|RFNOWAIT) < 0)
sysfatal("fork: %r");

for (i = 0; i < 2; i++){
lock(&cntlck);
cnt++;
unlock(&cntlck);

}
print("cnt is %d\n", cnt);
exits(nil);

}

Just to make it more clear, we can replace cnt++ with
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loc = cnt;
sleep(1);
loc++;
cnt = loc;

and the program will in any case work as expected. Each process would loop and
do its two increments, without interference from the other process.

When our two processes try to execute the critical region, one of them is
going to execute lock(&cntlck) first. That one wins and gains the lock. The
region is now locked. When the second process calls lock(&cntlck) it finds
the lock set, and waits inside the function lock until the lock is released and can
be set again. The net effect is that we achieve mutual exclusion for our critical
region.

Note that the output from the program may still be the same than that of our
first two versions, but those versions were incorrect. They are poltergeists, awaiting
for the worst time to happen. When you do not expect them to misbehave, they
would miss an increment, and the program with the race will fail in a mysterious
way that you would have to debug. That is not fun.

By the way, did we lie? We said that locks are boolean variables, but we
declared cntlck as a structure Lock. This is how Lock is defined in libc.h

typedef
struct Lock {

int val;
} Lock;

The lock is also a shared variable. It would not make sense to give each process its
own lock. The lock is used to synchronize both processes, to make them agree
upon when is it safe to do something. Therefore, it must be shared. That means that
if you write two C functions for implementing lock and unlock, they would
have race conditions!

The implementation for unlock is simple, it sets Lock.val to false. The
implementation for lock is more delicate. It is made in assembly language to use
a single machine instruction capable of consulting the lock and modifying it, all
that within the same instruction. That is reasonable. If we do not both consult the
lock (to see if it is set) and update it within an atomic instruction, there would be
race conditions. There are several kinds of test-and-set instructions, that test a vari-
able for a value but also modify it. A famous one is precisely called TAS, or test
and set.

Using TAS, here is a description of how to implement a lock function.
loop:

MOVL lock, A0 put address of lock in register A0
TAS (A0) test-and-set word at memory address in A0
BNE loop if the word was set, continue the loop
RTS return otherwise

To emphasize it even more, the key point why this works at all is because TAS is
atomic. It puts a non-zero value at the address for the lock and sets the processor
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flag to reflect if the previous value was not-zero or was zero.
In this loop, if a process is trying to set the lock and finds that it was set, TAS

will set an already set lock (store 1 in the lock that already was 1), and that opera-
tion would be harmless. In this case, TAS would report that the lock was set, and
the process would be held in the loop waiting for the lock to be released. On the
other hand, if the process trying to set the lock executes TAS while the lock was
not set, this instruction will both set the lock and report that it was clear. When
more than one process call lock(), one of them is going to run TAS first. That
one wins.

To play with locks a little bit, we are going to implement a tiny program.
This program has two processes. One of them will always try to increment a
counter. The other, will be trying to decrement it. However, we do not allow the
counter to be negative. If the process decrementing the counter finds that the value
is zero, it will just try again later. Once per second, one of the processes prints the
counter value, to let us see what is happening.

In the program, we print in boldface statements that are part of a critical
region. As you can see, any part of the program where cnt is used is a critical
region. Furthermore, note that even print is in the critical region if it is printing
cnt, because we do not want cnt to change in the middle of a print.
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!cnt.c !" """"_____
#include <u.h>
#include <libc.h>

int cnt;
Lock cntlck;

void
main(int, char*[])
{

long last, now;

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){
case -1:

sysfatal("fork: %r");
case 0:

last = time(nil);
for(;;){

lock(&cntlck);
assert(cnt >= 0);
cnt++;
unlock(&cntlck);
now = time(nil);
if (now - last >= 1){

lock(&cntlck);
print("cnt= %d\n", cnt);
unlock(&cntlck);
last = now;

}
}

default:
for(;;){

lock(&cntlck);
assert(cnt >= 0);
if (cnt > 0)

cnt--;
unlock(&cntlck);

}
}

}

Also, in the parent process, both the check for cnt>0 and the cnt-- must be part
of the same critical region. Otherwise, the other process might have changed cnt
between the if and its body.

The idea is simple. If you want to be sure that no other process is even touch-
ing the shared resource while you are doing something, you must provide mutual
exclusion for your critical region. As you see, one way is to use a Lock along the
shared resource, to lock it. An example execution follows.
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; 8.cnt
cnt= 2043
cnt= 1
cnt= 1
cnt= 0
cnt= 4341
cnt= 1
cnt= 2808
cnt= 0
cnt= 1
cnt= 1400
cnt= 1

The value moves in bursts, up as the child manages to increment it, and down when
the parent manages to decrement it many times. The value printed was 1 when the
child finds a zero counter, increments it, and prints its value. The value printed is
zero when, after the parent increments the counter, the child manages to decrement
it before the parent prints its value.

It is very important to maintain critical regions as small as possible. If a pro-
cess keeps a resource locked most of the time, other processes will experience
many delays while trying to acquire the resource. Or even worse, if we are not care-
ful, it may be that a process is never able to acquire a lock it needs, because it
always finds the resource locked. Look at this variant of our last program, that we
call cnt2.

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){
case 0:

last = time(nil);
for(;;){

lock(&cntlck);
assert(cnt >= 0);
cnt++;
print("%d\n", cnt);
unlock(&cntlck);

}
default:

for(;;){
lock(&cntlck);
assert(cnt >= 0);
if (cnt > 0)

cnt--;
print("%d\n", cnt);
unlock(&cntlck);

}
}

Now look at this:
; 8.cnt2 | grep -v 0

and no number is ever shown!

We asked grep to print only lines that do not contain a 0. It seems that all lines in
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the output report a zero value for cnt. Is it that the child process is not executing?
We can use the debugger to print the stack for the child.

; ps | grep 8.cnt2
nemo 5153 0:00 0:01 28K Pwrite 8.cnt2
nemo 5155 0:00 0:00 28K Sleep 8.cnt2

; acid 5155
/proc/5155/text:386 plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/386
acid: stk()
sleep()+0x7 /sys/src/libc/9syscall/sleep.s:5
lock(lk=0x702c)+0x47 /sys/src/libc/port/lock.c:16
main()+0x90 /usr/nemo/9intro/cnt2.c:19
_main+0x31 /sys/src/libc/386/main9.s:16
acid:

The child process is always trying to lock the resource, inside lock()! What hap-
pens is that the parent is holding the lock almost at all times. The parent only
releases the lock for a very brief time, between the end of an iteration and the
beginning of the next iteration. Only if during this time there is a context switch,
and the child is allowed to run, will the child be able to acquire the lock. But it
seems that in our case the system always decides to let the child run while the par-
ent is holding the lock.

This is called starvation. A process may never be able to acquire a resource,
and it will starve to death. It can be understood that this may happen to our pro-
gram, because only for a very little fraction of time the lock is released by the par-
ent. The most probable thing is that once a process gets the lock, the other one will
never be able to acquire it.

Look at the stack trace shown above. Did you notice that lock calls sleep?
You know that the system gives some processor time to each process, in turns. If
the implementation for lock was the one we presented before in assembly lan-
guage, we would be wasting a lot of processor time. Figure 10.3 depicts the execu-
tion for our two processes, assuming that lock is implemented as we told before.
In the figure, a solid line represents a process that is running, in the processor. A
dotted line represents a process that is ready to run, but is not running in the pro-
cessor. The figure shows how the system gives some time to each process for run-
ning, in turns.

Initially, the parent calls lock, and acquires the lock because it was initially
released. Later, the parent process releases the lock by a call to unlock, but it
quickly calls lock again, and re-acquires the lock. Now it is the time for the child
process to run. This poor process calls lock, but you know what happens. The
routine cannot acquire the lock, which is held by the parent process. Therefore, it
waits in its loop calling TAS to try to gain the lock. That is all this process would
do while it is allowed to remain running. The very thick line in the figure repre-
sents the process executing this while, spinning around desperately hoping for TAS
to succeed and obtain the lock. Because of this, this kind of lock is called a spin
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Parent Run. . . . . . . . . . . . . . . . . . . . . .Rdy. Run. . . . . . . . . . . . . . . . . . . . . .Rdy. Run.

lock

unlock

Child. . . . . . . . . . . . . . . . . . . . .Rdy. Run. . . . . . . . . . . . . . . . . . . . . .Rdy. Run. . . . . . . . . . . . . . . . . . . . . .Rdy.

calls lock, which spins around trying to acquire it.
Time

Figure 10.3: Two processes using a shared resource protected by a spin lock.

lock.
One problem with this execution, as you already know, is that the child suf-

fers starvation, and is very likely to never acquire its lock. This can be solved by
trying to hold locks for the least time as feasible, unlike we are doing in our pro-
gram. The other problem that you may see is that the child is wasting processor
time. When the child calls lock, and finds that the lock was held and it cannot
acquire it, it is pointless to keep on trying to acquire it. Unless the child leaves the
processor, and the process holding the lock is able to run, nobody is going to
release the lock. Therefore, it is much better to let other processes run instead of
insisting. This may give the one holding the lock a chance to release it. And that is
better for us, because we want to acquire it.

In the actual implementation of lock in Plan 9, when lock finds that the
lock is held and cannot be set, it calls sleep. This moves the process out of the
processor, while it is blocked during the sleep. Hopefully, after sleeping a little bit,
the lock will be already released. And, at the very least, we will not be wasting pro-
cessor time spinning around inside lock without any hope of acquiring the lock
before leaving the processor. Figure 10.4 depicts the same scenario for our two pro-
cesses, but showing what happens when lock calls sleep. Compare it with the
previous one.

One last remark. Because of the call to sleep, Plan 9 locks are not real spin
locks. They do not spin around in a while all the time. As you now know, they call
sleep(0), just to abandon the processor and let others run if the lock was held.
However, because they are very similar, and loop around, many people refer to
them as spin locks.

10.3. Queueing locks
How can avoid starvation in our program? The code for both processes was very
similar, and had a nice symmetry. However, the execution was not fair. At least for
the child process. There is a different kind of lock (yet another abstraction) that
may be of help.

A queueing lock is a lock like the ones we know. It works in a similar way.
But unlike a spin lock, a queueing lock uses a queue to assign the lock to processes
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Parent Run. . . . . . . .Rdy. Run. . . . .Rdy. Run.

lock

unlock

Child . . . . . . . . . . . . . . . . . . . . .Rdy. Run. Blk. . . . . . . . . . . .Rdy. Blk. . . . . . . . . . . . . . . .Rdy.

calls lock, which calls sleep this time

No luck. Calls sleep

Time

Figure 10.4: Same scenario, but using a lock that calls sleep to save processor time.

that want to acquire it. The data type for this lock is QLock, and the functions for
acquiring and releasing the lock are qlock and qunlock.

; sig qlock qunlock
void qlock(QLock *l)
void qunlock(QLock *l)

When a process calls qlock, it acquires the lock if the lock is released. However,
if the lock is held and cannot be acquired yet, the process is put in a queue of pro-
cesses waiting for the lock. When the lock is released, the first process waiting in
queue for the lock is the one that acquires it.

There is a huge difference between Locks and QLocks because of the
queue used to wait for the lock. First, a process is not kept spinning around waiting
for a lock. It will be waiting, but blocked, sitting in the queue of waiting processes.
Second, the lock is assigned to processes in a very fair way. The first process that
entered the queue to wait for the lock would be the first to acquire it after the lock
is released. Because of both reasons, it is always a good idea to use QLocks
instead of Locks. The spin locks are meant for tiny critical regions with just a
few instructions. For example, the data structure used to implement a QLock is
protected by using a Lock. Such spin lock is held just for a very short time, while
updating the QLock during a call to qlock or qunlock.

Our (in)famous program follows, but using queueing locks this time.
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!qcnt.c !" """""______
#include <u.h>
#include <libc.h>

int cnt;
QLock cntlck;

void
main(int, char*[])
{

long last, now;

switch(rfork(RFPROC|RFMEM|RFNOWAIT)){
case -1:

sysfatal("fork: %r");
case 0:

last = time(nil);
for(;;){

qlock(&cntlck);
assert(cnt >= 0);
cnt++;
print("%d\n", cnt);
qunlock(&cntlck);

}
default:

for(;;){
qlock(&cntlck);
assert(cnt >= 0);
if (cnt > 0)

cnt--;
print("%d\n", cnt);
qunlock(&cntlck);

}
}

}

Note the huge difference in behavior. An execution for this program follows. As
you can see, this time, both processes take turns. This happens because of the
queue. The lock is assigned in a very fair way, and both processes get a chance to
do their job.

; 8.qcnt
0
0
1
0
1
0

To do something more useful, we are going to implement a tool to update ticker-
tape panels at an airport. This program is going to read lines from standard input.
When a new message must be displayed at the airport panels, the user is supposed
to type the message in the keyboard and press return.
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Once a new message has been read, all the panels must be updated to display
it instead of the old one. Because updating a panel is a very slow operation, we do
not want to use a loop to update each one in turn. Instead, we create one process
per panel, as shown in figure 10.5.

read reader
process

update message poll

panel
process

write

panel
process

write

panel
process

write

Figure 10.5: Process structure for the ticker-tape panels application for the airport.

The parent process will be the one reading from the input. After reading a
new message, it will increment a version number for the message along with the
message text itself. The panel processes will be polling the version number, to see
if their messages are out of date. If they are, they will just write the new message to
their respective panels, and record the version for the message. This is our data
structure.

typedef struct Msg Msg;
struct Msg {

QLock lck; // to protect the other fields
char* text; // for the message
ulong vers; // for the message

};

Msg msg;

The code for the message reader is as follows. It works only when reading from the
terminal, because it is using just read to read a line from the input.
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void
reader(void)
{

char buf[512];
int nr;

for(;;){
nr = read(0, buf, sizeof(buf)-1);
if (nr <= 0)

break;
buf[nr] = 0;
qlock(&msg.lck);
free(msg.text);
msg.text = strdup(buf);
msg.vers++;
qunlock(&msg.lck);

}
exiting = 1;
exits(nil);

}

The critical region, updating the message text and its version, is protected by the
QLock kept at msg.lck. This lock is kept within msg because it is used to pro-
tect it. If the program grows and there are more data structures, there will be no
doubt regarding what data structure is protecting msg.lck.

Each panel process will be running a panelproc function, and receive a
file descriptor that can be used to write a message to the file representing the panel.

void
panelproc(int fd)
{

ulong lastvers = -1;

do {
qlock(&msg.lck);
if(msg.text != nil && lastvers != msg.vers){

write(fd, msg.text, strlen(msg.text));
lastvers = msg.vers;

}
qunlock(&msg.lck);
sleep(5 * 1000);

} while(!exiting);
fprint(2, "panel exiting\n");
exits(nil);

}

The local lastvers keeps the version for the message shown at the panel. Basi-
cally, panelproc loops and, once each 5 seconds, checks out if msg.vers
changed. If it did, the new text for the message is written to the panel. The initial
value for lastvers is just a kludge to be sure that the message is updated the
very first time (in that case, there is no previous version). Note how the critical
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region includes both the checks in the condition of the if and the statements used
to access msg in the body.

Before discussing other details of this program, let’s see how the whole pro-
gram looks like.
!ticker.c !" """""""________

#include <u.h>
#include <libc.h>

typedef struct Msg Msg;
struct Msg {

QLock lck; // to protect the other fields from races
char* text; // for the message
ulong vers; // for the message

};
int exiting;
Msg msg;

void
reader(void)
{

char buf[512];
int nr;

for(;;){
nr = read(0, buf, sizeof(buf)-1);
if (nr <= 0)

break;
buf[nr] = 0;
qlock(&msg.lck);
free(msg.text);
msg.text = strdup(buf);
msg.vers++;
qunlock(&msg.lck);

}
exiting = 1;
exits(nil);

}
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void
panelproc(int fd)
{

ulong lastvers = -1;

while(!exiting){
qlock(&msg.lck);
if(msg.text != nil && lastvers != msg.vers){

write(fd, msg.text, strlen(msg.text));
lastvers = msg.vers;

}
qunlock(&msg.lck);
sleep(5 * 1000);

}
fprint(2, "panel exiting\n");
exits(nil);

}

enum { Npanels = 3 };

void
main(int, char*[])
{

int i;

for (i = 0; i < Npanels; i++)
if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)

panelproc(1);
reader();
/* does not return */

}

It creates one process per panel, and then executes the reader code using the par-
ent process. To test the program, we used the standard output as the file descriptor
to write to each one of the panels.

When a program is built using multiple processes, it is important to pay atten-
tion to how the program is started and how is it going to terminate. In general, it is
best if the program works no matter the order in which processes are started. Other-
wise, initialization for the program will be more delicate, and may fail mysteriously
if you make a mistake regarding the order in which processes are started. Further-
more, you do not know how fast they are going to run. If you require certain order
for the starting up of processes, you must use a synchronization tool to guarantee
that such order is met.

For example, a panelproc should not write a message to its panel before
there is at least one message to print. All panelprocs should be waiting,
silently, until reader has got the chance of reading the first message and updating
the data structure. The program does so by checking that msg.text is not nil in
panelproc before even looking at the message. The msg.text will be a null
value until the reader initializes it for the first time. As a result, if we start the
panel processes after starting the reader, the program will still work.
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Termination is also a delicate thing. Now that there are multiple processes,
when the program terminates, all the processes should exit. How to achieve this in
a clean way, it depends on the problem being solved. In this case we decided to use
a global flag exiting. No panelproc will remain in its while when
exiting is true. Therefore, all we have to do to terminate the program is to set
exiting to 1, as we do in the reader after reaching the end of file. Later, as panel
processes awake from their sleep and check exiting, they will call exits and
terminate themselves.

This is an example execution for the program. Note how the panel processes
terminate after we have sent the end of file indication.

; 8.ticker
Iberia arriving late for flight 666
Iberia arriving late for flight 666
Iberia arriving late for flight 666
Iberia arriving very late for flight 666
Iberia arriving very late for flight 666
Iberia arriving very late for flight 666
control-d
; panel exiting
panel exiting

If you look at the program, you will notice that after we have updated the message,
the panel processes will acquire the msg.lck in sequence as they write their pan-
els, one after another. If the data structure msg is consulted a lot, the whole pro-
gram will be very slow due to delays caused by the use of a QLock to protect the
data. While a panel process is writing to the panel, no other panel process will be
able to even touch the message. We can improve things a little bit by writing to the
panel outside of the critical region. By doing so, other panel processes will be
allowed to gain the lock and consult the message as well.
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void
panelproc(int fd)
{

ulong lastvers = -1;
char* text;

do {
text = nil;
qlock(&msg.lck);
if(msg.text != nil && lastvers != msg.vers){

text = strdup(msg.text);
lastvers = msg.vers;

}
qunlock(&msg.lck);
if (text != nil){

write(fd, text, strlen(text));
free(text);

}
sleep(5 * 1000);

} while(!exiting);
fprint(2, "panel exiting\n");
exits(nil);

}

Here, we moved the write outside of the critical region. Because the panel itself
(i.e., its file) is not being shared in our program, we do not need to protect from
races while writing it. We created one process for each panel and that was nice.

But we can do much better. Are there races when multiple processes are just
reading a data structure? While nobody is changing anything, there are no races!
During a long time, all the panel processes will be polling msg, reading its mem-
ory, and the input process will be just blocked waiting for a line. It would be nice
to let all the panel processes to access the data structure at the same time, in those
periods when nobody is modifying msg.

Plan 9 has read/write locks. A read/write lock, or RWLock, is similar to a
queuing lock. However, it makes a distinction between readers and writers of the
resource being protected by the lock. Multiple readers are admitted to hold the very
same RWLock, at the same time. However, only one writer can hold a RWLock,
and in this case there can be no other reader or writer. This is also called a
multiple-reader single-writer lock.

Processes that want to acquire the lock for reading must use rlock and
runlock.

; sig rlock runlock
void rlock(RWLock *l)
void runlock(RWLock *l)

Processes that want to acquire the lock for writing must use wlock, and
wunlock.
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; sig wlock wunlock
void wlock(RWLock *l)
void wunlock(RWLock *l)

The improved version for our program requires a change in the data structure, that
must use a RWLock now.

struct Msg {
RWLock lck; // multiple readers/one writer.
char* text; // for the message
ulong vers; // for the message

}

The new code for panelproc must acquire a lock for reading, but is otherwise
the same.

void
panelproc(int fd)
{

...as before...
rlock(&msg.lck);
if(msg.text != nil && lastvers != msg.vers){

text = strdup(msg.text);
lastvers = msg.vers;

}
runlock(&msg.lck);

...as before...
}

And the process writing to the data structure now requires a write lock.
void
reader(void)
{

...as before...
wlock(&msg.lck);
free(msg.text);
msg.text = strdup(buf);
msg.vers++;
wunlock(&msg.lck);

...as before...
}

If you want to feel the difference between the version using QLocks and the one
using RWLocks, try to increase the number of panels to 15, and make the
panelprocs take a little bit more time to read msg, for example, by using
sleep to make them hold the lock for some time. In the first time, messages will
slowly come out to the panels (or your standard output in this case). If each pro-
cess holds the lock for a second, the 15th process acquiring the lock will have to
wait at least 15 seconds. In the second case, all of the pannels will be quickly
updated. Furthermore, using the RWLock keeps the resource locked for less time,
because the readers are now allowed to overlap.
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Writer resource
locked

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reader 1 . . . . . . . . . . . . . . . . . . . . . resource
locked

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reader 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . resource
locked

. . . . . . . . . . . . . . . . . . . . .

Reader 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . resource
locked

Figure 10.6: Multiple readers make turns to read when using a queuing lock.

This is shown in figures 10.6 and 10.7. Both figures assume that initially, the
writer and all the readers try to acquire the lock (the time advances to the right).
When using a queueing lock, look at what happens to the readers. Compare with
the next figure, which corresponds to using a read/write lock.

Writer resource
locked

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reader 1 . . . . . . . . . . . . . . . . . . . . . resource
locked

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reader 2 . . . . . . . . . . . . . . . . . . . . . . . resource
locked

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reader 3 . . . . . . . . . . . . . . . . . . . . . . . . . resource
locked

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 10.7: Multiple readers may share the lock at the same time using a read/write lock.

When there is not much competition to acquire the lock, or when there are not
many readers, the difference may be unnoticed. However, locks heavily used with
many processes that just want to read the data, can make a difference between both
types of locks.

10.4. Rendezvous
A primitive provided to synchronize several processes is rendezvous. It

has this name because it allows two different processes to rendezvous, i.e., to meet,
at a particular point in their execution. This is the interface.
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; sig rendezvous
void* rendezvous(void* tag, void* value)

When a process calls rendezvous with a given tag, the process blocks until
another process calls rendezvous with the same tag. Thus, the first process to
arrive to the rendezvous will block and wait for the second to arrive. At that
point, the values both processes gave as value are exchanged. That is,
rendezvous for each process returns the value passed to the call by the other
process. See figure 10.8.

Process A

calls: rendezvous(tag, "hi")
...........

Waiting...

call returns: "there"

time

Process B

calls: rendezvous(tag, "there")
call returns: "hi"

time

rendezvous

Figure 10.8: Two processes doing a rendezvous.

The tag used for the rendezvous represents the meeting-point where both
processes want to rendezvous. The ability to exchange values makes the primitive
more powerful, and converts it into a generic communication tool for use when
synchronization is required. In general, any two processes may rendezvous. It is
not necessary for them to share memory. Of course, the values supplied as tags
and values cannot be used to point to shared variables when the processes are not
sharing memory, but that is the only limitation. The values are still exchanged even
if memory is not shared.

The following program creates a child process, which is supposed to run an
HTTP server. To execute nicely in the background, all the work is done by the
child, and not by the parent. This way, the user does not need to add an additional
& when starting the program from the shell. However, before doing the actual
work, the child must initialize its data structures and perhaps read some configura-
tion files. This is a problem, because initialization could fail. If it fails, we want the
parent process to exits with a non-null status, to let the shell know that our pro-
gram failed.

One way to overcome this problem is to make the parent process wait until
the child has been initialized. At that point, it is safe for the parent to call exits,
and let the child do the work if everything went fine. This can be done using
rendezvous like follows.
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!rendez.c !" """""""________
void
main(int, char*[])
{

int i;
int childsts;

switch(rfork(RFPROC|RFNOTEG|RFNOWAIT)){
case 0:

if (httpinit() < 0)
rendezvous(&main, (void*)-1);

else
rendezvous(&main, (void*)0);

httpservice(); // do the job.
exits(nil);

case -1:
sysfatal("rfork: %r");

default:
childsts = (int)rendezvous(&main, (void*)0);
if (childsts == 0)

exits(nil);
else {

fprint(2, "httpinit failed\n");
exits("httpinit failed");

}
}

}

Note that each process calls rendezvous once. The parent calls it to rendezvous
with the child, after it has initialized. The child calls it to rendezvous with the par-
ent, and report its initialization status. As the tag, we used the address for main.
It does not really matter which tag we use, as long as it is the same address. Using
&main seemed like a good idea to make it explicit that we are doing a rendezvous
just for this function. As values, the child gave -1 (as a pointer, sic) to report fail-
ure, or 0 (as a pointer) to report success. As we said, rendezvous works
although these processes are not sharing memory.

To test this program, we used an utterly complex implementation for HTTP
void
httpservice(void)
{

sleep(50000);
}

That is the best we could do given the so many standards that are in use today for
the Web. Also, we tried the program with two implementations for httpinit,
one returning 0 and another returning -1, like this one.
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int
httpinit(void)
{

sleep(2000);
return 0;

}

And this is an example execution for both versions of the program.
; 8.rendez
httpinit failed
; 8.rendez After two seconds we got another prompt.
; ps | grep 8.rendez
nemo 7076 0:00 0:00 24K Sleep 8.rendez

10.5. Sleep and wakeup
Going back to our airport panels program, it is a resource waste to keep all

those panelprocs polling just to check if there is a new message. Another
abstraction, provided by the functions rsleep, rwakeup, and rwakeupall
may be more appropriate. By the way, do not confuse this with the function
sleep(2) that puts the process to sleep for some time. It is totally different.

The idea is that a process that wants to use a resource, locks the resource.
The resource is protected by a lock, and all operations made to the resource must
keep the lock held. That is not new. In our program, processes updating or consult-
ing msg must have msg locked during these operations.

Now suppose that, during an operation (like consulting the message), the pro-
cess decides that it cannot proceed (e.g., because the message is not new, and we
only want new messages). Instead of releasing the lock and trying again later, the
process may call rsleep. This puts the process to sleep unconditionally. The
process goes to sleep because it requires some condition to be true, and it finds out
that the condition does not hold and calls rsleep.

At a later time, another process may make the condition true (e.g., the mes-
sage is updated). This other process calls rwakeup, to wake up one of the possi-
bly many processes waiting for the condition to hold.

The idea is that rsleep is a temporary sleep waiting for a condition to hold.
And it always happens in the middle of an operation on the resource, after checking
out if the condition holds. This function releases the lock before going to sleep, and
re-acquires it after waking up. Therefore, the process can nicely sleep inside its crit-
ical region, because the lock is not held while sleeping. If the lock was kept held
while sleeping, the process would never wake up. To wake up, it requires another
process to call rwakeup. Now, a process can only call rwakeup while holding
the resource, i.e., while holding the lock. And to acquire the lock, the sleeper had to
release it before sleeping.

The behavior of rwakeup is also appropriate with respect to the lock of the
resource. This function wakes up one of the sleepers, but the caller continues with
the resource locked and can complete whatever remains of its critical region. When



- 297 -

this process completes the operation and releases the lock, the awakened one may
re-acquire it and continue.

Re-acquiring the lock after waking up might lead to starvation, when there is
always some process coming fast to use the resource and acquiring the lock even
before the poor process that did wake up can acquire it again. To avoid this, it is
guaranteed that a process that is awakened will acquire the lock sooner than any
other newcomer. In few words, you do not have to worry about this.

A variant of rwakeup, called rwakeupall, wakes up all the processes
sleeping waiting for the condition to hold. Although many processes may be awak-
ened, they will re-acquire the lock before returning from rsleep. Therefore, only
one process is using the resource at a time and we still have mutual exclusion for
the critical region.

The data structure Rendez represents the rendezvous point where processes
sleeping and processes waking up meet. You can think of it as a data structure rep-
resenting the condition that makes one process go to sleep.

typedef
struct Rendez
{

QLock *l;
...

} Rendez;

The field l must point to the QLock protecting the resource (used also to protect
the Rendez). Using this abstraction, and its operations,

; sig rsleep rwakeup rwakeupall
void rsleep(Rendez *r)
int rwakeup(Rendez *r)
int rwakeupall(Rendez *r)

we can reimplement our airport panels program. We start by redefining our data
structure and providing two operations for using it.

typedef struct Msg Msg;
struct Msg {

QLock lck; // to protect the other fields
Rendez newmsg; // to sleep waiting for a new message.
char* text; // for the message

};

void wmsg(Msg* m, char* newtext);
char* rmsg(Msg* m);

The operation wmsg writes a new the text for the message. The operation rmsg
reads a new text for the message. The idea is that a call to rmsg will always sleep
until the message changes. When wmsg changes the message, it will wake up all
the processes waiting for the new message.

This is rmsg. It locks the message, and goes to sleep waiting for the condi-
tion (need a new message) to hold. After waking up, we still have the lock. Of
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course, any other process could use the resource while we were sleeping, but this is
not a problem because all we wanted was to wait for a new message, and now we
have it. Thus, the function makes a copy of the new message, releases the lock, and
returns the new message to the caller.

char*
rmsg(Msg* m)
{

char* new;

qlock(&m->lck);
rsleep(&m->newmsg);
new = strdup(m->text);
qunlock(&m->lck);
return new;

}

And this is wmsg. It locks the resource, and updates the message. Before return-
ing, it wakes up anyone waiting for a new message.

void
wmsg(Msg* m, char* newtext)
{

qlock(&m->lck);
free(m->text);
m->text = strdup(newtext);
rwakeupall(&m->newmsg);
qunlock(&m->lck);

}

Now things are simple for our program, the panel process may just call rmsg to
obtain a new message. There is no need to bother with concurrency issues here.
The function rmsg is our interface for the message, and it cares about it all.

void
panelproc(int fd)
{

ulong lastvers = -1;
char* text;

while(!exiting){
text = rmsg(&msg);
write(fd, text, strlen(text));
free(text);

}
fprint(2, "panel exiting\n");
exits(nil);

}

In the same way, the reader process is also simplified. It calls wmsg and forgets
about concurrency as well.
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void
reader(void)
{

char buf[512];
int nr;

for(;;){
nr = read(0, buf, sizeof(buf)-1);
if (nr <= 0)

break;
buf[nr] = 0;
wmsg(&msg, buf);

}
exiting = 1;
exits(nil);

}

The rest of the program stays the same. However, this initialization is now neces-
sary, because the Rendez needs a pointer to the lock.

msg.newmsg.l = &msg.lck;

If you try this program, you will notice a difference regarding its responsiveness.
There are no polls now, and no delays. As soon as a new message is updated, the
panels are updated as well. Because of the interface we provided, the write for the
panels is kept outside of the critical region. And because of dealing with concur-
rency inside the resource operations, callers may be kept unaware of it. That said,
note that the program still must care about how to start and terminate in a clean
way.

It is very usual to handle concurrency in this way, by implementing opera-
tions that lock the resource before they do anything else, and release the lock before
returning. A module implemented following this behavior is called a monitor.
This name was used by some programming languages that provided syntax for this
construct, without requiring you to manually lock and unlock the resource on each
operation. The abstractions used to wait for conditions inside a monitor, similar to
our Rendez, are called condition variables, because those languages used this
name for such time.

10.6. Shared buffers
The bounded buffer is a classical problem, useful to learn a little bit of con-

current programming, and also useful for the real life. The problem states that there
is a shared buffer (bounded in size). Some processes try to put things into the
buffer, and other processes try to get things out of the buffer. The formers are
called producers, and the latter are called consumers. See figure 10.9

The problem is synchronizing both producers and consumers. When a pro-
ducer wants to put something in the buffer, and the buffer is full, the producer must
wait until there is room in the buffer. In the same way, when a consumer wants to
take something from an empty buffer, it must wait until there is something to take.
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producer

producer

producer

consumer

consumer

Figure 10.9: The bounded buffer problem.

This problem happens for many real life situations, whenever some kind of process
produces something that is to be consumed by other processes. The buffer kept
inside a pipe, together with the process(es) writing to the pipe, and the ones reading
from it, make up just the same problem.

To solve this problem, we must declare our data structure for the buffer and
two operations for it, put, and get. The buffer must be protected, and we are
going to use a QLock for that purpose (because we plan to use rsleep and
rwakeup). The operation put will have to sleep when the buffer is full, and we
need a Rendez called isfull to sleep because of that reason. The operation get
will go to sleep when the buffer is empty, which makes necessary another
isempty Rendez. To store the messages we use an array to implement a queue.
The array is used in a circular way, with new messages added to the position
pointed to by tl. Messages are extracted from the head, pointed to by hd.

typedef struct Buffer Buffer;
struct Buffer {

QLock lck;
char* msgs[Nmsgs]; // messages in buffer
int hd; // head of the queue
int tl; // tail. First empty slot.
int nmsgs; // number of messages.
Rendez isfull; // wait for room
Rendez isempty; // wait for item to get

};

This is our first operation, put. It checks that the buffer is full, and goes to sleep
if that is the case. If the buffer was not full, or after waking up because it is no
longer full, the message is added to the queue.
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void
put(Buffer* b, char* msg)
{

qlock(&b->lck);
if (b->nmsgs == Nmsgs)

rsleep(&b->isfull);
b->msgs[b->tl] = strdup(msg);
b->tl = ++b->tl % Nmsgs;
b->nmsgs++;
if (b->nmsgs == 1)

rwakeup(&b->isempty);
qunlock(&b->lck);

}

Note how this function calls rwakeup(&b->isempty) when the buffer ceases
to be empty. It could be that some processes were sleeping trying to get something,
because the buffer was empty. This function, which changes that condition, is
responsible for waking up one of such processes. It wakes up just one, because
there is only one thing to get from the buffer. If there are more processes sleeping,
trying to get, they will be waken up as more messages are added by further calls to
put in the future.

The function get is the counterpart for put. When there is no message to
get, it sleeps at isempty. Once we know for sure that there is at least one mes-
sage to consume, it is removed from the head of the queue and returned to the
caller.

char*
get(Buffer* b)
{

char* msg;

qlock(&b->lck);
if (b->nmsgs == 0)

rsleep(&b->isempty);
msg = b->msgs[b->hd];
b->hd = ++b->hd % Nmsgs;
b->nmsgs--;
if (b->nmsgs == Nmsgs - 1)

rwakeup(&b->isfull);
qunlock(&b->lck);
return msg;

}

Note how get is also responsible for awakening one process (that might be sleep-
ing) when the buffer is no longer full. Both functions are quite symmetric. One puts
items in the buffer (and requires empty slots), the other puts empty slots in the
buffer (and requires items).

The data structure is initialized by calling init.
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void
init(Buffer *b)
{

// release all locks, set everything to null values.
memset(b, 0, sizeof(*b));
// set the locks used by the Rendezes
b->isempty.l = &b->lck;
b->isfull.l = &b->lck;

}

To play with our implementation, we are going to create two processes the produce
messages and two more process that consume them and print the consumed ones to
standard output. Also, to exercise the code when the buffer gets full, we use a
ridiculous low size.
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!pc.c !" """"_____
#include <u.h>
#include <libc.h>

enum {Nmsgs = 4 };

typedef struct Buffer Buffer;
struct Buffer {

QLock lck;
char* msgs[Nmsgs]; // messages in buffer
int hd; // head of the queue
int tl; // tail. First empty slot.
int nmsgs; // number of messages in buffer.
Rendez isfull; // to sleep because of no room for put
Rendez isempty; // to sleep when nothing to get

};

/* b->lck must be held by caller
*/

void
dump(int fd, char* msg, Buffer* b)
{

int i;
char buf[512];
char* s;

s = seprint(buf, buf+sizeof(buf), "%s [", msg);
for (i = b->hd; i != b->tl; i = ++i%Nmsgs)

s = seprint(s, buf+sizeof(buf),"%s ", b->msgs[i]);
s = seprint(s, buf+sizeof(buf), "]\n");
write(fd, buf, s-buf);

}

void
put(Buffer* b, char* msg)
{

qlock(&b->lck);
if (b->nmsgs == Nmsgs){

print("<full>\n");
rsleep(&b->isfull);

}
if (msg == nil)

b->msgs[b->tl] = nil;
else

b->msgs[b->tl] = strdup(msg);
b->tl = ++b->tl % Nmsgs;
b->nmsgs++;
if (b->nmsgs == 1)

rwakeup(&b->isempty);
dump(1, "put:", b);
qunlock(&b->lck);

}
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void
init(Buffer *b)
{

// release all locks, set everything to null values.
memset(b, 0, sizeof(*b));
// set the locks used by the Rendezes
b->isempty.l = &b->lck;
b->isfull.l = &b->lck;

}

char*
get(Buffer* b)
{

char* msg;

qlock(&b->lck);
if (b->nmsgs == 0){

print("<empty>\n");
rsleep(&b->isempty);

}
msg = b->msgs[b->hd];
b->hd = ++b->hd % Nmsgs;
b->nmsgs--;
if (b->nmsgs == Nmsgs - 1)

rwakeup(&b->isfull);
dump(1, "get:", b);
qunlock(&b->lck);
return msg;

}

void
producer(Buffer* b, char id)
{

char msg[20];
int i;

for (i = 0; i < 5 ; i++){
seprint(msg, msg+20, "%c%d", id, i);
put(b, msg);

}
put(b, nil);
exits(nil);

}

void
consumer(Buffer* b)
{

char* msg;
while(msg = get(b)){

// consume it
free(msg);

}
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exits(nil);
}

Buffer buf;

void
main(int, char*[])
{

init(&buf);
if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)

producer(&buf, ’a’);
if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)

producer(&buf, ’b’);
if (rfork(RFPROC|RFMEM|RFNOWAIT) == 0)

consumer(&buf);
else

consumer(&buf);
}

The producers receive a letter as their name, to produce messages like a0, a1, etc.,
and b0, b1, etc. To terminate the program cleanly, each producer puts a final nil
message. When a consumer receives a nil message from the buffer, it terminates.
And this is the program output.

; 8.pc
a0 b0 a1 b1 a2 b2 a3 b3 a4 b4 ;

As you can see, messages are inserted in a very fair way. Changing a little bit put,
and get, would let us know if the buffer is ever found to be full or empty. This is
the change for get.

char*
get(Buffer* b)
{

...as before...
if (b->nmsgs == 0){

print("<empty>\n");
rsleep(&b->isempty);

}
...as before...

}

The change for put is done in a similar way, but printing <full> instead. And
this is what we find out.

; 8.pc
<empty> <empty> a0 b0 <full> <full> newline supplied by us
a1 b1 <full> <full> a2 b2 <full> <full> a3 b3 a4 b4 ;

It seems that initially both consumers try to get messages out of the buffer, and
they find the buffer empty. Later, producers insert a0 and b0, and consumers seem
to be awaken and proceed. Because both consumers were sleeping and the synchro-
nization mechanism seems to be fair, we can assume that a0 is printed by the one
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consumer and b0 by the other. It seems that by this time both producers keep on
inserting items in the buffer until it gets full. Both go to sleep. And for the rest of
the time it looks like producers are faster and manage to fill the buffer, and con-
sumers have no further problems and will never find the buffer empty from now
on.

In any case, the only thing we can say is that the code for dealing with a full
buffer (and an empty buffer) has been exercised a little bit. We can also affirm that
no process seems to remain waiting forever, at least for this run.

; ps | grep 8.pc
;

However, to see if the program is correct or not, the only tool you have is just care-
ful thinking about the program code. Playing with example scenarios, trying hard
to show that the program fails. There are some formal tools to verify if an imple-
mentation for a concurrent program has certain properties or not, but you may
make mistakes when using such tools, and therefore, you are on your own to write
correct concurrent programs.

10.7. Other tools
A popular synchronization tool, not provided by Plan 9, is a semaphore. A sema-
phore is an abstraction that corresponds to a box with tickets to use a resource. The
inventor of this abstraction made an analogy with train semaphores, but we do not
like trains.

The idea behind a semaphore is simple. To use a resource, you need a ticket.
The operation wait waits until there is a ticket in the semaphore, and picks up
one. When you are no longer using the resource, you may put a ticket back into the
semaphore. The operation signal puts a new ticket into the semaphore. Because
of the analogy with train semaphores, wait is also known as down (to lower a
barrier) and signal is also known as up (to move up a barrier). In general, you
will find either up and down or signal and wait as operations.

Internally, a semaphore is codified using an integer to count the number of
tickets in the box represented by the semaphore. When processes call wait and
find no tickets in the semaphore, wait guarantees that they are put into sleep. Fur-
thermore, such processes will be awakened (upon arrival of new tickets) in a fair
way. An initial integer value may be given to a semaphore, to represent the initial
number of tickets in the box. This could be the interface for this abstraction.

Sem* newsem(int n); // create a semaphore with n tickets
void wait(Sem* s); // acquire a ticket (may wait for it)
void signal(Sem* s); // add a ticket to the semaphore.

Mutual exclusion can be implemented using a semaphore with just one ticket.
Because there is only one ticket, only one process will be able to acquire it. This
should be done before entering the critical region, and the ticket must be put back
into the semaphore after exiting from the critical region. Such a semaphore is usu-
ally called a mutex. This is an example.
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Sem* mutex = newsem(1);
...
wait(mutex);
critical region here
signal(mutex);
...

Also, because a wait on an empty semaphore puts a process to sleep, a semaphore
with no tickets can be used to sleep processes. For example, this puts the process
executing this code to sleep, until another process calls signal(w);

Sem* w = newsem(0);
...
wait(w);
...

This tool can be used to synchronize two processes, to make one await until the
other executes certain code. Remember the HTTP server initialization example
shown before. We could use an empty semaphore, and make the parent call

wait(w)

to await for the initialization of the child. Then, the child could call
signal(w)

to awake the parent once it has initialized. However, this time, we cannot exchange
a value as we could using rendezvous.

As a further example, we can implement our bounded-buffer program using
semaphores. The data type must have now one semaphore with just one ticket, to
achieve mutual exclusion for the buffer. And we need two extra semaphores. Pro-
cesses that want to put an item in the buffer require a hole where to put it. Using a
semaphore with initially Nmsgs tickets, we can make the producer acquire its
holds nicely. One ticket per hole. When no more holes are available to put a mes-
sage, the producer will sleep upon a call to wait(sholes). In the same way,
the consumer requires messages, and there will be zero messages available, ini-
tially.

typedef struct Buffer Buffer;
struct Buffer {

Sem* mutex; // for mutual exclusion
char* msgs[Nmsgs]; // messages in buffer
int hd; // head of the queue
int tl; // tail. First empty slot
int nmsgs; // number of messages
Sem* smsgs; // (0 tickets) acquire a msg
Sem* sholes;; // (Nmsgs tickets) acquire a hole

};

The implementation for put is similar to before. But there are some remarkable
differences.
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void
put(Buffer* b, char* msg)
{

wait(b->sholes);
wait(b->mutex);
b->msgs[b->tl] = strdup(msg);
b->tl = ++b->tl % Nmsgs;
b->nmsgs++;
signal(b->mutex);
signal(b->smsgs);

}

Before even trying to put anything in the buffer, the producer tries to get a hole. To
do so, it acquires a ticket from the semaphore representing the holes available. If
there are no tickets, the producer sleeps. Otherwise, there is a hole guaranteed.
Now, to put the message in the hole acquired, a semaphore called mutex, with just
one ticket for providing mutual exclusion, is used. Upon acquiring the only slot for
executing in the critical region, the producer adds the message to the buffer. Also,
once we have done our work, there is a new message in the buffer. A new ticket is
added to the semaphore representing tickets to maintain it consistent with the real-
ity.

The code for a consumer is equivalent.
char*
get(Buffer* b)
{

char* msg;

wait(b->smsgs);
wait(b->mutex);
msg = b->msgs[b->hd];
b->hd = ++b->hd % Nmsgs;
b->nmsgs--;
signal(b->mutex);
signal(b->sholes);
return msg;

}

Semaphores are to be handled with care. For example, changing the first two lines
above with

wait(b->mutex);
wait(b->smsgs);

is going to produce a deadlock. First, the consumer takes the mutex (ticket) for
itself. If it happens now that the buffer is empty, and smsgs has no tickets, the
consumer will block forever. Nobody would be able to wake it up, because the pro-
ducer will not be able to acquire the mutex for itself. It is very dangerous to go to
sleep with a lock held, and it is also very dangerous to go to sleep with a mutex
taken. Only a few times it might be the right thing to do, and you must be sure that
there is no deadlock produced as a result.
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Note that a semaphore is by no means similar to rsleep and rwakeup.
Compare

rwakeup(r);
rsleep(r);

with
signal(s);
wait(s);

The former wakes up any sleeper at r, and then goes to sleep. Unconditionally.
The latter, adds a ticket to a semaphore. If nobody consumes it between the two
sentences, the call to wait will not sleep. Remember that a semaphore is used to
model slots available for using a particular resource. On the other hand,
sleep/wakeup are more related to conditions that must hold for you to proceed
doing something.

We said that Plan 9 does not supply semaphores. But there is an easy way to
implement them. You need something to put tickets into. Something that when
wanting to get a ticket, blocks until there is one ticket available. And returns any
ticket available immediately otherwise. It seems that pipes fit right into the job.
This is our semaphore:

typedef struct Sem Sem;
struct Sem {

int fd[2];
};

To create a semaphore, we create a pipe and put as many bytes in it as tickets must
be initially in the semaphore.

Sem*
newsem(int n)
{

Sem* s;

s = malloc(sizeof(Sem));
if (pipe(s->fd) < 0){

free(s);
return nil;

}
while(n-- > 0)

write(s->fd[1], "x", 1);
return s;

}

A signal must just put a ticket in the semaphore.
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void
signal(Sem* s)
{

write(s->fd[1], "x", 1);
}

A wait must acquire one ticket.
void
wait(Sem* s)
{

char buf[1];

read(s->fd[0], buf, 1);
}

We do not show it, but to destroy a semaphore it suffices to close the pipe at both
ends and release the memory for the data structure. Given the implementation we
made, the only limitation is that a semaphore may hold no more tickets than bytes
are provided by the buffering in the pipe. But that seems like a reasonable amount
of tickets for most purposes.

Another restriction to this implementation is that the semaphore must be cre-
ated by a common ancestor (e.g., the parent) of processes sharing it. Unless such
processes are sharing their file descriptor set.

Problems
1 Locate the synchronization construct in programming languages you use.
2 Do shell programs have race conditions?
3 Implement a concurrent program simulating a printer spooler. It must have

several processes. Some of them generate jobs for printing (spool print jobs)
and two other ones print jobs. Needless to say that the program must not have
race conditions.

4 Implement a semaphore using shared variables protected with (spin) locks.
Would you use it? Why?

5 Assume you have monitors (invent the syntax). Implement a sempahore using
monitors.



11 ! Threads and Channels
______

11.1. Threads
Processes are independent flows of control known to Plan 9. The kernel cre-

ates them, it terminates them, and it decides when to move one process out of the
processor and when to put a process back on it. Because of the unpredictability of
context switches between processes, they must synchronize using locks, ren-
dezvous, sleep/wakeup, or any other means if they want to share memory without
race conditions.

But there is an alternative. The thread(2) library provides an abstraction simi-
lar to a process, called a thread. A thread is just a flow of control within a process.
In the same way that Plan 9 multiplexes the flow of control of a single processor
among multiple processes, the thread library multiplexes the flow of control of a
single process among multiple threads.

Process 1:
Thread 1 run rdy.

Thread 2 ready run

....... ..
..
..
. .......

ready
ready ...

run ...

Process 2: ready run ready ...

..................

context switch

..
..
..
..
..
..
..
..
..

Figure 11.1: Threads are flows of control implemented by a process.

Figure 11.1 shows an example. If there are two processes, Plan 9 may put
process 1 to run at the processor for some time. During this time, process 2 would
be ready to run. After the time passes, there is a context switch and Plan 9 puts pro-
cess 2 to run and leaves process 1 as ready to run. In this figure, the process 1 has
two threads in it. Each thread thinks that it is a single, independent, flow of control
(like all processes think). However, both threads are sharing the time in the proces-
sor that was given to process 1. Looking at the process 1 in the figure shows that,
while this process is running, the time is used to execute two different flows of
control, one for each thread.

For Plan 9, there are no threads. The kernel puts process 1 to run and what
process 1 does with the processor is up to it. Therefore, when the process 1 is
moved out of the processor in the context switch, both threads cease running. In
fact, it is the single flow of control for process 1 which ceased running.

Why should you ever want to use threads? Unlike for processes, that are
moved out of the processor when the system pleases, a thread may not be moved
out of the processor (preempted) unless you call functions of the thread library to
synchronize with other threads. What does this mean? There will be no context
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switch between threads unless you allow it. There will be no races! You are free to
touch any shared data structure as you please, and nobody would interrupt in the
middle of a critical operation, provoking a race.

This is the same program used as an example in the beginning of the last
chapter. It increments a shared counter using two different flows of control. This
time, we use two threads to increment the counter. As any other program using the
thread library, it includes thread.h, that contains the definitions for thread data
types and functions. Also, note that the program does not have a main function.
That function is provided by the thread library. It creates a single thread within the
process that starts executing the function threadmain. This is the function that
you are expected to provide as your entry point.
!tincr.c !" """"""_______

#include <u.h>
#include <libc.h>
#include <thread.h>

int cnt;

void
incrthread(void*)
{

int i;

for (i = 0; i < 2; i++)
cnt++;

print("cnt is %d\n", cnt);
threadexits(nil);

}

void
threadmain(int, char*[])
{

int i;

threadcreate(incrthread, nil, 8*1024);
for (i = 0; i < 2; i++)

cnt++;
print("cnt is %d\n", cnt);
threadexits(nil);

}

The program calls threadcreate to create a new thread (the second in this pro-
cess!) that starts executing the function incrthread. After this call, there are
two independent flows of control. One is executing threadmain, after the call to
threadcreate. The other is starting to execute incrthread. The second
parameter given to threadcreate is passed by the library as the only argument
for the main procedure for the thread. Because incrthread does not require any
argument, we pass a nil pointer. The third argument to threadcreate is the
thread’s stack size. The stack for a thread is allocated as a byte array in the data
segment, like other dynamic variables, it lives in the heap (within the data
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segment).
It is interesting to see that threads call threadexits to terminate, instead

of calling exits. Calling exits would terminate the entire process (the only
flow of control provided by Plan 9). When all the threads in the process have ter-
minated their main functions, or called threadexits, the thread library will call
exits to terminate the entire process. The exit status for the whole process is that
given as a parameter to the last thread to exit, which is a reasonable behavior. By
the way, there is a more radical function for exiting that terminates all the threads
in the process, it is called threadexitsall and is used in the same way.

And is this is what we get for using threads instead of processes. The program
will always produce this output (although the order of prints may vary)

; 8.tincr
cnt is 2
cnt is 4

And there are no races! When a thread starts executing, it will continue executing
until it calls threadexits. We did not call any function of the thread library,
and there is no magic. There is no way the thread could suffer a context switch in a
bad moment. The program is safe, although it does not use even a single lock. Of
course, if a thread loops for a long time without giving other threads the chance of
running, the poor other threads will wait a very long time until they run. But this is
seldom the case.

What if we modify the program as we did with the one with processes? You
may think that using a sleep may lead to a context switch, and expose a possible
race condition. Although this is not the case, let’s try it.
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!tincr2.c !" """""""________
#include <u.h>
#include <libc.h>
#include <thread.h>

int cnt;

void
incrthread(void*)
{

int i;
int loc;

for (i = 0; i < 2; i++){
loc = cnt;
loc++;
sleep(0);
cnt = loc;

}
print("cnt is %d\n", cnt);
threadexits(nil);

}

void
threadmain(int, char*[])
{

threadcreate(incrthread, nil, 8*1024);
incrthread(nil);

}

Executions for this program yield the same result we expect.
; 8.tincr2
cnt is 2
cnt is 4

No race was exposed. Indeed, no thread was ever moved out of the processor by the
call to sleep. If the first thread was executing incrthread, the call to sleep
moved the whole process out of the processor, as shown in figure 11.2. When later,
the process was put back into the running state, the first thread was still the one
running. Remember, the underlying Plan 9 kernel knows nothing about threads.
The call to sleep puts the process to sleep. Of course, the thread went to sleep as
a result, like all other threads in the process. But in any case, you did not call any
function from the thread library, and there was no context switch between threads.
For the thread library, it seems that the first thread is still executing in very much
the same way that if you never called sleep.

Only when the first thread calls threadexits, the second thread gets a
chance to run. The thread library releases the resources for the exiting thread, and
switches to the other thread in the process (that was ready to run). This thread runs
to completion, like its sibling, and after calling threadexits, the whole process
is terminated by the thread library (by a call to exits), because there are no more
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Our process:

1st thread

2nd thread ready
. . . . .sleep ready

run ...
ready ...

Another process: ready run ready ...

........................

context switch because of sleep

..
..
..
..
..
..
..
..
..
..
..
..

Figure 11.2: A call to sleep from a thread moves the entire process out of the processor.

threads in this process.
How can a thread abandon voluntarily the processor? E.g., to favor other

threads. The function yield in the thread library makes a context switch between
threads. Any other thread ready to run will be put to execute. Of course, if no more
threads are ready to run yield will return immediately to the calling thread.
Therefore, this change to incrthread creates a bug in our program.

for (i = 0; i < 2; i++){
loc = cnt;
loc++;
yield();
cnt = loc;

}

The call to yield forces a context switch at the worst moment. But note that,
unlike when using processes, this time you had to ask for the context switch.

11.2. Thread names
Like processes, threads have identifiers. The thread library assigns a unique

integer to each thread, known as its thread id. Do not confuse the thread id with
the PID for the process where the thread is running. The former is known by the
thread library, and unknown to the underlying Plan 9. The next program creates
several threads, that print their own ids. The call to threadid returns the identi-
fier of the thread that calls the function.

The function threadcreate returns the identifier for the thread it created,
and the program prints this value as well, to let you see how things match. In gen-
eral, threadid is used when a thread wants to know its own identifier. However,
to know the ids for some threads created, it suffices to record the return values
when threadcreate is called. The program prints the PID along with the thread
ids, to let you clearly see the difference.
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!tid.c !" """"_____
#include <u.h>
#include <libc.h>
#include <thread.h>
void
threadfunc(void*)
{

print("thread id= %d\tpid=%d\n", threadid(), getpid());
threadexits(nil);

}

void
threadmain(int, char*[])
{

int i, id;

print("thread id= %d\tpid=%d\n", threadid(), getpid());
for (i = 0; i < 2; i++){

id = threadcreate(threadfunc, nil, 8*1024);
print("\tcreated thread %d\n", id);

}

}

This is the output from the program.
; 8.tid
thread id= 1 pid=3904

created thread 2
created thread 3

thread id= 2 pid=3904
thread id= 3 pid=3904

What would happen if we implement cnt from the last chapter, but using threads?
This program used two flow of controls. One was kept incrementing a counter. The
other one tried always to decrement the counter, but not below zero. The next pro-
gram creates two threads. One runs this function.

void
incr(void* arg)
{

int* cp = arg;

threadsetname("incrthread");
for(;;){

*cp = *cp + 1;
print("cnt %d\n", *cp);

}
threadexits(nil);

}

The other runs this instead.
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void
decr(void* arg)
{

int* cp = arg;

threadsetname("decrthread");
for(;;){

if (*cp > 0)
*cp = *cp - 1;

print("cnt %d\n", *cp);
}
threadexits(nil);

}

This time, we pass an an argument for both threads a pointer to the shared counter.
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!tcnt.c !" """""______
#include <u.h>
#include <libc.h>
#include <thread.h>
int cnt;

void
incr(void* arg)
{

int* cp = arg;

threadsetname("incrthread");
for(;;){

*cp = *cp + 1;
print("cnt %d\n", *cp);
yield();

}
threadexits(nil);

}

void
decr(void* arg)
{

int* cp = arg;

threadsetname("decrthread");
for(;;){

if (*cp > 0)
*cp = *cp - 1;

print("cnt %d\n", *cp);
yield();

}
threadexits(nil);

}

void
threadmain(int, char*[])
{

threadsetname("main");
threadcreate(incr, &cnt, 8*1024);
threadcreate(decr, &cnt, 8*1024);
threadexits(nil);

}

One of the threads will never run!. It will starve. When we executed the program,
the thread incrementing the counter was the lucky one. It started running, and
because it does not call any synchronization function from the thread library, it will
never leave the processor in favor of the other thread.
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; 8.tcnt
cnt 1
cnt 2
cnt 3
cnt 4
cnt 5
cnt 6
...and so on ad nauseum.

We can double check by using the debugger. First, let’s locate the process that is
running our program.

; ps | grep 8.tcnt
nemo 4546 0:00 0:00 120K Pwrite 8.tcnt

Now we can run acid on the process 4546.
; acid -l thread 4546
/proc/4546/text:386 plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/thread
/sys/lib/acid/386
acid:

The option -l thread loads functions into acid for debugging threaded pro-
grams. For example, the function threads lists the threads in the process.

acid: threads()
p=(Proc)0x169b8 pid 4546 Running

t=(Thread)0x19a68 Running tcnt.c:14 incr [incrthread]
t=(Thread)0x1bb28 Ready ?file?:0 {}

acid:

There are two threads. Reasonable, because the main thread called threadexits
by this time. Both threads are listed (a line each) after one line describing the pro-
cess where the threads run. This process has pid 4546, as we knew, and is running.
The lucky running thread is executing at line 14 of tcnt.c, in the function named
incr. The debugger does even show a name for the thread: incrthread. That
is what the calls to threadsetname in our program were for. This function
assigns a (string) name to the calling thread, for debugging. This string can be also
obtained using threadgetname, for example, to print diagnostics with the name
of the thread issuing them.

The second thread is ready to run, but it did not even touch the processor. In
fact, it did not have time to initialize some of its data, and the debugger gets con-
fused regarding which file, line number, and thread name correspond to the second
thread.

We are going to modify the program a little bit, by calling yield on each
thread to let the other run. For example, this is the new incrthread. The other
one is changed in a similar way.
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void
incr(void* arg)
{

int* cp = arg;

threadsetname("incrthread");
for(;;){

*cp = *cp + 1;
print("cnt %d\n", *cp);
yield();

}
threadexits(nil);

}

This is what results from the change. Each thread yields to the other one, and both
onces execute making turns. There will always be one pass in the for and then a
context switch, forced by yield.

; 8.tcnt
cnt 1
cnt 0
cnt 1
...

Another debugger function defined when called with -l thread knows how to
print the stacks for all threads in the process. Now that both threads had a chance to
run, you can see how the debugger clearly identifies one thread as incrthread,
and the other one as decrthread.

; ps | grep 8.tcnt
nemo 4571 0:00 0:00 120K Pwrite 8.tcnt
; acid -l thread 4571
/proc/4571/text:386 plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/thread
/sys/lib/acid/386
acid: stacks()
p=(Proc)0x169b8 pid 4571 Running
t=(Thread)0x19a68 Ready /usr/nemo/tcnt.c:15 incr [incrthread]

yield()+0x5 /sys/src/libthread/sched.c:186
incr(arg=0xd010)+0x39 /usr/nemo/tcnt.c:15
launcher386(arg=0xd010,f=0x1020)+0x10 /sys/src/libthread/386.c:10
0xfefefefe ?file?:0

t=(Thread)0x1bb28 Running /usr/nemo/tcnt.c:30 decr [decrthread]
pwrite()+0x7 /sys/src/libc/9syscall/pwrite.s:5
...
print(fmt=0x1136a)+0x24 /sys/src/libc/fmt/print.c:13
decr(arg=0xd010)+0x3b /usr/nemo/tcnt.c:30
launcher386(arg=0xd010,f=0x105f)+0x10 /sys/src/libthread/386.c:10
0xfefefefe ?file?:0
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This is a very useful tool to debug programs using the thread library. It makes
debugging as easy as when using processes. The debugger reports that
incrthread was executing yield, and decrthread was executing its call to
print, by the time the stack dump was made. Note how the process was running,
but only one of the threads is running. The other one is ready to run, because it did
yield.

11.3. Channels
Synchronizing several processes was very easy when we used pipes. While pro-
gramming, we could forget all about race conditions. Each process was making its
job, using its own data, and both processes could still work together to do some-
thing useful.

Fortunately, there is an abstraction provided by the thread library that is very
similar. It is called a channel. A channel is an unidirectional communication arti-
fact. One thread can send data through one end of the channel, and another thread
may receive data at the other end. Because channels are meant to send data of a
particular type, a channel delivers messages of a given size, decided when the chan-
nel is created. This is not a restriction. If data of different sizes must be sent
through a channel, you can always send a pointer to it.

To create a channel, call chancreate
; sig chancreate

Channel* chancreate(int elsize, int nel)

and specify with the first argument the size for the data type being sent through it.
The second parameter specifies how many messages may be buffered inside the
channel (i.e., the buffer size for the channel). To send and receive messages, the
functions send and recv provide the primary interface.

; sig send recv
int send(Channel *c, void *v)
int recv(Channel *c, void *v)

Before any further discussion, let’s see an example. In the previous chapter we
implemented a program for the bounded-buffer problem. This is another solution to
the same problem, using threads and channels.
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!tpc.c !" """"_____
#include <u.h>
#include <libc.h>
#include <thread.h>
enum {Nmsgs = 4 };
Channel* bufc;

void
producer(void *arg)
{

char* id = arg;
char* msg;
int i;

for (i = 0; i < 5 ; i++){
msg = smprint("%s%d", id, i);
send(bufc, &msg);

}
send(bufc, nil);
threadexits(nil);

}

void
consumer(void*)
{

char* msg;
do {

recv(bufc, &msg);
if (msg != nil){ // consume it

print("%s ", msg);
free(msg);

}
} while(msg != nil);
threadexits(nil);

}

void
threadmain(int, char*[])
{

bufc = chancreate(sizeof(char*), Nmsgs);
threadcreate(producer, "a", 8*1024);
threadcreate(producer, "b", 8*1024);
threadcreate(consumer, nil, 8*1024);
consumer(nil);

}

The channel is created to send messages with the size of a char*, and with
enough buffering for Nmsgs messages. Thus, the channel is our bounded buffer.

bufc = chancreate(sizeof(char*), Nmsgs);

The program will never destroy the channel, ever. Should we want to destroy it,
we might call
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chanfree(bufc);

But that can only be done when the channel is no longer needed, after the last con-
sumer completes its job. The consumer calls

recv(bufc, &msg);

to receive a message from the channel. Once a message is received, the message is
stored by recv at the address given as the second argument. That is, recv
receives a char* and stores it at &msg. After having received the message, the
consumer prints it and tries to receive another one.

The producer, on the other hand, concocts a message and calls
send(bufc, &msg);

This call sends through the channel the message pointed to by &msg, with the size
of a char*. That is, send sends the (pointer) value in msg through the channel.

If producers start first and put messages in the channel, they will block as
soon as the buffering in the channel fills up (similar to what would happen in a
pipe). If the consumers start first and try to get messages from the channel, they
will block if the buffer in the channel has no messages. This is the behavior of
send and recv when the channel has some buffering.

It may be illustrative for you to compare this program with pc.c, the version
without using channels that we made in the last chapter. Both programs achieve the
same effect. This one does not use even a single lock, nor sleep/wakeup. It does not
have any race either. Each thread uses its own data, like when you connect multiple
processes using pipes. Race conditions are dealt with by avoiding them in a natural
way.

The next program does a ping-pong between two threads. Each one sends an
integer value to the other, which increments the number before sending it back to
the former (see figure 11.3). The program uses channels with no buffering.
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!pong.c !" """"""_______
#include <u.h>
#include <libc.h>
#include <thread.h>

Channel* pingc;
Channel* pongc;

void
pingthread(void*)
{

int msg;

for(;;){
recv(pingc, &msg);
msg++;
print("%d\n", msg);
send(pongc, &msg);

}
}

void
pongthread(void*)
{

int msg;

for(;;){
recv(pongc, &msg);
msg++;
print("\t%d\n", msg);
send(pingc, &msg);

}
}

void
threadmain(int, char*[])
{

int kickoff;

pingc = chancreate(sizeof(int), 0);
pongc = chancreate(sizeof(int), 0);
threadcreate(pingthread, nil, 8*1024);
threadcreate(pongthread, nil, 8*1024);
kickoff = 0;
send(pingc, &kickoff);
threadexits(nil);

}

Each channel is created to send messages with the size of an int, and with no
buffering.
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pingc = chancreate(sizeof(int), 0);
pongc = chancreate(sizeof(int), 0);

The ping thread calls
recv(pingc, &msg);

to receive a message from the channel pingc. The message is stored by recv at
the address given as the second argument. That is, recv receives an integer and
stores it at &msg. Once the integer has arrived, ping increments it and calls

send(pongc, &msg);

to send through pongc the message pointed to by &msg. That is, to send the inte-
ger msg (because the channel was created to send messages with the size of a inte-
ger).

Initially, both threads would block at recv, because nobody is sending any-
thing yet. To kick off the ping-pong, the main thread sends an initial zero to the
pingc channel. See figure 11.3.

ping
pongc

pingc
pong

0 main

Figure 11.3: A ping pong with threads and channels.

The output from the program is a nice ping pong. Note that context switches
between threads happen when we call send and recv. Any synchronization
function from the thread library is likely to produce a context switch.

; 8.out
1

2
3

4
...

A channel with no buffering is producing a rendezvous between the thread sending
and the one receiving. A recv from such a channel will block, until there is some-
thing to receive. Because the channel has no buffering, there can be nothing to
receive until another thread calls send for the same channel. In the same way, a
send to a channel with no buffering is going to block if nobody is receiving on it.
It will block until another thread calls recv and the message can be sent.

We could exploit this in our program to synchronize more tightly both
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threads and use just one channel. This is useful to better understand how channels
can be used, but (perhaps arguably) it leads to a more obscure, yet compact, pro-
gram.

Suppose that initially ping sends a message to pong and pong receives it.
The former calls send and the later calls recv. If ping calls send first, it is
going to block until pong calls recv on the channel (which had no buffering).
And vice-versa.

Now comes the point. When ping completes its send it is for sure that
pong has completed its recv. Or we could say that when pong completes its
recv it is certain that ping completed its send. Therefore, the same channel
can be used again to send a number back. This time, pong calls send and ping
calls recv. Again, both calls will rendezvous, the first call made will block and
wait for the other. There is no doubt regarding which recv is going to receive for
which send. So, the code would work along these lines.

ping() {
(1) send(c, &msg); // sends to (3)
(2) recv(c, &msg); // receives from (4)
}
pong() {
(3) recv(c, &msg); // receives from (1)
(4) send(c, &msg); // sends to (2)
}

But both threads look fairly similar. In fact, considering their loops, they look the
same. Receive something, increment it, send it back. Only that while one is receiv-
ing the other one is sending. Therefore, we could use the same code for both
threads, like the next program does.
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!pong2.c !" """""""________
#include <u.h>
#include <libc.h>
#include <thread.h>

void
pingpongthread(void*a)
{

ulong msg;
Channel*c = a;

for(;;){
msg = recvul(c); // i.e., recv(c, &msg);
msg++;
print("%d\n", msg);
sendul(c, msg); // i.e., send(c, &msg);

}
}

void
threadmain(int, char*[])
{

Channel* c;
int kickoff;

c = chancreate(sizeof(int), 0);
threadcreate(pingpongthread, c, 8*1024);
threadcreate(pingpongthread, c, 8*1024);
kickoff = 0;
sendul(c, kickoff);
threadexits(nil);

}

Initially, both threads (now running pingpongthread) will block at recv.
They are ready for their match. When the main thread sends an initial zero through
the only channel, the thread that called recv first will be the one receiving the
message. Which one does receive it? We do not care. If both players run the same
code, why should we care?

At this point things work as discussed above. The thread that received the ini-
tial zero is now after its recv, preparing to send 1 to the other. The other thread is
still waiting inside recv. The send from the former will deliver the number to
the later. And both calls will meet in time because of the lack of buffering in the
channel. Later, the very same channel will be free to send another number back.

The program uses sendul and recvul, instead of send and recv. These
functions are convenience routines that send and receive an unsigned integer value.
They are very convenient when the channel is used to send integers. There are
other similar functions, called sendp and recvp that send and receive pointers
instead.



- 328 -

; sig sendul recvul sendp recvp
int sendul(Channel *c, ulong v)
ulong recvul(Channel *c)
int sendp(Channel *c, void *v)
void* recvp(Channel *c)

They are exactly like send and recv for messages of the size of integers and
messages of the size of pointers, respectively.

11.4. I/O in threaded programs
Performing I/O from a thread that shares the process with other threads is usually a
bad idea. It is not harmful to call print and other I/O functions for debugging and
similar purposes. But it may be harmful to the program to read from the console or
to read from or write to a network connection.

Consider the airport panels application from the last chapter. We are going to
make an implementation using threads. The application must convey a message
typed at a console to the multiple panels in the airport. This implies several differ-
ent activities:
1 Reading messages from the console.
2 Broadcasting each new message to all the panels.
3 Updating each panel
Using the thread library, we can program the application in a very modular way.
Each activity may be performed by a different thread, without even thinking on
what the other threads would do. To make all the threads work together, we can use
channels.

For example, a consread thread may be in charge of reading one line at a
time from the console, and send each new message read through a channel to a
bcast thread.

void
consreadthread(void*)
{

Biobuf bin;
char* ln;

threadsetname("consread");
Binit(&bin, 0, OREAD);
while (ln = Brdstr(&bin, ’\n’, 0))

sendp(bcastc, ln);
sendp(bcastc, nil);
Bterm(&bin);
threadexits(nil);

}

The code can now be almost as simple as the definition for the thread’s task. We
have used Brdstr from bio(2) to read a line at a time from standard input. Unline
Brdline, this function returns a C string allocated with malloc that contains the
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line read. The final argument 0 asks Brdstr not to remove the trailing \n in the
string, which is just what we need. To make things terminate cleanly, upon EOF
from standard input, we send a nil message as an indication to exit.

Another thread, bcast, will be only concerned about broadcasting messages
to panels. When it receives a new message, it sends one copy of the message to
each panel. To do this, the program may use an array of channels, panelc, with
one channel per panel.

void
bcastthread(void*)
{

char* msg;
int i;

threadsetname("bcast");
do {

msg = recvp(bcastc);
for (i = 0; i < Npanels; i++)

if (msg != nil)
sendp(panelc[i], strdup(msg));

else
sendp(panelc[i], nil);

free(msg);
} while(msg != nil);
threadexits(nil);

}

The nil message meaning exiting is also broadcasted, to indicate to all panels that
the program is terminating.

A panel thread (one for each panel) can simply read new messages from the
panel’s channel and update a panel. It needs to know which channel to read mes-
sages from, and which panel to write to. A structure is declared to pass such infor-
mation as an argument.

typedef struct PArg PArg;
struct PArg {

Channel* c; // to get new messages from
int fd; // to the panel’s file.

};

Using it, this can be its implementation. Like before, a nil message is an indication
to exit.
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void
panelthread(void* a)
{

PArg* arg = a;
char* msg;

threadsetname("panel");
while(msg = recvp(arg->c)){

write(arg->fd, msg, strlen(msg));
free(msg);

}
threadexits(nil);

}

All threads were simple to implement, and the structure for the program follows
easily from the problem being solved. We did not have to worry about races since
each thread is only using its own data.

There is one problem, though. If a thread calls Brdstr, to read from the
console, it is going to block all the threads. It blocks the entire process. The same
happens while updating the slow panels using a write to their files. This problem
is easy to solve. Instead of creating a thread to run consreadthread, and one
more thread to run each panelthread function, we can create processes. The
function proccreate creates a new process (using rfork) with a single thread
in it. Otherwise, it works like threadcreate.

; sig proccreate
int proccreate(void (*fn)(void*), void *arg, uint stack)

The processes created using this function share the data segment among them.
Internally, proccreate calls rfork(RFPROC|RFMEM|RFNOWAIT), because
the thread library keeps its data structures in the data segment, which must be
shared. In a few cases, you may want to supply a few extra flags to rfork, when
creating a process. The call procrfork is like proccreate, but accepts a final
flags argument that is or-ed to the ones shown above.

; sig procrfork
int procrfork(void (*fn)(void*), void *arg, uint stack, int rforkflag)

But beware, the thread library uses rendezvous in its implementation. Supply-
ing a RFREND flag to procrfork will break the program. Using proccreate,
we can make our program without blocking all the threads while doing I/O.
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!tticker.c !" """""""________
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <thread.h>

enum { Npanels = 2 };
Channel*bcastc; // of char*
Channel*panelc[Npanels]; // of char*

typedef struct PArg PArg;
struct PArg {

Channel* c; // to get new messages from
int fd; // to the panel’s file.

};

void
consreadthread(void*)
{

Biobuf bin;
char* ln;

threadsetname("consread");
Binit(&bin, 0, OREAD);
while (ln = Brdstr(&bin, ’\n’, 0))

sendp(bcastc, ln);
sendp(bcastc, nil);
Bterm(&bin);
threadexits(nil);

}

void
bcastthread(void*)
{

char* msg;
int i;

threadsetname("bcast");
do {

msg = recvp(bcastc);
for (i = 0; i < Npanels; i++)

if (msg != nil)
sendp(panelc[i], strdup(msg));

else
sendp(panelc[i], nil);

free(msg);
} while(msg != nil);
threadexits(nil);

}

void
panelthread(void* a)
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{
PArg* arg = a;
char* msg;

threadsetname("panel");
while(msg = recvp(arg->c)){

write(arg->fd, msg, strlen(msg));
free(msg);

}
threadexits(nil);

}

void
threadmain(int, char*[])
{

int i;
PArg* arg;

bcastc = chancreate(sizeof(char*), 0);
proccreate(consreadthread, nil, 16*1024);
for (i = 0; i < Npanels; i++){

panelc[i] = chancreate(sizeof(char*), 0);
arg = malloc(sizeof(*arg));
arg->c = panelc[i];
arg->fd = 1; // to test the program.
proccreate(panelthread, arg, 8*1024);

}
// The current thread used for bcast.
bcastthread(nil);

}

The process structure is shown in figure 11.4, which represents each separate pro-
cess with a dashed box and each thread with a circle. This time, we ended with a
single thread within each process. But usually, a central process has multiple
threads to do the actual work, and there are some other processes created just for
doing I/O without blocking all the threads.

There is another benefit that arises from using threads that communicate
through channels. This time, we do not need to optimize our program to maintain
the write for updating the panel outside of the critical region, to permit all panels
to be updated simultaneously. All panels are updated simultaneously in a natural
way, because each one uses its own process and does not lock any shared data
structure. There are locks in this program, but they are hidden deep under the
implementation of send and recv.

11.5. Many to one communication
The program that we built is nice. But it would be nicer to display in the pan-

els, along with each message, the current time and the temperature outside of the
airport building. For example, if the operator types the message
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consread bcastc bcast

panelc[0] panel

...

panelc[i] panel

...

panelc[n] panel

Figure 11.4: Process structure for the airport panels program, using threads.

AA flight 847 delayed

we would like panels to show the message
AA flight 847 delayed (17:45 32ºC)

We could modify the code for the panel thread to do it. But it would not be very
appropriate. A panel thread is expected to write messages to a panel, and to write
them verbatim. The same happens to other threads in this program. They do a very
precise job and are modular building blocks for building a program. Instead, it
seems better to put another thread between consread and bcast, to decorate
messages with the time and the temperature. We call this new thread decorator.

There is still the problem of updating the panels when either the time changes
(the minute, indeed) or the temperature changes. It would not be reasonable to dis-
play just the time and temperature for the moment when the operator typed the
message shown.

As a result, the new decorator thread must have three different inputs. It
receives messages, but it must also receive time and temperature updates. That
leaves us with the problem of how do we generate the two additional input streams.
To follow our modular design, two new threads will be in charge of providing
them. The resulting process design is that shown in figure 11.5. And the code of
the whole program may look like this.
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timer timerc

consread consc

temp tempc

decorator bcastc bcast

panelc[0] panel

...

panelc[i] panel

...

panelc[n] panel

Figure 11.5: Process structure for the enhanced airport application.

!etticker.c !" """"""""_________
#include <u.h>
#include <libc.h>
#include <bio.h>
#include <thread.h>

enum { Npanels = 2 };
Channel*timerc; // of char*
Channel*consc; // of char*
Channel*tempc; // of char*
Channel*bcastc; // of char*
Channel*panelc[Npanels]; // of char*

typedef struct PArg PArg;
struct PArg {

Channel* c; // to get new messages from
int fd; // to the panel’s file.

};

void
consreadthread(void*)
{

Biobuf bin;
char* ln;

threadsetname("consread");
Binit(&bin, 0, OREAD);
while (ln = Brdstr(&bin, ’\n’, 1))

sendp(consc, ln);
sendp(consc, nil);
Bterm(&bin);
threadexits(nil);
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}

void
bcastthread(void*)
{

char* msg;
int i;

threadsetname("bcast");
do {

msg = recvp(bcastc);
for (i = 0; i < Npanels; i++)

if (msg != nil)
sendp(panelc[i], strdup(msg));

else
sendp(panelc[i], nil);

free(msg);
} while(msg != nil);
threadexits(nil);

}

void
panelthread(void* a)
{

PArg* arg = a;
char* msg;

threadsetname("panel");
while(msg = recvp(arg->c)){

write(arg->fd, msg, strlen(msg));
free(msg);

}
threadexits(nil);

}

void
timerthread(void* a)
{

Channel* c = a;
ulong now;
Tm* tm;
char msg[10];
for(;;){

now = time(nil);
tm = localtime(now);
seprint(msg, msg+10, "%d:%d", tm->hour, tm->min);
sendp(c, strdup(msg));
sleep(60 * 1000);

}
}

void
tempthread(void* a)
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{
Channel* c = a;
char temp[10];
char last[10];
int fd, nr;

last[0] = 0;
fd = open("/dev/temp", OREAD);
if (fd < 0)

sysfatal("/dev/temp: %r");
for(;;){

nr = read(fd, temp, sizeof(temp) - 1);
if (nr <= 0)

sysfatal("can’t read temp");
temp[nr] = 0;
if (strcmp(last, temp) != 0){

strcpy(last, temp);
sendp(c, strdup(temp));

}
sleep(60 * 1000);

}
}

void
decoratorthread(void*)
{

char* lcons, *ltimer, * ltemp;
char* consmsg, *timermsg, *tempmsg;
char* msg;
Alt alts[] = {

{ timerc,&timermsg, CHANRCV },
{ consc, &consmsg, CHANRCV },
{ tempc, &tempmsg, CHANRCV },
{ nil, nil, CHANEND } };

lcons = strdup(""); ltimer = strdup(""); ltemp = strdup("");
for(;;){

msg = nil;
switch(alt(alts)){
case 0: // operation in alts[0] made

msg = smprint("%s (%s %s)\n",
lcons, timermsg, ltemp);

free(ltimer);
ltimer = timermsg;
break;

case 1: // operation in alts[1] made
msg = smprint("%s (%s %s)\n",

consmsg, ltimer, ltemp);
free(lcons);
lcons = consmsg;
break;

case 2: // operation in alts[2] made
msg = smprint("%s (%s %s)\n",
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lcons, ltimer, tempmsg);
free(ltemp);
ltemp = tempmsg;
break;

}
sendp(bcastc, msg);

}
}

void
threadmain(int, char*[])
{

int i;
PArg* arg;

timerc = chancreate(sizeof(char*), 0);
consc = chancreate(sizeof(char*), 0);
tempc = chancreate(sizeof(char*), 0);
proccreate(timerthread, timerc, 8*1024);
proccreate(consreadthread, consc, 16*1024);
proccreate(tempthread, tempc, 8*1024);
for (i = 0; i < Npanels; i++){

panelc[i] = chancreate(sizeof(char*), 0);
arg = malloc(sizeof(*arg));
arg->c = panelc[i];
arg->fd = 1; // to test the program.
proccreate(panelthread, arg, 8*1024);

}
bcastc = chancreate(sizeof(char*), 0);
threadcreate(decoratorthread, nil, 8*1024);
bcastthread(nil);

}

Sending time updates is simple. A timer thread can send a message each minute,
with a string representing the time to be shown in the panels. It receives as a
parameter the channel where to send events to.

void
timerthread(void* a)
{

Channel* c = a;
ulong now;
Tm* tm;
char msg[10];
for(;;){

now = time(nil);
tm = localtime(now);
snprint(msg, 10, "%d:%d",tm->hour, tm->min);
sendp(c, strdup(msg));
sleep(60 * 1000);

}
}
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The function localtime was used to break down the clock obtained by the call
to time into seconds, minutes, hours, and so on. This thread does not generate a
very precise clock. It sends the time once per minute, but it could send it when
there is only one second left for the next minute. In any case, this part of the pro-
gram can be refined and programmed independently of the rest of the application.

To read the temperature, we need a temperature metering device. We assume
that the file /dev/temp gives the current temperature as a string each time when
read. To implement the thread temp, we measure the temperature once per
minute. However, the thread only sends a temperature update when the temperature
changes (and the first time it is measured). Once more, the channel where to send
the updates is given as a parameter.

void
tempthread(void* a)
{

Channel* c = a;
char temp[10];
char last[10];
int fd, nr;

last[0] = 0;
fd = open("/dev/temp", OREAD);
if (fd < 0)

sysfatal("/dev/temp: %r");
for(;;){

nr = read(fd, temp, sizeof(temp) - 1);
if (nr <= 0)

sysfatal("can’t read temp");
temp[nr] = 0;
if (strcmp(last, temp) != 0){

strcpy(last, temp);
sendp(c, strdup(temp));

}
sleep(60 * 1000);

}
}

What remains to be done is to implement the decorator thread. This thread
must receive alternatively from one of three channels, timerc, tempc, or
consc. When it receives a new message from either channel, it must concoct a
new message including up to date information from the three inputs, and deliver
the new message through bcastc to update all the panels. Because we do not
know in which order we are going to receive inputs, we cannot use recvp. The
function alt implements many-to-one communication. It takes a set of channel
operations (sends or receives) and blocks until one of the operations may proceed.
At that point, the operation is executed and alt returns informing of which one of
the channel operations was done. Before discussing it, it is easier to see the
decorator thread as an example.
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void
decoratorthread(void*)
{

char* lcons, *ltimer, * ltemp;
char* consmsg, *timermsg, *tempmsg;
char* msg;
Alt alts[] = {

{ timerc,&timermsg, CHANRCV },
{ consc, &consmsg, CHANRCV },
{ tempc, &tempmsg, CHANRCV },
{ nil, nil, CHANEND } };

lcons = strdup("");
ltimer = strdup("");
ltemp = strdup("");
for(;;){

msg = nil;
switch(alt(alts)){
case 0: // operation in alts[0] made

chanprint(bcastc, "%s (%s %s)\n",
lcons, timermsg, ltemp);

free(ltimer);
ltimer = timermsg;
break;

case 1: // operation in alts[1] made
if (msg == nil)

threadexitsall("terminated");
chanprint(bcastc, "%s (%s %s)\n",

consmsg, ltimer, ltemp);
free(lcons);
lcons = consmsg;
break;

case 2: // operation in alts[2] made
chanprint(bcastc, "%s (%s %s)\n",

lcons, ltimer, tempmsg);
free(ltemp);
ltemp = tempmsg;
break;

}
}

}

The call to alts receives an array of four Alt structures. The first three ones are
the channel operations we are interested in. The fourth entry terminates the alts
array, so that alt could know where the array ends. When the thread calls alt, it
blocks. And it remains blocked until any of the three channel operations repre-
sented by Alt entries in the array may be performed.

For example, if right before calling alt the timer thread sent an update, alt
will immediately return, reporting that a receive from timerc was made. In this
case, alt returns zero, which is the index in the alts array for the operation per-
formed. That is how we know which operation was made, its index in the array is
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the return value from alt.
Each Alt entry in the array is initialized with the channel where the opera-

tion is to be performed, a constant that can be CHANRCV or CHANSEND to indicate
that we want to receive or send in that channel, and a pointer to the message for the
operation. The constant CHANEND is used as the operation to mark the end of the
array, as seen above. To say it in another way, the call to alt above is similar to
doing any of the following

recv(timerc, &timermsg);
recv(consc, &consmsg);
recv(tempc, &tempmsg);

But alt works without requiring a precise order on those operations. That is a
good thing, because we do not know in which order we are going to receive
updates. We do not know which particular channel operation is going to be picked
up by alt if more than one can be performed. But we know that alt is fair.
Adding a loop around alt guarantees that all the channel operations that may be
performed will be performed without starvation for any channel.

Now that alt is not a mystery, we should mention some things done by the
decorator thread. This thread uses chanprint to send messages to the
bcastchannel. A call to chanprint is similar to calling smprint (to print the
arguments in a string allocated in dynamic memory), and then sending the resulting
string through the channel. This function is very convenient in many cases.

At any time, the operator might send an end-of-file indication, typing
control-d. When the decorator thread receives a nil message (sent by
consthread upon EOF), it calls threadexitsall. This function terminates
all the processes and threads of the program, terminating it.

11.6. Other calls
In general, it is safe to use whatever functions from the C library (or from any other
one) in a program using the thread library. We have done so through this chapter.
Function libraries try not to use global variables, and when they do, they try to pro-
tect from races so that you could call them from a concurrent program. In other
systems, things are not so nice and you should look into the manual pages for
warnings regarding multi-threaded programs. For example, many UNIX manual
pages have notes stating that functions are MT-Safe, i.e., safe for use in multi-
threaded programs. That is, in programs with multiple threads.

Even in Plan 9, some other functions and system calls are not to be used
when using the thread library. In general, this happens whenever a function deals
with the flow of control for the process. A threaded program has multiple flows of
control, and it would make no sense to operate on the underlying flow of control of
the process used to implement the various threads.

We have seen that threadexits must be used instead of exits, because
of the obvious reason. This case was clear. A less clear one may be proccreate,
which we used instead of calling rfork or fork. The thread library knows about
the processes it creates. It tries hard to supply the same interface for both threads
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and processes, so that all its operations work in the same way for both entities.
Indeed, proccreate creates a single thread in a new process. Thus, you might
say that all operations from the library work just on threads. In any case, using
rfork to operate on the resources for your process is safe. For example, to make a
copy of environment variables, put the process in a new note group, etc.

In a similar way, procexec (or procexecl) should be used instead of
exec (or execl). A call to exec would replace the program for the process,
making void all the threads that might be running on it. But a call to procexec
works nicely when using processes and threads. Of course, it only makes sense to
call procexec when there is a single thread in the process making the call. Other-
wise, what would happen to the other threads? Their code and data would be gone!

In most cases, there is no need to call wait to wait for other processes. The
processes you create can synchronize with the rest of your program using channels,
if you need to convey a completion status or something else. That is not the case
when using procexec. The program executed by procexec knows nothing
about your program. Therefore, a substitute for wait is appropriate for this case.
The function threadwaitchan returns a channel that can be used to receive
Waitmsgs for processes what we used to execute other programs.

The following program is a complete example regarding how to execute an
external program and wait for it.
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!texec.c !" """"""_______
#include <u.h>
#include <libc.h>
#include <thread.h>

Channel*waitc;
Channel*pidc;

void
cmdproc(void* arg)
{

char* cmd = arg;

procexecl(pidc, cmd, cmd, nil);
sysfatal("procexecl: %r");

}

void
threadmain(int, char*[])
{

char ln[512];
int pid, nr;
Waitmsg *m;

write(1, "cmd? ", 5);
nr = read(0, ln, sizeof(ln)-1);
if (nr <= 1)

threadexits(nil);
ln[nr-1] = 0; // drop \n
pidc = chancreate(sizeof(ulong), 1);
waitc= threadwaitchan();
proccreate(cmdproc, ln, 8*1024);
pid = recvul(pidc);
print("started new proc pid=%d\n", pid);
if (pid >= 0){

m = recvp(waitc);
print("terminated pid=%d sts=%s\n", m->pid, m->msg);
free(m);

}
threadexits(nil);

}

The initial thread reads a file name and executes it. The actual work is done by
proccreate, which creates the process to execute the file, and by procexecl,
which executes the new program in the calling process.

The first parameter for procexecl may be either nil or point to a channel
of unsigned integers. In the later case, the pid for the process used to execute the
command is sent through the channel. This is useful for more than to obtain the
pid for the process running the external command. It is guaranteed that the argu-
ments supplied to procexec will not be used after sending the pid. In our case,
ln is in the stack of the initial thread. After receiving the pid, we could terminate
threadmain, which deallocates ln. However, before receiving the pid, the
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arguments for procexec must still exist, and cannot be deallocated yet.
The program calls threadwaitchan to obtain a channel for notifying the

termination of the external program. Receiving from this channel yields the
Waitmsg that wait would return for a program not using threads.

This is an example run.
; 8.texec
cmd? /bin/date
started new proc pid=1436
Sat Aug 5 19:51:05 MDT 2006
terminated pid=1436 sts=
; 8.texec
cmd? date
procexecl: ’date’ file does not exist
;

To conclude, handling of notes is similar in threaded programs than in other
ones. Only that threadnotify must be used instead of atnotify. But the
interface is otherwise the same.

Problems
1 Implement a concurrent program simulating a printer spooler. It must have

several processes. Some of them generate jobs for printing (spool print jobs)
and two other ones print jobs. Needless to say that the program must not have
race conditions. You must use threads and channels as the building blocks for
the program.

2 One way to determine if a number is prime is to filter all natural numbers to
remove numbers that are not prime. Using different thread for filtering num-
bers that divide candidate numbers, write a program to write prime numbers.

3 There are different cars trying to cross a bridge. There are cars on both sides
of the bridge. Simulate this scenario using threads and channels. Avoid acci-
dents.

4 The dining philosophers problem is a very famous one in concurrent pro-
gramming. There are philosophers who loop forever trying to think, and then
to eat. All of them are seated around a round table, with a single chopstick
between each two philosophers. To eat, a philosopher needs both the chop-
stick on the left and the one on the right. Write a program to simulate this
scenario using threads for the different philosophers.

5 Avoid starvation in the previous problem.



.



12 ! User Input/Output
______

12.1. Console input
In chapter 7 we saw that #c is the root of the file tree exported by the cons(3)
driver. It is conventionally bound at /dev, and provides the familiar /dev/cons
file. Reading #c/cons obtains input from the console keyboard. Writing to
#c/cons writes characters in the console screen.

When rio, the window system, is running, it reads #c/cons to obtain the
characters you type. Writing them in the screen is a different story that we will tell
later. Reading and writing #c/cons while running the window system is not a
good idea. If more than one program is reading this file, the characters typed will
go to either program. In the following experiment, we ask cat to read #c/cons,
storing what it could read into /tmp/out, so you could see what happens.

; cat ’#c/cons’ >/tmp/out
hlo We typed "hello"
Delete To restore things to a normal behavior
; cat /tmp/out
el;

Despite typing hello, rio could only read hlo. The other characters were read
by cat. rio expects to keep the real #c/cons for itself, because it multiplexes
this file nicely, providing a virtual version of it on each window’s /dev/cons.

A write to #c/cons is also processed by the cons device, even when rio is
running. As a result, it prints in the screen behind rio’s back. This command

; echo ’where will this go?’ > ’#c/cons’

will produce an ugly message printed in the screen, which might look like the one
shown in figure 12.1. In a very few occasions, the kernel itself may write a message
for you in the console. The same would happen. Programs started prior to running
rio, that might also issue some diagnostics, would produce the same effect. All of
them are writing to the console output device.

Writing some more things in the real console may cause a scroll, and the
images in the screen will scroll along with the text. Poor rio, it will never know
that the screen is messed up. To prevent this from happening, the file #c/kprint
may be used. If a process has #c/kprint open for reading, the kernel will not
print in the screen whatever is written at #c/cons. Instead, all that text is used to
satisfy reads for #c/kprint. For example, executing cat on this file, prior to
doing the echo above, produces this effect:

; cat /dev/kprint
where will this go?

All text sent to the console will now go to that window. For the record, it might
help to print also /dev/kmesg, which records all the messages printed in the con-
sole so far, before reading kprint.
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Figure 12.1: A write to the actual console may write to the screen even when rio is running.

; cat /dev/kmesg /dev/kprint
Plan 9
E820: 00000000 0009f800 memory
E820: 0009f800 000a0000 reserved
...
where will this go?

When we implemented programs to read from the console, it gave us a line at a
time. We could even edit the line before hitting return. However, this time, using
cat to read #c/cons returned characters, as we typed them. What is going on?

Usually, the console device driver reads characters from the keyboard’s hard-
ware, and cooks what you type a little bit, before supplying such characters to any
process reading /dev/cons. This is the cooking recipe used by the console:
% A backspace, removes the previous character read from the keyboard.
% A control-u removes all the characters read from the keyboard, thus it cancels

the current input line.
% A newline terminates the cooking from the current line, which is made avail-

able to the application reading from the console.
% The compose (usually Alt) key, followed by a few other keys, produces a

character that is a function of the other keys. This is used to type characters
not usually found in the keyboard, like ! and !.

% Any other character stands for itself, and is queued to be cooked along with
the rest of the line.

The virtual version for /dev/cons provided by the window system gives also a
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special meaning to a few other characters, most notably:
% Delete posts an interrupt note to the process group associated to the window.
% Arrow keys " and ! scroll backward and forward.
% Arrow keys # and $ move the text insertion point to the right and to the left.
% The Escape key puts the window in a, so called, hold mode. All the text

typed while in hold mode is not supplied to any application reading from
/dev/cons. Therefore, you can freely edit multiple lines of text. When
Escape is preseed again, and the window leaves hold mode, the text is given
to any process reading from /dev/cons.

This is called the console’s cooked mode. When it is enabled, lines can be edited
as dictated by the rules stated above. This is also called a line discipline. But the
console can be also put in a, so called, raw mode. In raw mode, the console does
not cook the characters at all. It gives them to the process reading from the console,
as they arrive from the keyboard.

The file /dev/consctl can be used to activate and de-activate the raw
mode. A write of the string rawon into such file puts the console in raw mode,
until the file is closed or the string rawoff is written. The next program echoes
what it can read from the console. But it puts the console in raw mode when called
with -r.
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!raw.c !" """""______
#include <u.h>
#include <libc.h>
void
usage(void)
{

fprint(2, "usage: %s [-r]\n", argv0);
exits("usage");

}
void
main(int argc, char*argv[])
{

char buf[512];
int raw = 0;
int cfd = -1;
int nr;

ARGBEGIN{
case ’r’:

raw++;
break;

default:
usage();

}ARGEND;
if (argc != 0)

usage();
if (raw){

cfd = open("/dev/consctl", OWRITE);
write(cfd, "rawon", 5);

}
for(;;) {

nr = read(0, buf, sizeof(buf)-1);
if (nr <= 0)

break;
buf[nr] = 0;
print("[%s]\n", buf);

}
if (raw)

close(cfd);
exits(nil);

}

This is what happens when we run it using the console’s cooked mode and its raw
mode.

; 8.raw
hi
[hi
]
Delete
;
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; 8.raw -r
[h]
[i]
[ the program reads "\n"
]
[!] the program reads "Del"
[!] If we type "Esc", the program reads "Esc"

There are some things to note. First, in cooked mode we can see the characters we
type as we type them. We could type hi, and its characters were echoed to the
screen by the console. The program 8.raw did not read anything as we typed
them. Not yet. However, in raw mode, the console does not echo back to the screen
what we type. It assumes that the program reading in raw mode does want to do it
all by itself, and echo is suppressed.

Another effect of raw mode is that the program reads one character at a time,
as we type them. In cooked mode, only when we type a newline the program will
get its input.

A final and interesting difference is that we cannot interrupt the program
pressing Delete. In fact, if /dev/cons was #c/cons, it would know nothing
about Delete. This key is an invention of the cooked mode in consoles provided
for windows by the window system. In raw mode, rio decides not to do anything
special with this key, and the application can read it as any other key.

Using the hold mode (provided by rio’s consoles in cooked mode) this is
what happens.

; 8.out
Escape
hi hold mode is active...
there we can edit this until...
Escape
[hi
]
[there
]

The behavior is like in cooked mode (one line at a time), but we could type and edit
while in hold mode.

To answer our pending question. The program cat, that we used to experi-
ment with reading #c/cons, got characters and not lines because rio keeps the
system console in raw mode. The file #c/cons returns characters as we type
them. These characters are processed by rio, which uses them to supply a virtual
console for the window were you are typing. Again, the virtual console for this
window has both cooked and raw modes. In shell windows, that operate in cooked
mode, the window cooks the characters before giving lines to programs reading
them. When acme is run in a window, it puts its (virtual) console device in raw
mode, to do the editing by itself.
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12.2. Characters and runes
But that was not all about the console. The console, like most other devices using
text, and like all Plan 9 programs using text, does not use characters. This may be a
surprise, but think about "characters# like , !, and !. For languages like English
or Spanish, all text is made up with characters, that might be letters, numbers, and
other symbols. Spanish has also accented letters like á and ñ. And this is just the
start of the problem. Other languages use symbols to represent concepts, or what
would be words or lexemes, for a spanish person. When computers were used for
english text, the standard ASCII for codifying characters as bytes was enough.
Today, it is not. There are many symbols and one byte is not enough.

Plan 9 uses Unicode, which is a standard for representing symbols used for
text writing. Indeed, Plan 9 was the first system to use Unicode. The symbols used
to write text are not called characters, but runes. Each rune is represented in Plan 9
as a 16-bit (two bytes) number. Most programs processing text are expected to use
runes to do their job. The data type Rune is defined in libc.h, as a short integer.

However, using a stream of 16-bit numbers to exchange text between differ-
ent programs would be a nightmare because it would break all the programs written
to use just ASCII, which uses a single byte for each character. Furthermore, many
C programs use strings codified as a sequence of bytes terminated by a final null
byte. Sending a stream of 16-bit runes to such programs will make them fail.

To maintain compatibility with the huge amount of software that existed
when Unicode was invented, a encoding was designed to transform an array of
runes into a byte stream that could be backward compatible with ASCII. This
encoding is called UTF-8, (Universal character set Transformation Format, 8 bits)
or just UTF (for short). UTF-8 was invented by Ken Thompson (apparently in a
dinner’s table, shared with Rob Pike). Runes like , !, and ! do not use a single
byte when codified in UTF. A rune may use up to three bytes in Plan 9’s UTF.

A program reading text, reads a UTF byte stream, that is exactly the same
used by ASCII when the text contains characters present in 7-bit ASCII (most char-
acters but for accentuated letters and other special symbols). After having read
some text, if it is to be processed as such, the program converts the UTF represen-
tation into Unicode. Then it is processed. Afterwards, to output some text as a
result, the program is expected to convert the text from Unicode back into UTF,
before sending it to the output stream. Files that keep text used as input (or coming
as output) for programs, are also maintained in UTF.

The file /dev/cons does not provide characters when read. It provides
runes. In many cases, a rune may fit in a single byte. In other cases, it will not. The
console keyboard driver knows how to compose multiple keys to type runes not in
the keyboard. The whole set of rules is described in keyboard(6). Many runes may
be generated by using the compose key, usually Alt, and a couple of keys that
remind the rune generated. For example, typing Alt - > will produce #. Alt < -
will produce $. Alt s o leads to & , and Alt s a leads to ª. Greek letters can be
generated by typing Alt * and their roman counterparts. Thus, Alt * m leads to ".
The file /lib/keyboard lists many runes that can be composed using several
other keys in this way.

In general, any Unicode rune may be also generated by typing Alt X nnnn,
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where nnnn is the code in Unicode for the rune. So, Alt X 00fe leads to þ. The
file /lib/unicode lists unicode runes along with their codes.

Programs that read and write data without assuming that it is text, may still
operate one byte at a time, if they want. Or many at a time. However, programs
reading text and looking into it, should use the functions in rune(2), or they would
misbehave for non-english text. The functions in the C library described in rune(2)
provide conversion from UTF to runes and vice-versa. Among others, we have
these ones.

; sig runetochar chartorune
int runetochar(char *s, Rune *r)
int chartorune(Rune *r, char *s)

Now we can read "characters# properly from the console, for the first time. The
next program converts what it reads to uppercase.
!rune.c !" """"""_______

#include <u.h>
#include <libc.h>
void
main(int, char*[])
{

char buf[512];
char out[UTFmax];
Rune r;
int nr, irl, orl;
char* s;
for(;;) {

nr = read(0, buf, sizeof(buf));
if (nr <= 0)

break;
s = buf;
while (nr > 0){

irl = chartorune(&r, s);
s += irl;
nr-= irl;
r = toupperrune(r);
orl = runetochar(out, &r);
write(1, out, orl);

}
}
exits(nil);

}

It processes one rune at a time. The function chartorune extracts a rune from
the byte string pointed to by s, and places it at &r. The number of bytes occupied
by the rune in UTF (that is, in the string at s), is the return value from the function.
The function runetochar does the opposite conversion, and returns also the
number of bytes used. It is guaranteed that a rune will not occupy more than
UTFmax bytes (3 bytes in Plan 9). Other convenience routines, like
toupperrune, replace the traditional ones for characters. Our program works
perfectly with runes that do not fit in ASCII.
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; 8.out
I feel today.
I FEEL TODAY.

An equivalent program, but unaware of unicode, would fail. Using this loop to do
the conversion instead of the Rune routines

for (i = 0; i < nr; i++)
buf[i] = toupper(buf[i]);

produces this result for this input.
España includes Espuña.
ESPAñA INCLUDES ESPUñA.

The letter ñ was not properly capitalized into Ñ. It could have been worse. We
could have processed part of a rune, because runes may span several bytes. For
example, translating to uppercase by

buf[i] = buf[i] + ’A’ - ’a’

will lead to a surprise (besides being wrong anyway).

12.3. Mouse input
Another popular input device is the mouse. The mouse interface is provided by the
mouse driver through a few files in #m.

; lc ’#m’
cursor mouse mousectl
;

This name is usually bound along with other devices at /dev. The file
mousectl is used to write strings to configure and adjust mouse settings. For
example,

; echo accelerated >/dev/mousectl

turns on mouse acceleration (a quick move in one direction will move the mouse
fast in that direction, many more pixels than implied by the actual movement). On
the other hand,

; echo linear >/dev/mousectl

disables mouse acceleration. There are several other messages. Depending on the
hardware for the mouse, some control requests may be ignored (if they do not make
sense for a particular mouse).

When the window system is running, rio is the one that reads and writes
these files. As with /dev/cons, rio provides its own (multiplexed) version for
these files, on each window. Reading #m/mouse yields mouse events. However,
this file may not be opened more than once at the same time.



- 353 -

; cat ’#m/mouse’
cat: can’t open #m/mouse: ’#m/mouse’

device or object already in use

Since rio has open #m/mouse, to read mouse events, nobody else will be able to
open it until rio terminates and the file is closed. This is a safety measure to syn-
chronize multiple programs trying to use this device at the same time. In any case,
the multiplexed version of the mouse, /dev/mouse, provided by rio for each
window is for us to read.

; cat /dev/mouse
m 670 66 0 2257710 m 676
68 0 2257730 m 677 74

0 2257750 m 680 77 0 2257770

This file will never seem to terminate. No end of file indication for it. Indeed,
/dev/mouse is a stream of mouse events. Each read will block until the mouse
produces an event (it is moved or a button is pressed or released). At that point,
/dev/mouse returns 49 bytes. There is an initial letter m followed by four num-
bers: the x and y coordinates for the mouse, a number stating which buttons are
pressed, and a time stamp.

The time stamp is handy when a program wants to detect double and triple
clicks. In Plan 9, the mouse might even be attached to a different machine. The
time for the clicks that matters is that of the machine with the mouse, when the
mouse events were received from the hardware by the mouse driver. The time as
seen by the program reading the mouse might differ a little bit (there may be delays
between different mouse events introduced because our program moved out of the
processor, or because the system went busy, etc.).

Mouse coordinates correspond to the position of the pointer in the screen. The
screen is a matrix of pixels. A typical screen size is 1024x768 (1024 pixels wide,
on the x axis, and 768 pixels of height, on the y axis). Other popular screen sizes
are 1280x1024 or 1600x1200. The origin is coordinate (0,0), at the upper left cor-
ner of the screen. Thus, for a 1024x768 screen, the bottom right corner would be
(1023,767). There are increasing values for x as you move to the right, and increas-
ing y values as you move down.

The first mouse event reported by cat was for the coordinate (670,66). That
is, the tip of the arrow used as a cursor was pointing at the pixel number 670 on the
x axis (counting from 0) and number 66 on the y axis. The mouse was then moved
a little bit down-right, and the next coordinate reported by cat was (676,68).

Following the two numbers reporting the pointer position, there is a number
that lets you know the state for mouse buttons (always zero in the example above).
To experiment with this, we are going to write a small program that reads the
mouse and prints one mouse event per line, which is easier to read. Before looking
at the source for the program, this is an example run.
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; 8.mouse
mouse pos=[896 189] buttons=0 we move the mouse...
mouse pos=[895 190] buttons=0
mouse pos=[894 190] buttons=0
...

mouse pos=[887 191] buttons=1 button-1 down
mouse pos=[887 191] buttons=3 button-2 down
mouse pos=[887 191] buttons=1 button-2 up
mouse pos=[887 191] buttons=0 button-1 up
...

mouse pos=[887 191] buttons=0
mouse pos=[887 191] buttons=1 button-1 down
mouse pos=[887 191] buttons=3 button-2 down
mouse pos=[887 191] buttons=7 button-3 down
;

As you could see, each button is codified as a single bit in the number. Button-1 is
the bit 0, button-2 is the bit 1, button-3 is the bit 2, and so on. A click for button
one will yield 1 while it is down, and 0 when released. A click for button 3 will
yield 4 (i.e., 100 in binary) when it is down and 0 when released. Our program
exits when all the three buttons are down, that is, when the number is 7 (i.e., 111
in binary).

Instead of reading /dev/mouse by itself, the program uses the mouse(2)
library. This library provides a mouse interface for threaded programs. Programs
using the mouse are likely to do several things concurrently (attend the keyboard,
do something for their user interface, etc.). Therefore, it is natural to write a
threaded program when the application requires a graphical user interface.
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!mouse.c !" """""""________
#include <u.h>
#include <libc.h>
#include <thread.h>
#include <draw.h>
#include <mouse.h>

void
threadmain(int , char*[])
{

Mousectl*mctl;
Mouse m;

fmtinstall(’P’, Pfmt);
mctl = initmouse("/dev/mouse", nil);
if (mctl == nil)

sysfatal("initmouse: %r");
while(recv(mctl->c, &m) >= 0){

print("mouse pos=%P\tbuttons=%d\n", m.xy, m.buttons);
if (m.buttons == 7)

break;
}
closemouse(mctl);
exits(nil);

}

The program must include mouse.h, which contains the definitions for the
library, along with draw.h, which defines some data types used by the library.
The function initmouse initializes the mouse interface provided by the library.
It creates a process to read the file given as an argument and obtain mouse events.

; sig initmouse
Mousectl *initmouse(char *file, Image *i)

The return value is a pointer to a Mousectl structure:
typedef struct Mousectl Mousectl;
struct Mousectl
{

Channel *c; /* chan(Mouse) */
Channel *resizec; /* chan(int)[2] */
...

};

that contains a channel, Mousectl.c, where mouse events are sent by the process
reading the mouse. Therefore, to obtain mouse events all we have to do is to call
recv on this channel. Each mouse event is codified as a Mouse structure, contain-
ing the buttons, the coordinates, and the time stamp for the mouse (as read from the
mouse file).
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typedef struct Mouse Mouse;
struct Mouse
{

int buttons; /* bit array: LMR=124 */
Point xy;
ulong msec;

};

Thus, the call
recv(mctl->c, &m)

is the one reading mouse events in the program. The program prints the coordi-
nates, kept at Mouse.xy, and the buttons, kept at Mouse.buttons. Using
coordinates is so common that draw.h defines a Point, along with some func-
tions to operate on points.

typedef struct Point Point;
struct Point
{

int x;
int y;

};

So, the x coordinate for the mouse event stored at m would be m.xy.x, and the y
coordinate would be m.xy.y.

To print Points, the function Pfmt, declared by draw.h, can be installed
as a format function for the print function family. The call

fmtinstall(’P’, Pfmt);

instructs print to use Pftmt to print any argument that corresponds to a %P in
its format string. This is very convenient for printing coordinates. By the way, there
are many other format functions defined in the standard library. And you may
define your own ones. It is all explained in fmtinstall(2), which details the support
for user-defined print formats.

Finally, the function closemouse closes the mouse file and releases any
resource related to the Mousectl structure (most notably, its memory, the chan-
nel, and the process reading the mouse).

The rest of the mouse interface (not used by this program) will be deferred
until we see something about graphics.

12.4. Devices for graphics
The whole idea behind graphic terminals is quite simple. A portion of memory is
used to keep the image(s) to be shown at the terminal. The hardware device that
updates the monitor image by reading this memory is called a graphics card. But
things are not so simple anymore.

Ultimately, graphics are supported by extremely complex hardware devices
like VGA cards (Video Graphic Arrays). Such devices use system memory (and/or
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memory attached directly to the graphics card) to store images to be shown at the
monitor. It turns out that monitors are also very complex these days. You only have
to consider that graphic cards and monitors speak together using particular proto-
cols through the video cable that goes from the card to the monitor

Games and other popular applications demanding graphics have lead to
graphic cards that know by themselves how to do many 2D and 3D graphics opera-
tions. Sometimes, this is called hardware acceleration for video and graphics
operations.

Fortunately, all this is hidden behind the device driver for the video card used
in your terminal. The vga(3) device is in charge for dealing with the VGA card in
your PC. Its file interface is available at #v.

; lc ’#v’
vgabios vgactl vgaovl vgaovlctl

The most interesting file is vgactl, which is the interface for configuring the card
for a proper operation. Other files provide access to extra features, like overlaid
images, and for the software kept in ROM in the PC (called BIOS, for Basic
Input/Output System, but not basic) that is useful to deal with the card.

Initially, while the system is booting, the graphics card operates in an ancient
text-only setting. It uses some memory to display a matrix of characters in the
screen, usually of 80 columns and 24 rows, or 80x24. But the hardware can do
much more. It knows how to display graphics. When the card operates to show
graphics, it can be adjusted to show a particular number of pixels. We saw a little
bit of this when describing the coordinates used by the mouse.

Most graphic cards can show 640x480 pixels, 1024x768 pixels, 1280x1024
pixels, and perhaps even more. For each pixel, the number of colors that the card
can show is determined by the number of bits used to encode a value for the pixel.
Using 8 bits per pixel leads to at most 256 colors. Therefore, a particular screen
size would not just be 1024x768, but rather 1024x768x8 or perhaps 1024x768x24.

Each one of these different configurations is usually called a graphics mode.
So, the configuration for the VGA size 1280x1024x24 is also known as the
1280x1024x24 mode. Because the size of the actual screen is fixed, the number of
pixels determines the size of each pixel in the screen. Thus, different modes are
also referred to as different resolutions.

Changing the mode in the VGA card can be very complex. An auxiliary pro-
gram, aux/vga is in charge of adjusting the vga configuration. You will use the
file interface provided by the vga device driver just to adjust a few parameters, and
not for doing other complex things. For that, you have aux/vga. For example,

aux/vga -l text

puts the machine back into text mode, as it was during boot. In the same way,
aux/vga -l 1024x768x8

loads the mode for 1024x768x8. On the other hand, if our graphics card is not
properly handled by our device driver, we may disable hardware acceleration by
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using the interface at #v instead of aux/vga.
; echo hwaccel off >/dev/vgactl

Also, writing blank to vgactl will blank the screen, until we move the mouse.
And

; echo blanktime 30 >/dev/vgactl

will make the screen blank after 30 minutes of (mouse) inactivity.
The size used by aux/vga to set the mode for the graphics card is kept in

the environment variable vgasize. The type of monitor is kept in the environ-
ment variable monitor.

; echo $vgasize
1280x800x24
; echo $monitor
cinema

Both are the primary parameters used by aux/vga to set the VGA mode. This
happens during the system startup, and you will probably not be concerned about
this, but in any case, $vgasize is a useful bit of information to write scripts that
depend on the screen resolution.

In any case, reading vgactl provides most of the configuration parameters
for the graphics card that you might want to use.

; cat /dev/vgactl
type vmware
size 1280x800x32 x8r8g8b8
blank time 30 idle 0 state on
hwaccel on
hwblank off
panning off
addr p 0xfa000000 v 0xe0000000 size 0xa8c000

The interface provided by the kernel for using graphics is not that of vga. That is a
particular control interface for a particular kind of graphics card. Graphics are pro-
vided by the draw(3) device driver. The draw device relies on the facilities pro-
vided by the graphics card attached to the system, and provides the primary system
interface to graphics.

Draw maintains connections between processes using graphics, and the
graphics device itself. Of course, connections to the draw device are represented as
files, similar to what happen with network connections. Its file tree is available at
#i, but is also bound at /dev.

; lc /dev/draw
1 2 42 new
; lc /dev/draw/1
colormap ctl data refresh

Here, directories 1, 2, and 42 are the interface for three different connections
maintained as of this moment in my terminal. The directory for a connection
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(besides other files) has a ctl and a data file, like we saw with network line
directories. Opening the file /dev/draw/new establishes a new connection. So,
a process that wants to use graphics must open /dev/draw/new, and then write
to the data file for its connection messages that encode the graphic operations to
be performed.

The draw device provides the Image abstraction, along with operations to
allocate, deallocate, and draw on it. All the graphics operations are performed by
this device. Programs using graphics talk directly to the device, by establishing
connections to it, and asking it to perform operations on images. Instead of using
the device interface directly, most programs use the draw(3) library, as shown next.

12.5. Graphics
Graphics are provided through the file interface for the draw device. This happens
both when using the console (before the window system runs) and after running the
window system. When run in the console, a graphics program will use the entire
screen as its window, when run within the window system, it will use just the win-
dow. That is the only difference regarding graphics, which is why you can execute
rio in a window, as we did some time ago when connecting to a CPU server.

The following program draws the entire screen in black for 10 seconds. Like
many other programs, it uses the functions from the draw library, as described in
graphics(2), and draw(2), instead of speaking to the draw device by itself.
!black.c !" """"""_______

#include <u.h>
#include <libc.h>
#include <draw.h>

void
main(int, char*argv[])
{

Rectangle rect;
Image* black;

fmtinstall(’R’, Rfmt);
if(initdraw(nil, nil, argv[0]) < 0)

sysfatal("initdraw: %r");
rect = screen->r;
black = display->black;
draw(screen, rect, black, nil, Pt(rect.min.x+20,rect.min.x+20));
flushimage(display, 1);
sleep(5 * 1000);
closedisplay(display);
print("rectangle was %R\n", rect);
exits(nil);

}

The program calls initdraw to establish a connection to the draw device. This
function initializes some global variables, including screen, and display, that
are used later in the program.
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; sig initdraw
int initdraw(void (*errf)(Display*, char*),

char *font, char *label)

The first parameter points to a function called by the library upon errors. Passing a
nil pointer means that the draw library will use its own, which prints a diagnostic
message and terminates the program. Usually, that is all you will want to do. The
second parameter states which font to use for drawing text. Again, passing a nil
value means that the library will use a reasonable default. The last parameter is
simply a textual label for the window, which we define to be the program name.
The function writes the text in label to the file /dev/label, to let rio know
how the window is named, in case it is hidden.

The display variable points to a Display structure that represents the
connection to the draw device. It maintains all the information necessary to speak
with the device, for drawing. In particular, it keeps the file descriptor for the
/dev/draw/n/data file, that is, for the connection to the device. Calling
closedisplay(display) as the program does after 10 seconds, closes the
connection and releases any graphic resources associated to it.

Another useful global variable, also initialized by initdraw, is screen.
This variable points to a structure representing the screen (i.e., the memory) where
you may draw and use graphics. When running in the console, screen corre-
sponds to the entire screen. When running inside a rio window, screen corre-
sponds to the part of the screen used by the window. In what follows, we will
always speak about the window used by the program. But it should be clear that
such "window# may be the entire screen if no window system is running.

To which data type does screen point to? Where can you draw things on? It
turns out that the screen is an image, the data abstraction provided by draw(3). It
represents a piece of memory used as an image by the graphics card. It is just a
rectangular picture. A program may draw by changing bits in the image for its
screen. Most of things a program uses for drawing are also images. For example,
colors are images (with pixels in the appropriate color), to write text in the screen a
program draws images for the appropriate characters, a window is essentially an
image (that a program will use as its screen), the entire screen (also called the dis-
play) is an image as well. The data type Image, is defined in draw.h.

typedef struct Image Image;
struct Image
{

Display *display; /* display; connection to draw(3) */
int id; /* id of draw(3) Image */
Rectangle r; /* rectangle for the image */
Rectangle clipr; /* clipping rectangle */
int depth; /* number of bits per pixel */
ulong chan; /* how to encode colors */
int repl; /* flag: replicated to tile clipr */
Screen *screen; /* or nil if not a window */

};

Together, display and id identify an image as the one named id in the draw
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device at the other end of the connection represented by the display.
An interesting piece of information in this structure is Image.r, It describes

the rectangle in the entire screen used by the image. Thus, screen->r describes
the (rectangular) area used in the screen by our window. Like coordinates (or
Points), rectangles are a popular data type when doing graphics. The draw
library defines the appropriate data type.

typedef struct Rectangle Rectangle;
struct Rectangle
{

Point min;
Point max;

};

A rectangle is defined by two points (the upper left corner and the bottom right
one). Choosing (0,0) as the origin simplifies arithmetic operations for points. In
accordance with this, the convention is that a rectangle includes its min point
(upper left corner) but does not include its max point (bottom right corner). The
point with biggest coordinates inside a rectangle would be (max.x-1,max.y-1).

We are close to understanding the line
draw(screen, screen->r, display->black, nil, ZP);

that calls the function draw
; sig draw

void draw(Image *dst, Rectangle r, Image *src, Image *mask, Point p)

You might think that after understanding how to use this function, there might be
many other ones that will be hard to understand. That is not the case. The function
draw is the only thing you need for drawing. There are other routines as a conve-
nience to draw particular things, but all of them use just draw.

Basically, draw takes a image as the source and draws it (over) on a destina-
tion image. That is, each pixel (i, j) in the source is copied to the pixel (i, j) in the
destination. Here, screen was the destination image, and display->black
was the source image.

The source image represents the color black, because it is an image with all
its pixels in that color. Although we could draw the entire screen by copying black
pixels from display->black, this image is not that large. Images that have
their repl field set to true are used as tiles. The implementation for draw tiles
the image as many times as necessary to fill the rectangle where it is to be drawn.
So, display->black might have just one black pixel. Only that before copying
any pixel from it, draw replicated it to obtain an image of the appropriate size.

The second parameter is the rectangle where to confine the drawing of the
source in the target. This is called a clip rectangle, because no drawing occurs out-
side it. The program used screen->r, and so it draws in the screen the whole
rectangle used by screen. Drawing in a target image will not draw outside that
image. Thus, the drawing is confined to the intersection of the target image’s rect-
angle and the rectangle given to draw. In this case, we draw in the intersection of
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screen->r (the target’s rectangle) and screen->r (the parameter for draw).
That is, of course, just screen->r.

The image for the screen uses real screen coordinates. In other cases, you may
have images that do not use screen coordinates. To draw one of these images you
must translate the coordinates for the source so that they match the area in the tar-
get where you want to draw. The last parameter for draw is a point that indicates
which translation to do. Passing the point (0,0), which is defined as ZP in
draw.h, performs no translation: each pixel (i, j) in the source is copied to the
pixel (i, j) in the destination. Passing other point will ask draw to translate the
source image (coordinates) so that the given point is aligned with the top-left cor-
ner of the rectangle where to draw.

The mask parameter allows an image to be used as a mask. This is useful to
draw things like cursors and the like. In most cases you may use nil, and not a
mask. We do not discuss this parameter here, the draw(2) manual page has all the
details.

One thing that remains to be discussed about our program is the call to
flushimage. Writing to the draw device for each single operation performed by
the draw library would be very costly. To improve efficiency, the library includes
buffering for writes to the draw device’s files. This is similar to what we saw
regarding buffered input/output. Only that in this case, draw is always doing buf-
fered output. As a result, if you draw, it many happen that your operations are still
sitting in the buffer, and the actual device may not have received them. A call to

flushimage(display ,1)

flushes the buffer for the display. The last parameter is usually set to true, to indi-
cate to the driver that it must update the actual screen (in case it also maintains
another buffer for it).

If you remove this line from the program, it will draw, but the window will
remain white (because the operation will not take effect). Fortunately, you will not
need to worry about this in many cases, because the functions for drawing graphics
and text call flushimage on their own. Nevertheless, you may have to do it by
yourself if you use draw.

12.6. A graphic slider
We want to implement a small graphical application, to let the user adjust a value
between 0% and 100%. This is a graphical slider, that can be run in a window. The
program will print to its standard output the value corresponding to the position of
the slider as set by the user using the mouse or the keyboard.

The real display does not have that problem, but windows can be resized. The
window system supplies its own menus and mouse language to let the user resize,
move, and even hide and show windows. For our program, this means that the
screen might change!

Rio assumes that a program using graphics is also reading from the mouse.
And note that the mouse is the virtual mouse file rio provides for the window!
Upon a resize, rio delivers a weird mouse event to the program reading
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/dev/mouse. This event does not start with the character m, it starts with the
character r, to alert of the resize. After the program is alerted, it should update the
image it is using as its screen (that is, as the window). The program can do so
because the file /dev/winname contains the name for the image to be used as a
window, and this can be used to lookup the appropriate image for the window
using its name.

The function getwindow updates the screen variable, after locating the
image to be used as the new window. As a curiosity, the window system draws a
border for the window in the image for the screen. However, your program is
unaware of this because getwindow adjusts screen to refer to the portion of the
image inside the border.

But how do we know of resize events from the mouse? Simple. Look back to
see the fields for a Mousectl structure, which we obtained before by calling
initmouse. You will notice that besides the channel Mouse.c, used to report
mouse events, it contains a channel Mouse.resizec. Resize events are sent
through this channel. The receipt of an integer value from this channel means that
the window was resized and that the program must call getwindow to reestablish
its screen for the new window.

The following program draws the entire window in black, like before. How-
ever, this program re-acquires its window when it is resized. It creates a separate
thread to attend the mouse, and another one to process resizes of the window,
removing all that processing from the rest of the program. In this case, it may be
considered an overkill. In more complex programs, placing separate processing in
separate threads will simplify things. After starting the thread for attending the
mouse, and the one attending resizes, the program calls the function blank that
draws the entire window in black.
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!resize.c !" """"""_______
#include <u.h>
#include <libc.h>
#include <thread.h>
#include <draw.h>
#include <mouse.h>

void
blank(void)
{

draw(screen, screen->r, display->black, nil, ZP);
flushimage(display, 1);

}

void
resizethread(void* arg)
{

Mousectl*mctl = arg;
for(;;){

recvul(mctl->resizec);
if (getwindow(display, Refnone) < 0)

sysfatal("getwindow: %r");
blank();

}
}

void
mousethread(void* arg)
{

Mousectl*mctl = arg;
Mouse m;
for(;;){

recv(mctl->c, &m);
if(m.buttons){

do {
recv(mctl->c, &m);

} while(m.buttons);
closedisplay(display);
closemouse(mctl);
threadexitsall(nil);

}
}

}

void
threadmain(int, char*argv[])
{

Mousectl*mctl;
Mouse m;

mctl = initmouse("/dev/mouse", nil);
if (mctl == nil)

sysfatal("initmouse: %r");



- 365 -

if(initdraw(nil, nil, argv[0]) < 0)
sysfatal("initdraw: %r");

threadcreate(resizethread, mctl, 8*1024);
threadcreate(mousethread, mctl, 8*1024);
blank();
threadexits(nil);

}

Try running the program 8.black and using the arrow keys to scroll up/down the
window. It scrolls! Rio thinks that nobody is using graphics in the window. That
does not happen to 8.resize, which keeps the mouse file open.

The implementation for blank is taken from our previous program. It draws
the entire window image in black and flushes the draw operations to the actual
device.

void
blank(void)
{

draw(screen, screen->r, display->black, nil, ZP);
flushimage(display, 1);

}

Mouse processing for our program is simple. Any button click terminates the pro-
gram. But users expect the action to happen during the button release, and not dur-
ing the previous press. Therefore, mousethread loops receiving mouse events.
When a button is pressed, the function reads more events until no button is pressed.
At that point, closedisplay terminates the connection to the display,
closemouse closes the mouse device, and the program exits.

void
mousethread(void* arg)
{

Mousectl*mctl = arg;
Mouse m;
for(;;){

recv(mctl->c, &m);
if(m.buttons){

do {
recv(mctl->c, &m);

} while(m.buttons);
closedisplay(display);
closemouse(mctl);
threadexitsall(nil);

}
}

}

Note how by placing mouse processing in its own thread, the programming lan-
guage can be used to program the behavior of the mouse almost like when describ-
ing it in natural language.

The new and interesting part in this program is the code for the thread reading
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resize events.
void
resizethread(void* arg)
{

Mousectl*mctl = arg;
for(;;){

recvul(mctl->resizec);
if (getwindow(display, Refnone) < 0)

sysfatal("getwindow: %r");
blank();

}
}

After receiving a resize event, through mctl->resizec, the program calls
getwindow on the display, which updates screen. Afterwards, it blanks the
image for the new window. The second parameter to getwindow has to do with
window overlapping. It identifies the method used to refresh the window contents
after being hidden. When two windows overlap, someone must maintain a copy of
what is hidden behind the window at the top. This backup is called backing store.
Rio provides backing store for windows, and the constant Refnone asks for no
further backup (i.e., no refresh method).

We now want this program to draw a slider, like those of figure 12.2. The
slider draws in yellow a bar representing the value set by the slider, and fills the
rest of the window with the same background color used by rio. Using the mouse,
it can be adjusted to the left (the one above in the figure) and to the right (the one
below in the figure). When the slider is at the left, it represents a value of 0 (or 0%
of a value set by the slider). When it is at the right, it represents a value of 100.

Figure 12.2: Two example windows for the slider application. One at 30%, another at 84%.

Maintaining the slider is a separate part of the processing done by the pro-
gram, which uses a different thread for that purpose. We will call it
sliderthread. The existing code also requires changes. First, threadmain
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must create now a channel to send new values for the slider to the slider thread, and
must create the thread itself. Also, we must get rid of the call to blank() in
threadmain. This program does not blank its window. Since we decided that
sliderthread is in charge of the slider, threadmain will no longer draw
anything. Instead, it may send a value to the slider, to adjust it to a reasonable ini-
tial value (and draw it).
!slider.c !" """"""_______

...Initially, all the code as before, but for the changes explained in the text...
Channel*sliderc;
...
void
threadmain(int, char*argv[])
{

...all code here as before...
sliderc = chancreate(sizeof(ulong), 0);
threadcreate(sliderthread, sliderc, 8*1024);
sendul(sliderc, 50);
threadexits(nil);

}

The application must redraw the window when the resize thread receives a resize
event. To do so, resizethread will no longer call blank. Instead, it asks the
slider thread to redraw the slider on the new window (as if the value had changed).
Because only values between 0 and 100 are meaningful to the slider, we can adopt
the convention that when the slider receives any number not in the range [0,100], it
simply redraws for its current value. So, we replace

blank();

in resizethread with
sendul(sliderc, ~0); // A value not in 0..100

This is the code for the new thread. It will be blocked most of the time, waiting for
a value to arrive through sliderc. Upon receiving a value, the slider value kept
in val is updated if the value is in range. Otherwise, the value is discarded. In any
case, the slider is drawn and its value printed in the output. That is the utility of the
program, to generate a value adjusted by the user using the slider. As an optimiza-
tion, we do not draw the slider if the value received through the channel is the cur-
rent value for the slider. The code for drawing the slider will be encapsulated in
drawslider, to keep the function readable.
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void
sliderthread(void*)
{

uint val, nval;
val = ~0;
for(;;){

nval = recvul(sliderc);
if (nval >= 0 && nval <= 100){

if (nval == val)
continue;

val = nval;
}
drawslider(val);
print("%d\n", val);

}
}

Note how different parts of the program can be kept simple, and without race con-
ditions. This thread is the only one in charge of the value for the slider. Each other
thread is also in charge of other type of processing, using its own data. Communi-
cation between threads happens through channels, which at the same time synchro-
nizes them and allows them to exchange data.

To draw the slider, we must draw three elements: A yellow rectangle for the
part set, a grey rectangle for the unset part, and a black thick line to further mark
them apart. After defining rectangles set, unset, and mark, for each element,
we can draw the slider as follows.

draw(screen, setrect, setcol, nil, ZP);
draw(screen, unsetrect, unsetcol, nil, ZP);
draw(screen, markrect, display->black, nil, ZP);

Provided that setcol is an image for the color of the set part, and unsetcol is
an image for the color of the unset part. An image for the black color was avail-
able, but we also needed two other colors.

The function allocimage can be used to allocate a new image. We are
going to use it to build two new images for the yellow and the grey colors used for
the set and the unset parts. We declare both images as globals, along with
sliderc,

Channel*sliderc;
Image* setcol;
Image* unsetcol;

and add these two lines to threadmain, right after the call to initdraw.
setcol = allocimage(display, Rect(0,0,1,1),

screen->chan, 1, DYellow);
unsetcol = allocimage(display, Rect(0,0,1,1),

screen->chan, 1, 0x777777FF);

A call to allocimage allocates a new image, associated to the Display given
as an argument.
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; sig allocimage
Image *allocimage(Display *d, Rectangle r,

ulong chan, int repl, int col)

When the display is closed (and the connection to draw is closed as a result), the
images are deallocated. Note that the images are kept inside the draw device. The
function talks to the device, to allocate the images, and initializes a couple of data
structures to describe the images (you might call them image descriptors).

The second argument for allocimage is the rectangle occupied by the
image. In this case, we use a rectangle with points (0,0) and (1,1) as its min and
max points. If you remember the convention that the minimum point is included in
the rectangle, but the maximum point is not (it just marks the limit), you will notice
that both images have just one pixel. That is, the point with coordinates (0,0). For
declaring a literal (i.e., a constant) for a Rectangle data type, we used Rect,
which returns a Rectangle given the four integer values for both coordinates of
both extreme points. Another function, useful to obtain a Rectangle from two
Point values, is Rpt.

; sig Rect Rpt
Rectangle Rect(int x0, int y0, int x1, int y1)
Rectangle Rpt(Point p, Point q)

By the way, the function Pt does the same for a Point. Indeed, ZP is defined as
Pt(0,0).

; sig Pt
Point Pt(int x, int y)

Images for colors need just one pixel, because we ask allocimage to set the
repl flag for both images. This is done passing true as a value for its repl
parameter. Remember that when this flag is set, draw tiles the image as many
times as needed to fill the area being drawn.

Two arguments for allocimage remain to be described, but we will not
provide much detail about them. The argument chan is an integer value that indi-
cates how the color will be codified for the pixels. There are several possible ways
to codify colors, but we use that employed by the screen image. So, we used
screen->chan as an argument. The last parameter is the value that states which
one is the code for the color. Given both chan and the number for the color,
allocimage can specify to the draw device which color is going to use the pix-
els in the new image.

In our program, we used the constant DYellow for the color of the set part,
and the number 0x777777FF for the unset part. This number codifies a color by
giving values for red, blue, and green. We borrowed the constant by looking at the
source code for rio, to use exactly its background color.

At last, this is drawslider.
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void
drawslider(int val)
{

Rectangle setrect, unsetrect, markrect;
int dx;

dx = Dx(screen->r) * val / 100;
setrect = unsetrect = markrect = screen->r;
setrect.max.x = setrect.min.x + dx;
markrect.min.x = setrect.max.x;
markrect.max.x = setrect.max.x + 2;
unsetrect.min.x = markrect.max.x;
draw(screen, setrect, setcol, nil, ZP);
draw(screen, unsetrect, unsetcol, nil, ZP);
draw(screen, markrect, display->black, nil, ZP);
flushimage(display, 1);

}

If the value represented by the slider is val, in the range [0,100], and our window is
Dx pixels wide, then, the offset for the x coordinate in the window that corresponds
to val is defined by

x =Dx×
100
val____

A zero value would be a zero offset. A 100 value would mean a Dx offset. The
function Dx returns the width of a rectangle (there is also a Dy function that returns
its height). So,

dx = Dx(screen->r) * val / 100;

computes the offset along the x axis that corresponds to the value for the slider.
Once we know dx, defining the rectangle for setrect is straightforward. We
take initially the rectangle for the window and change the max.x coordinate to cut
the rectangle at the offset dx in the window. The markrect is initialized in the
same way, but occupies just the next two pixels on the x axis, past setrect. The
rectangle unsetrect goes from that point to the end of the x axis.

What remains to be done is to change mousethread to let the user adjust
the slider using the mouse. The idea is that holding down the button 1 and moving
it will change the slider to the point under the mouse.

void
mousethread(void* arg)
{

Mousectl*mctl = arg;
Mouse m;
int dx, val;



- 371 -

for(;;){
recv(mctl->c, &m);
if(m.buttons == 1){

do {
dx = m.xy.x - screen->r.min.x;
val = dx * 100 / Dx(screen->r);
sendul(sliderc, val);
recv(mctl->c, &m);

} while(m.buttons == 1);
}

}
}

Executing the program, moving the slider, and pressing Delete to kill it, leads to
this output.

; 8.slider > /tmp/values
Delete
; cat /tmp/values
50
32
30
...

Usually, the output for the program will be the input for an application requiring a
user adjustable value. For example, the following uses the slider to adjust the vol-
ume level for the sound card in the terminal.

; 8.out | while(v=‘{read}) echo audio out $v >>/dev/volume
Changing the slider changes the volume level...

12.7. Keyboard input
Using Delete to terminate the program is rather unpolite. The program might
understand a few keyboard commands. Typing q might terminate the slider. Typ-
ing two decimal digits might set the slider to the corresponding value. The library
keyboard(2) is similar to mouse(2), but provides keyboard input instead of mouse
input. Using it may fix another problem that we had with the slider. The program
kept the console in cooked mode. Typing characters in the slider window will make
the console device (provided by rio) echo them. That was ugly.

To process the keyboard, one character at a time, hence putting the console in
raw mode, the main function may call initkeyboard.

; sig initkeyboard
Keyboardctl *initkeyboard(char *file)

This function opens the console file given as an argument, and creates a process
that reads characters from it. The console is put in raw mode by assuming that if
the file is named /a/cons/file, there will be another file named
/a/cons/filectl that accepts a rawon command. So, giving /dev/cons as
an argument will mean that rawon is written to /dev/consctl (and the file is
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kept open).
The function returns a pointer to a Keyboardctl structure, similar to a

Mousectl. It contains a channel where the I/O process sends runes (not charac-
ters!) as they are received.

typedef struct Keyboardctl Keyboardctl;
struct Keyboardctl
{

Channel *c; /* chan(Rune)[20] */
...

};

Like we did for the mouse, to process the keyboard input, we will change
threadmain to call initkeyboard and to create a separate thread for process-
ing keyboard input. This is the resulting code for the program, omitting the various
functions that we have seen, and a couple of other ones that are shown later.
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!slider.c !" """"""_______
#include <u.h>
#include <libc.h>
#include <thread.h>
#include <draw.h>
#include <mouse.h>
#include <keyboard.h>

Channel*sliderc;
Image*setcol;
Image*unsetcol;
Keyboardctl*kctl;
Mousectl*mctl;

void
terminate(void)
{

closekeyboard(kctl);
closemouse(mctl);
closedisplay(display);
threadexitsall(nil);

}

void
keyboardthread(void* a)
{

Keyboardctl*kctl = a;
Rune r,rr;
int nval;
for(;;){

recv(kctl->c, &r);
switch(r){
case Kdel:
case ’q’:
case Kesc:

terminate();
break;

default:
if (utfrune("0123456789", r) != nil){

recv(kctl->c, &rr);
if (utfrune("0123456789", rr) != nil){

nval = (r-’0’)*10 + (rr-’0’);
sendul(sliderc, nval);

}
}

}
}

}

void
writeval(int val)
{

Point sz, pos;
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char str[5]; // "0%" to "100%"
seprint(str, str+5, "%d%%", val);
sz = stringsize(font, str);
if (sz.x > Dx(screen->r)/2 || sz.y > Dx(screen->r))

return;
pos = screen->r.min;
pos.x += 10;
pos.y += (Dy(screen->r)- sz.y) / 2;
string(screen, pos, display->black, ZP, font, str);

}

void
drawslider(int val)
{

Rectangle setrect, unsetrect, markrect;
int dx;

dx = Dx(screen->r) * val / 100;
setrect = unsetrect = markrect = screen->r;
setrect.max.x = setrect.min.x + dx;
markrect.min.x = setrect.max.x;
markrect.max.x = setrect.max.x + 2;
unsetrect.min.x = markrect.max.x;
draw(screen, setrect, setcol, nil, ZP);
draw(screen, unsetrect, unsetcol, nil, ZP);
draw(screen, markrect, display->black, nil, ZP);
writeval(val);
flushimage(display, 1);

}

void
sliderthread(void*)
{

uint val, nval;
val = ~0;
for(;;){

nval = recvul(sliderc);
if (nval >= 0 && nval <= 100){

if (nval == val)
continue;

val = nval;
}
drawslider(val);
print("%d\n", val);

}
}

void
resizethread(void* arg)
{

Mousectl*mctl = arg;
for(;;){

recvul(mctl->resizec);
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if (getwindow(display, Refnone) < 0)
sysfatal("getwindow: %r");

sendul(sliderc, ~0);
}

}

void
mousethread(void* arg)
{

Mousectl*mctl = arg;
Mouse m;
int dx, val;
for(;;){

recv(mctl->c, &m);
if(m.buttons == 1){

do {
dx = m.xy.x - screen->r.min.x;
val = dx * 100 / Dx(screen->r);
sendul(sliderc, val);
recv(mctl->c, &m);

} while(m.buttons == 1);
}

}
}

void
threadmain(int, char*argv[])
{

Mouse m;

mctl = initmouse("/dev/mouse", nil);
if (mctl == nil)

sysfatal("initmouse: %r");
kctl = initkeyboard("/dev/cons");
if (kctl == nil)

sysfatal("initkeyboard: %r");
if(initdraw(nil, nil, argv[0]) < 0)

sysfatal("initdraw: %r");
setcol = allocimage(display, Rect(0,0,1,1),

screen->chan, 1, DYellow);
unsetcol = allocimage(display, Rect(0,0,1,1),

screen->chan, 1, 0x777777FF);
sliderc = chancreate(sizeof(ulong), 0);
threadcreate(resizethread, mctl, 8*1024);
threadcreate(mousethread, mctl, 8*1024);
threadcreate(keyboardthread, kctl, 8*1024);
threadcreate(sliderthread, sliderc, 8*1024);
sendul(sliderc, 50);
threadexits(nil);

}

The function keyboardthread is executed on its own thread. It receives runes
from kctl.c and processes them without paying much attention to the rest of the
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program.
void
keyboardthread(void* a)
{

Keyboardctl*kctl = a;
Rune r,rr;
int nval;
for(;;){

recv(kctl->c, &r);
switch(r){
case Kdel:
case Kesc:
case ’q’:

terminate();
break;

default:
if (utfrune("0123456789", r) != nil){

recv(kctl->c, &rr);
if (utfrune("0123456789", rr) != nil){

nval = (r-’0’)*10 + (rr-’0’);
sendul(sliderc, nval);

}
}

}
}

}

The constants Kdel and Kesc are defined in keyboard.h with the codes for the
Delete and the Escape runes. We terminate the program when either key is pressed,
or when a q is typed. Otherwise, if the rune received from kctl->c is a digit, we
try to obtain another digit to build a slider value and send it through sliderc.

To terminate the program, we must now call closekeyboard, which
releases the Keyboardctl structure and puts the console back in cooked mode.
So, both control structures were kept as globals in this version for the program. The
next function does all the final cleanup.

void
terminate(void)
{

closekeyboard(kctl);
closemouse(mctl);
closedisplay(display);
threadexitsall(nil);

}
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12.8. Drawing text
With all the examples above it should be clear how to use the abstractions for using
the devices related to graphical user interfaces. Looking through the manual pages
to locate functions (and other abstractions) not described here should not be hard
after going this far.

Nevertheless, it is instructive to see how programs can write text. For exam-
ple, the implementation for the console in rio writes text. Both because the echo
and because of writes to the /dev/cons file. But can this be on a graphic termi-
nal?

There are many convenience functions in draw(2) to draw lines, polygons,
arcs, etc. One of them is string, which can be used to draw a string. Note: not to
write a string.

; sig string
Point string(Image *dst, Point p,

Image *src, Point sp, Font *f, char *s)

Suppose that we want to modify the slider program to write the slider value using
text, near the left border of the slider window. This could be done by adding a line
to sliderthread, similar to this one

string(screen, pos, display->black, ZP, font, "68");

This draws the characters in the string 68 on the image screen (the destination
image). The point pos is the pixel where drawing starts. Each character is a small
rectangular image. The image for the first character has its top-left corner placed at
pos, and other characters follow to the right. The source image is not the image for
the characters. The source image is the one for the black color in this example.
Character images are used as masks, so that black pixels are drawn where each
character shape determines that there has to be a pixel drawn. To say it in another
way, the source image is the one providing the pixels for the drawing (e.g., the
color). Characters decide just which pixels to draw. The point given as ZP is used
to translate the image used as a source, like when calling draw. Here, drawing
characters in a solid color, ZP works just fine.

But where are the images for the characters? Even if they are used as masks,
there has to be images for them. Which images to use is determined by the Font
parameter.

A font is just a series of pictures (or other graphical descriptions) for runes or
characters. There are many fonts, and each one includes a lot of images for charac-
ters. Images for font runes are kept in files under /lib/font. Many files there
include images just for a certain contiguous range of runes (e.g., letters, numbers,
symbols, etc.) Other files, conventionally with names ending in .font, describe
which ones of the former files are used by a font for certain ranges of unicode val-
ues.

The draw library provides a data type representing a font, called Font. It
includes functions like
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Font* openfont(Display *d, char *file)

that reads a font description from the file given as an argument and returns a
pointer to a Font that may be used to employ that font.

To use a loaded font, it suffices to give it as an argument to functions like
string. We used font, which is a global for the font used by default. To see
which font you are using by default, you may see which file name is in the $font
environment variable.

; echo $font
/lib/font/bit/VeraMono/VeraMono.12.font

That variable is used to locate the font you want to use. The window system sup-
plies a reasonable default otherwise.

The following function, that may be called from sliderthread, draws the
slider value (given as a parameter) in the window.

void
writeval(int val)
{

Point sz, pos;
char str[5]; // "0%" to "100%"
seprint(str, str+5, "%d%%", val);
sz = stringsize(font, str);
if (sz.x > Dx(screen->r)/2 || sz.y > Dy(screen->r))

return;
pos = screen->r.min;
pos.x += 10;
pos.y += (Dy(screen->r)- sz.y) / 2;
string(screen, pos, display->black, ZP, font, str);

}

It prints the integer value as a string, in str. adding a % sign after the number.
The window could be so small (or perhaps the font so big) that there could be not
enough space to draw the text. The function stringsize returns the size for a
string in the given font. We use it to know how much screen space will the string
need. To avoid making our window too bizarre, writeval does not draw any-
thing when the window is not as tall as the height for the string, that is, when sz.y
> Dy(screen->r). Also, the string is not shown either when it needs more
than the half of the width available in the window.

12.9. The window system
A window is an abstraction provided by the window system, rio in this case. It
mimics the behavior of a graphic terminal, including its own mouse and keyboard
input, and both text and graphics output.

In other systems, the abstraction used for windows differs from the one used
for the entire console. Programs must be aware of the window system, and use its
programming interface to create, destroy, and operate windows.
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Instead, the model used in Plan 9 is that each application uses the console,
understood as the terminal devices used to talk to the user, including the draw
device and the mouse. In this way, applications may be kept unaware of where are
they actually running (the console or a window). Running the window system in a
window is also a natural consequence of this.

Nevertheless, it may be useful to know how to use the window system from a
program. Like other services, the window system is also a file server. You already
know that its primary task is to multiplex the files for the underlying console and
mouse to provide virtual ones, one per window. Such files are the interface for
using the window, like the real ones are the interface for using the real console.

Each time the rio file system is mounted, it creates a new window. The
attach specifier (the optional file tree name given to mount) must be new, possibly
followed by some flags for the newly created window. Rio posts at a file in /srv
a file descriptor that can be used to mount it. The name for this file is kept at the
environment variable $wsys. Therefore, these commands create a new window.

; echo $wsys
/srv/rio.nemo.557
; mount $wsys /n/rio new

After doing this, the screen might look like the one shown in figure 12.3, where the
empty window is the one that has just been created. Which files are provided by
rio? We are going to use the window were we executed the previous commands
to experiment at little bit.

Figure 12.3: Mounting rio creates a new window. In this one, no shell is running.



- 380 -

; lc /n/rio
cons kbdin screen wctl winid
consctl label snarf wdir winname
cursor mouse text window wsys

We see cons, consctl, cursor, and mouse, among others. They are virtual
versions for the ones that were mounted at /dev prior to running rio. The conven-
tion in Plan 9 is to mount the window system files at /mnt/wsys, and not at
/n/rio. We use /n/rio just to make it clear that these files come from the file
tree that we have mounted. In your system, you may browse /mnt/wsys and you
will see a file tree with same aspect.

Binding /n/rio (before other files) at /dev will make any new process in
our window to use not this window, but the new one that we have created. So,
these commands

; bind -b /n/rio /dev
; stats

cause stats to use the new window instead of the one we had, like shown in fig-
ure 12.4. For stats, using the screen, mouse, and keyboard is just a matter of
opening files at /dev. It does not really care about where do the files come from.
Regarding /dev/draw, that device multiplexes by its own means among multiple
processes (each one keeps a separate connection to the device, as we saw). The
other files are provided by rio.

Figure 12.4: Binding the files for the new window at /dev makes stats use it.

Hitting Delete in the new window will not kill stats. The window system
does not know where to post the interrupt note for that window. To interrupt the
program, we must hit Delete in the old window, where the command was running.
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This can be fixed. Unmounting the files for the new rio window will destroy it
(nobody would be using it).

; unmount /n/rio /dev
; unmount /n/rio and the window goes away

And now we mount rio again (creating another window). This time, we use the
option -pid within the attach specifier to let rio know that notes for this window
should go the process group for the process with pid $pid. That is, to our shell.
Afterwards, we start stats like before.

; mount $wsys /n/rio ’new -pid ’$pid
; bind -b /n/rio /dev
; stats It uses the new window
; Until hitting Delete in that window

This time, hitting Delete in either window will stop stats. The new window has
been instructed to post the note to the note process group of our shell. It will do so.
Our old window, of course, does the same.

In almost all the cases, the window command (a script) is used to create new
windows. It creates a new window like we have done. Most of its arguments are
given to rio to let it know where to place the window and which pid to use to
deliver notes. Window accepts as an argument the command to run in the new
window, which is /bin/rc by default. For example,

; window -r 0 0 90 100 stats

creates a new window in the rectangle going from the point (0,0) to the point
(90,100). It will run stats. There is a C library, window(2), that provides a C
interface for creating windows (among other things related to windows). The win-
dow system and the graphics library may use it, but it is not likely you will ever
need to use it from your programs. Your programs are expected to use their "con-
sole#, whatever that might be.

Going back to the files served by rio, the files winid and winname con-
tain strings that identify the window used. You can see them for the new window at
/n/rio. And because of the (customary) bind of these files at /dev, you will
always see them at /dev/winid and /dev/winname. In what follows, we will
use file names at /dev, but it should be clear that they are provided by rio.

; cat /dev/winid
3 ; newline supplied by us

; cat /dev/winname
window.3.3; ; newline supplied by us

The window id, kept at winid, is a number that identifies the window. The direc-
tory /dev/wsys contains one directory per window, named after its identifier. In
our case, rio is running just two windows.



- 382 -

; lc /dev/wsys
1 3
; lc /dev/wsys/3
cons kbdin screen wctl winid
consctl label snarf wdir winname
cursor mouse text window wsys

Each window directory contains all the files we are accustomed to expect for using
the console and related devices. For each window, rio makes its files also avail-
able in its root directory, so that a bind of the rio file system at /dev will leave
the appropriate files in /dev, and not just in /dev/wsys/3 or a similar direc-
tory.

The file winname contains the name for the image in the draw device that is
used as the screen for the window. The draw device may keep names for images,
and the window system relies on this to coordinate with programs using windows.
Rio creates the image for each window, and gives a name to it that is kept also in
winname. The function getwindow, called by initdraw, uses this name to
locate the image used for the window. That is how your graphic programs know
which images are to be used as their screens.

The file label contains a text string for labeling the window. That is, the
file /dev/label for the current window, or /dev/wsys/3/label for the
window with identifier 3, contain strings to let us know which program is using
which window.

; cat /dev/label
rc 839;
; cat /dev/wsys/3/label
stats;

A convenience script, wloc, lists all the windows along with their labels.
; wloc
window -r 125 32 576 315 rc 839 # /dev/wsys/1
window -r 69 6 381 174 stats # /dev/wsys/3
;

Basically, it lists /dev/wsys to see which windows exist, and reads
/dev/label for each one, to describe it. The following command would do
something similar.

; for (w in /dev/wsys/*)
;; echo window ‘{cat $w/label}
window rc 839
window stats

Other useful files are /dev/screen, /dev/window, and /dev/text. They
are provided for each window. The first one is an image for the entire screen. It can
be used to take a snapshot for it. The second one is the same, but only for the win-
dow image. The last one contains all the text shown in the window (although it is
read-only). For example, this can be used to see the first three lines in the current
window.
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; sed 3q /dev/text
; echo $wsys
/srv/rio.nemo.832
; mount $wsys /n/rio new
;

Note that we only typed the first one. The next command prints all the mount
commands that we executed in our window, assuming the prompt is the one used in
this book.

; grep ’^; mount’ /dev/text
; mount $wsys /n/rio new

In the same way, this executes the first mount command that we executed in our
window

; grep ’^; mount’ /dev/text | sed 1q | rc

Each window provides a control interface, through its wctl file. Many of the oper-
ations that can be performed by the user, using the mouse and the menus provided
by rio, can be performed through this file as well.

Windows may be hidden, to put them apart without occupying screen space
while they are not necessary by the moment. The Hide command from button-3
menu in rio hides a window. While hidden, the window label is shown in that
menu, and selecting it shows the window again. The next command line hides the
window for 3 seconds using its control file.

; echo hide >/dev/wctl ; sleep 3 ; echo unhide >/dev/wctl
hidden for 3 seconds... and back again!
;

We typed the three commands in the same line because after
; echo hide >/dev/wctl

the window would no longer be visible to accept input. This remains of the input
focus. The window where you did click last is the one receiving keyboard input
and mouse input. The place where the window system sends input events is also
known as the focus because you seem to be focusing on that window. Manually,
focus can be changed by using the mouse to click on a different window. From a
program, the wctl file can be used.

; echo current >/dev/wsys/3/ctl

Sets the focus to window 3. It is also said that window 3 becomes the current
window, hence the control command name. By the way, most of the control opera-
tions done to a wctl file make its window current. Only the top and bottom
commands do not affect the focus.

Windows may overlap. The window system maintains a stack of windows.
Those down in the stack are in the back, and may be obscured by windows more
close to the top of the stack (which are up front). You may reclaim a window to
the top of the stack to make it fully visible. With the mouse, a click on the window
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suffices. From a program, you can move it to the top easily.
; echo top >/dev/wsys/3/ctl

And also to the back, something that you cannot do directly using the mouse.
; echo bottom >/dev/wsys/3/ctl

By now, you know that windows may scroll down automatically or not, depending
on their scroll status, as selected by the Scroll and Noscroll options from their
button-2 menu. This is how to do it through the control file, this time, for window
3.

; echo scroll >/dev/wsys/3/wctl puts the window 3 in scroll mode
; echo noscroll >/dev/wsys/3/wctl
;

There are several other control commands described in the rio(4) manual page,
including some that might seem to be available only when using the mouse to per-
form them manually. The next command resizes a window to be just 100 pixels
wide.

; echo ’resize -dx 100’ >/dev/wctl make it 100 pixels wide

It is not important to remember all the commands accepted, but it is to know that
they can be used to automate things that would have to be done manually other-
wise. Tired of manually adjusting a window, after running acme, to use most avail-
able screen space? Just write a shell script for the task.

The first thing to be done by the script is to determine how much space is
available at our terminal. This was recorded in $vgasize. Later, we can define
variables for the width and height (in pixels) that we might use.

; echo $vgasize
1280x800x24
; wid=‘{echo $vgasize | sed ’s/x.*//’}
; echo $wid
1280
; ht=‘{echo $vgasize | sed ’s/.*x(.*)x.*/1/’}
; echo $ht
800

Because most of the times we want some space to use rio (e.g., to recall its
menus), we may save 90 pixels from the height. To keep an horizontal row with 90
pixels of height just for other rio windows and menus.

; ht=‘{echo $ht - 90 | hoc}
; echo $ht
710

And now, we can resize the window, placing it in the rectangle computed for our
screen.

echo resize -r 0 0 $wid $ht >/dev/wctl
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The arguments for the move and resize commands (understood by the wctl
file) are similar to those of the window command.

If in the future you find yourself multiple times carefully adjusting windows
to a particular layout that is easy to compute, you know what to do.

Problems
1 Record mouse events and try to reproduce them later.
2 Use the window system to provide virtual desktops. You do not need to

implement anything to answer this problem.
3 Write a program that implements console cooked mode by itself. It must

write to standard output one line at a time, but it must use raw mode.
4 Write a program that draws the pixels under the mouse while a button is

pressed.
5 Make the program draw text when a key is pressed. The text to draw is the

character typed and the position would be the last position given by the
mouse

6 There is an alternate library, called event that provides event-driven mouse
and keyboard processing. Implement the previous programs using this library.
Compare.

7 The /dev/kbmap file provides keyboard maps. Look through the manual
and try to change the map. Locate one defining several keyboard keys as
mouse buttons.
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13 ! Building a File Server
______

13.1. Disk storage
The file server we are going to build will not be using a disk to provide file storage,
it will provide a rather different service. But before building our new file server, it
may be instructive to look a little bit to what would be needed to actually store files
on a disk.

There are many file servers involved in disk storage, not just one. To store
files on disk, you need a disk. Like all other devices, disks are files in Plan 9. This
may be a surprise, as disks are also used to store files. The device sd(3) provides
storage devices. This is a list of files served by the device driver.

; lc ’#S’
sdC0 sdC1 sdD0 sdctl

Each such file (but for sdctl) is a directory that represents a disk, or perhaps a
CD or DVD reader or writer. The file name for each device is similar to sdC0,
where the C0 names the particular hardware device. In this case, it is the first disk
(0) in the first controller board (C). The tree from #S is bound at /dev, so that
/dev/sdC0 is the conventional name for #S/sdC0.

Each directory for a disk contains several files. At the terminal we are using
now, sdD0 is a CD reader. These are the files used as its interface.

; lc /dev/sdD0
ctl data raw

Reading the control file reports some information about the device,
; cat /dev/sdD0/ctl
inquiry NECVMWarVMware IDE CDR101.00
config 85C4 capabilities 0F00 dma 00550004 dmactl 00550004
part data 0 54656

The line starting with inquiry describes the disk. It seems to be a CD reader
(CDR) plugged to an IDE controller board. Here, NECVMWarVMware is the vendor
name for the disk, which is funny for this one.

The line starting with config describes some capabilities for the device. It
seems that the device knows how to do DMA, to transfer bytes from the disk to the
memory of the machine without direct intervention from the processor. We know
this because the number right after dmactl is not zero. We can use the ctl file to
ask the device driver not to use DMA for this device

; echo dma off >/dev/sdD0/ctl
; grep dma /dev/sdD0/ctl
config 85C4 capabilities 0F00 dma 00550004 dmactl 00000000

And this time we see 00000000 and not 00550004 as the value for the attribute
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dmactl. It does not really matter what this is, but it matters that it is zero, mean-
ing that there would be no further DMA for this disk. This can slow down the sys-
tem, and it is better to enable it again.

; echo dma on >/dev/sdD0/ctl
; grep dma /dev/sdD0/ctl
config 85C4 capabilities 0F00 dma 00550004 dmactl 00550004

Lines starting with part, read from the ctl file, deserve further explanation.
The abstraction provided by the hardware for a disk is usually an array of sec-

tors. Each sector is typically an array of 512 bytes. The disk knows how to read
from disk into memory a given sector, and how to write it.

The last line read from the ctl file describes a part of the disk, that goes
from sector number 0 to sector number 54656. Such part has the name data, and
represents the actual data on the disk. Did you notice that there is a file
/dev/sdD0/data? That is the abstraction for using this disk in Plan 9. This file
is the data in the disk. Reading the first 512 bytes from this file would be reading
the first sector from the disk’s data. To read or write a particular sector, any pro-
gram can use seek to set the file position at the appropriate offset, and then call
read or write. The device driver would understand that the program wants to
read or write from the disk, and would do just that.

In case you wonder, the file raw is used to execute commands understood by
the device that have a very low-level of abstraction, as a back-door to provide raw
access to the device, without the cooking provided by the abstraction.

Disks may contain multiple parts, named partitions. A partition is just a
contiguous portion of the disk kept separate for administrative purposes. For exam-
ple, most machines with Windows come preinstalled with two partitions in your
hard disk. One of them corresponds to the C: unit, and contains system files. The
other corresponds to the D: unit, and contains user files. Both ones are just parti-
tions in the hard disk.

Reading the ctl file for a disk reports all the list of partitions, with their
names, start sector, and end sector. This is the one for our hard disk.

; cat /dev/sdC0/ctl
inquiry VMware Virtual IDE Hard Drive
config 427A capabilities 2F00 dma 00550004

dmactl 00550004 rwm 16 rwmctl 0
geometry 16777216 512 17475 15 63
part data 0 16777216
part plan9 63 16771860
part 9fat 63 204863
part fs 204863 13626132
part swap 13626132 14674708
part cache 14674708 16771860

Although we might have listed them, perhaps just to see the file sizes.
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; ls -l /dev/sdC0
--rw-r----- S 0 nemo nemo 104857600 May 23 17:44 /dev/sdC0/9fat
--rw-r----- S 0 nemo nemo 1073741824 May 23 17:44 /dev/sdC0/cache
--rw-r----- S 0 nemo nemo 0 May 23 17:44 /dev/sdC0/ctl
--rw-r----- S 0 nemo nemo 8589934592 May 23 17:44 /dev/sdC0/data
--rw-r----- S 0 nemo nemo 6871689728 May 23 17:44 /dev/sdC0/fs
--rw-r----- S 0 nemo nemo 8587160064 May 23 17:44 /dev/sdC0/plan9
-lrw------- S 0 nemo nemo 0 May 23 17:44 /dev/sdC0/raw
--rw-r----- S 0 nemo nemo 536870912 May 23 17:44 /dev/sdC0/swap

For each file representing a partition, the file size reports the partition size (in
bytes), as could be expected. This disk has just 8 Gbytes of data (8589934592
bytes). That would be the data file. Some partitions have been made for this disk,
to name different parts of it and use them separatedly. For example, there is a
9fat partition going from sector 63 (included) to sector 204863 (not included).
And then a fs partition, going from sector 204863 to sector 13626132. And sev-
eral other ones.

For us, /dev/sdC0/9fat is just a like a little disk (that is what a partition
is for), only that it lives inside /dev/sdC0/data. Also, /dev/sdC0/fs is
another little disk, also living inside /dev/sdC0/data. Indeed, both 9fat and
fs live inside a partition named plan9, as you may see by looking where these
partitions start and end.

The convention in Plan 9 is to make a partition, named plan9, in the disk.
This partition is known to other operating systems, because it is declared using a
partition table (kept in the disk) following a particular convention that most sys-
tems follow. Within this partition, Plan 9 maintains its own partitions, by declaring
them in another table known to the storage device driver (kept in disk, of course).
This is done so because many disks are only able to support 4 (so called) primary
partitions.

How can we create a partition? By filling an entry in the partition name to
declare it, including the information about where does it start and where does it
end. The command fdisk can be used to modify the partition table for the whole
disk. The command prep can be used to modify the one used by Plan 9 (kept
within the the Plan 9 partition in the disk).

In any case, we can add a partition to our disk by writing a control command
to the disk’s ctl file. For example, this creates a partition named check on the
sdC1 disk.

; echo part check 63 2001 >/dev/sdC1/ctl
; grep check /dev/sdC1/ctl
part check 63 2001

To remove it, we may write a delpart command to the disk’s control file.
; echo delpart check >/dev/sdC1/ctl

In general, it is wiser to use the programs fdisk and prep to create partitions,
because they update the tables besides informing the storage device about the new
partitions. We are going to create some partition for a new disk. As you may see,
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we tell fdisk that the disk to use is /dev/sdC1/data. That is just a file. For
fdisk, that would be the disk.

; disk/fdisk /dev/sdC1/data
cylinder = 8225280 bytes

empty 0 522 (522 cylinders, 3.99 GB)
>>>

After running fdisk, it prints the list of partitions found. None so far. The >>> is
the prompt from fdisk, where we can type commands to handle the disk. The
command a, adds a new partition.

>>> a p1
start cylinder: 0
end [0..522] 522

We added a partition called p1 occupying the entire disk. Following the conven-
tion used for IDE disks on PCs, the table may name up to 4 primary partitions. The
name p1 identifies this partition as the primary partition number 1.

Now, we can print the new table, write it to disk after being sure, and quit
from this program.

>>> p
’ p1 0 522 (522 cylinders, 3.99 GB) PLAN9
>>> w
>>> q

And this is what we can see now.
; cat /dev/sdC1/ctl
inquiry VMware Virtual IDE Hard Drive
config 427A capabilities 2F00 dma 00550004 dmactl 00550004 rwm 16 rwmctl 0
geometry 8388608 512 8322 16 63
part data 0 8388608
part plan9 63 8385930
; lc /dev/sdC1
ctl data plan9 raw

There is a new partition, a new file at /dev/sdC1. Its name is plan9 because
fdisk declared the partition to be one for use with Plan 9 (writing a particular
integer value in the partition entry that identifies the type for the partition).

Within this partition (known to any other system sharing the same machine),
we can create several Plan 9 partitions using prep.

; disk/prep -a 9fat -a fs /dev/sdC1/plan9
no plan9 partition table found
9fat 204800
fs 8181067
’ 9fat 0 204800 (204800 sectors, 100.00 MB)
’ fs 204800 8385867 (8181067 sectors, 3.90 GB)

>>>

Note how prep uses /dev/sdC1/plan9 as its disk! It is just a file. We asked
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prep to automatically choose appropriate sizes and locations for partitions named
9fat and fs within /dev/sdC1/plan9. It printed the proposed table before
prompting for more commands. And finally, we can write this partition table to
disk and quit.

>>> w
>>> q

That before seeing the effect.
; lc /dev/sdC1
9fat ctl data fs plan9 raw

At this point we have two partitions named fs and 9fat that can be used for
example to install a stand-alone Plan 9 on them (one that may run without using an
external file server). Both programs, fdisk and prep used the file given as an
argument to access the disk. That file was the disk. They informed the storage
device about the new partitions by writing control commands to the disk ctl file.
At last, we can use the files supplied at #S to use our new partitions.

But how can we create files in our partition? We need a program that knows
how to store files on disk, using a particular data structure to keep them stored,
access them, and update them. This is what a file server is. But this time, files
served by this program would be actual files in a disk.

There are several programs that can be used for this task. The standard file
server for Plan 9 is fossil. This program is used by the (central) file server
machine to serve files to terminals. Another, more ancient program is kfs. We are
going to use this one.

; disk/kfs -f /dev/sdC1/fs
File system main inconsistent
Would you like to ream it (y/n)?

This command started kfs (a file server program) using /dev/sdC1/fs as the
disk (partition) where to keep files. For kfs, it does not matter what fs is. It is
just a file. Upon starting, kfs noticed that there was none of its data structures
stored in fs. It understood that there was an inconsistent (corrupt) data structure
stored in the disk, and asks us to reinitialize it. We will let it do it.

Would you like to ream it (y/n)? y
kfs: reaming the file system using 1024 byte blocks

Now kfs is initializing the data in fs, as it pleases to store a file tree in there.
After finishing with disk initialization, the partition contains the kfs data structures.
It is said that the partition has been formatted for kfs, or that it has a kfs format.

At last, we can mount the (empty) file tree served by kfs. When we create
files in the new mounted directory, kfs will use write on /dev/sdC1/fs to
keep them stored in that partition. Indeed, it will be the storage device the one that
will update the disk, upon calls to write for one of its files.
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; mount -c /srv/kfs /n/kfs
; touch /n/kfs/anewfile
;

All other file systems (stored in disk) work along the same lines. All other systems
include programs that understand how to use the disk (like the storage device) and
how to store files in it (like kfs). As you see, each program is just using an
abstraction provided by yet another program. Even inside the disk hardware you
may find programs that provide the abstraction of a contiguous array of disk sec-
tors.

13.2. The file system protocol
So far, we have seen two interfaces for using Plan 9, system calls and the shell.
There is another interface: the 9P file system protocol. Plan 9 provides all the
abstractions needed to use the machine, including processes, virtual address spaces,
devices, etc. However, many abstractions are provided by external file servers, and
not by the system itself.

The protocol spoken between Plan 9 and any external file server is called 9P,
and is documented in the section 5 of the manual. For example, intro(5) summa-
rizes the protocol and provides a good introduction to it.

A word of caution. If you ever have to implement a file server, you should
read the whole section 5 of the manual before doing so. It describes all the mes-
sages in the protocol, what they do, and how a file server should behave. Here we
are interested just in describing how the protocol works, and how it relates to the
system calls made to Plan 9. The description here is far from being complete, but
you have the manual.

As a user, you might probably ignore which particular protocol is spoken by
your system. Windows speaks CIFS, Linux speaks NFS, and Plan 9 speaks 9P. In
general, you do not have to care. However, this is a good time to take a look into
9P for two different reasons. First, it might give you more insight regarding how
the system works and how to use it more effectively. Second, looking into 9P is an
excellent excuse to learn how to develop a file server program, using what we
learned so far.

Looking back at figure 1.8 will let you see the elements involved. Processes
using Plan 9 make system calls, including open, close, read, and write.
Plan 9 implements such system calls by speaking 9P with the file server involved.
In the figure, steps 3 and 4 correspond to 9P messages exchanged to implement
write. The last element involved is the file server process, which handles the
messages sent by Plan 9 to do the file operations requested by Plan 9.

All the 9P dialog between Plan 9 and a file server is based on remote proce-
dure calls. Plan 9 sends a request to the server and receives a reply from it. The file
server is called a server because it accepts requests (represented by messages), and
it handles each request before sending a reply back (also represented by a message).
In the same way, the program making requests (Plan 9 in this case) is called a
client because of a similar reason. Each request and reply is just a particular data
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structure, sent as an array of bytes through a network connection, a pipe, or any
other communication means.

Before discussing 9P any further, let’s take a look at an example. The com-
mand ramfs, as many other file servers, prints the 9P dialog when called with the
flag -D. Any 9P message received by ramfs, carrying a request, is printed and
then processed. Any 9P message sent back as a reply from ramfs is printed as
well. Of course, ramfs does not print in the console the actual messages as
exchanged through the network. Instead, it prints the relevant data carried by each
message in a format that could be understood by a human.

; ramfs -D -s ram
postfd /srv/ram
postfd successful
;

Using -s we asked ramfs to post at /srv/ram the end of a pipe that we can
mount to access the files it provides. This is what happens when we mount its file
tree.

; mount -c /srv/ram /n/ram
<-12- Tversion tag 65535 msize 8216 version ’9P2000’
-12-> Rversion tag 65535 msize 8216 version ’9P2000’
<-12- Tauth tag 16 afid 435 uname nemo aname
-12-> Rerror tag 16 ename auth no required
<-12- Tattach tag 16 fid 435 afid -1 uname nemo aname
-12-> Rattach tag 16 qid (0000000000000000 0 d)
;

The mount command makes a mount system call. To perform the mount sys-
tem call, Plan 9 sent three different requests to this ramfs file server. The file
server printed the messages (and handled the requests and sent the replies) before
Plan 9 could complete the mount call.

Ramfs prints a line for each 9P message exchanged. The first field of each
line shows if it is a message received from Plan 9 (the arrow points to the left) or
sent by the server (the arrow points to the right). The former ones are requests, and
the latter ones are replies. The file descriptor used to receive (or send) the message
is the number printed in the middle of each arrow. In this case, ramfs is attending
an end of a pipe, open in file descriptor 12. The other end of the pipe was posted at
/srv/ram, which is the file we used in mount.

The second field printed for each 9P message shows the message type. A
message is just a data structure. Different messages for different requests and
replies mean different things, and have different data fields. The type of a message
is identified by a number. However, ramfs printed a string with the name of the
type, instead of the number. In our case, three different requests were sent by Plan
9, Tversion, Tauth, and Tattach. The file server replied with three different
replies, Rversion, Rerror, and Rattach. All 9P requests have names that
start with T, for transaction. The replies for each request have the name of the
request, but starting with R instead. Thus, Tversion is a version request, and
Rversion is a version reply.
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Following the message type, the names and contents of most important fields
for each message are printed as well. For example, the tag field of the Tversion
message had 65535 as its value. As you can see, all the messages have a tag
field, besides a type field. The protocol dictates that each reply must carry the same
number in the tag that was used by its corresponding request. This is useful to
have multiple outstanding (not yet replied) requests through the same connection.
Tags let the client know which reply corresponds to each request. Because of this,
a tag used in a request cannot be used again until its reply has been received.

Before anything else, Plan 9 sent a Tversion message to ramfs, which
replied by sending an Rversion message back. This message is used to agree on
a particular version of the protocol to speak. The request carries the version pro-
posed by Plan 9. The reply carries the version proposed by the server. The string
9P2000, sent by Plan 9 (and acknowledged by ramfs) identifies the version in
this case. For the rest of the conversation, both programs agreed to use messages as
defined in the 9P2000 version of the 9P protocol.

Furthermore, this message is also used to agree on a maximum message size
for the 9P conversation that follows. In our case, they agreed on using 8 Kbytes as
the maximum size for a message (the value of the msize fields in Tversion and
Rversion). This is useful to let both parties know how big their buffers should
be for holding data being exchanged.

The second request sent by Plan 9 was Tauth. This has to do with security,
which is discussed later. The purpose of the message is to convince the file server
that the user mounting the file tree is who he says he is. In this case, ramfs is
credulous and does not need any proof to let Plan 9 use it, so it replies with an
diagnostic message that states that there is no need for authentication. This is the
Rerror message that you see. When a request cannot be processed or causes
some error, the file server does not send its corresponding reply message back.
Instead, it sends an Rerror message to the client that both indicates the failure
and explains its cause. The explanation is just an string, sent in the ename field.
The error was auth not required in this case.

The first two requests were just establishing a 9P conversation between both
parties. The third one, Tattach, was the one used by Plan 9 to mount the file
tree:

<-12- Tattach tag 16 fid 435 afid -1 uname nemo aname
-12-> Rattach tag 16 qid (0000000000000000 0 d)

The attach request lets Plan 9 obtain a reference to the root of the file tree from the
server. The field uname tells the file server which user is attaching to the tree. The
field aname tells to which file tree in the server we are attaching. It corresponds to
the last (optional) argument for mount. In this case, the empty string is the con-
ventional name for the main file server’s tree.

How can Plan 9 obtain a reference to a file in the server? References are
pointers, which point into memory, and cannot cross the network! Numbers, called
fids (or file identifiers) are used to do that. The point is that both Plan 9 and the file
server may agree that a particular fid number identifies a particular file in the
server.
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As figure 13.1 and the attach messages above show, Plan 9 sent a fid number
in Tattach. It was 435. Which number it was, it does not matter. It is just a
number proposed as a fid (i.e., a file identifier, or a file reference) by Plan 9 to the
file server. After the server accepts the attach request, and replies with Rattach,
both Plan 9 and the server agree that the fid proposed will now be a reference to the
root of the file tree mounted. So, from now on, the fid 435 can be used in other 9P
requests to mean / within the file server.

Chan for
/n/ram

Chan for
fid 435

/

x y z

Ramfs

. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fid 435

Plan 9

Mount table entry

Figure 13.1: After an attach Plan 9 has a fid number that refers to the file server’s / file.

The figure depicts the scenario after completing the mount system call that
issued the attach request. There is a new entry in the name space where we
mounted the file server. The new entry in the mount table says that whenever we
reach the file /n/ram, while resolving a file name, we should continue at the root
for the file server instead. As we saw earlier, a Chan is the data structure used in
Plan 9 to refer to a file in a particular server. The Chan identifies the file server that
contains the file, and also includes a fid number. The fid is used when speaking 9P
with the file server containing the file, to identify the file.

Fids let the 9P client refer to a file in a request made to the server. But
another kind of file identifier is needed. Consider the mount table entry shown in
the figure. It says, "when you get to a file that is /n/ram, you must continue at [
... ]#. How can Plan 9 know that it has reached the file /n/ram? To know if that
happens, Plan 9 must check if the Chan (i.e., the file) it is working with refers to
the file /n/ram. Plan 9 needs to be able to compare two Chans for equality, that
is, to determine if they refer to the same file.

To help with this, other type of file identifiers, called qids, unequivocally
identify files within a file server. All 9P file servers promise that each file will be
assigned an unique number, called its qid. Furthermore, a qid used for a file will
not be used for any other file even after the file is removed. So, two files with the
same qid within the same file server are the same file. Otherwise, files are different.

Each Chan contains the qid for the file it refers to. In our 9P dialog, the
Rattach message sent a qid back to the client, and Plan 9 knows which qid cor-
responds to the / of our ramfs file tree. If you look back to see the Dir data
structure returned by dirstat, with attributes for a file, you will see that one of
the fields is a Qid.
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We said that a qid is a number. But a qid is indeed a tiny structure that con-
tains three numbers.

typedef
struct Qid
{

uvlong path;
ulong vers;
uchar type;

} Qid;

The path field is the actual value for the qid, the unique number for the file within
its file server. Beware, this is not a string with a file name, but it identifies a file in
the file server and that is the reason for calling it path. The vers field is a num-
ber that represents the version for the file. It is incremented by the file server when-
ever the file is updated. This is useful to let Plan 9 know if a cached file is up to
date or not. It is also useful to let applications know if a file has changed or not.
The field type contains bits that are set to indicate the type for a file, including
these ones:

#define QTDIR 0x80 /* type bit for directories */
#define QTAPPEND 0x40 /* type bit for append only files */
#define QTEXCL 0x20 /* type bit for exclusive use files */

For example, the QTDIR bit is set in Qid.type for directories, unset for other
files. The QTAPPEND bit is set for append-only files. The QTEXCL bit is set for
files with the exclusive use permission set (files that can be open by at most one
process at the same time). Looking back to the Rattach message sent by
ramfs, its root directory has a qid whose path was 0000000000000000, i.e.,
0. Its version was 0, and it had the QTDIR bit set (printed as a d).

In the figure 13.1 we assumed that the file tree served by ramfs had three
files in its root directory. Before continuing, we are going to create three such
empty files using this command:

; touch /n/ram/^(x y z)
...9P dialog omitted...
;

What would now happen if we write the string hello to /n/ram/x? We can use
echo to do it. The shell will open /n/ram/x for writing, and echo will write its
argument to the file. This is the 9P conversation spoken between Plan 9 and
ramfs as a result.
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; echo -n hola >/n/ram/x
<-12- Twalk tag 14 fid 435 newfid 476 nwname 1 0:x
-12-> Rwalk tag 14 nwqid 1 0:(0000000000000000 1 )
<-12- Topen tag 14 fid 476 mode 17
-12-> Ropen tag 14 qid (0000000000000000 1 ) iounit 0
<-12- Twrite tag 14 fid 476 offset 0 count 4 ’hola’
-12-> Rwrite tag 14 count 4
<-12- Tclunk tag 14 fid 476
-12-> Rclunk tag 14

First, Plan 9 took the name /n/ram/x and tried to open it for writing. It walked
the file tree using the name space, as we learned before. After reaching /n/ram, it
knows it has to continue the walk at the root for our file server. So, Plan 9 must
walk to the file /x of the file server. That is what Twalk is for.

The first 9P request, Twalk, is used to walk the file tree in ramfs. It starts
walking from the file with fid 435. That is the root of the tree. The walk message
contains a single step, walking to x, relative to wherever fid 435 points to. The
field nwname contains how many steps, or names, to walk. Just one in this case.
The field wname in the message is an array with that number of names. This array
was printed in the right part of the line for the message. It had a single component,
wname[0], containing the name x. If the file exists, and there is no problem in
walking to it, both Plan 9 and the file server agree that the fid number in newfid
(476 in this case) refers to the resulting file after the walk. The reply message,
Rwalk, mentions the qids for the files visited during the walk. After this message,
things stand as shown in figure 13.2.

Plan 9

/

x y z

Ramfs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fid 435

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fid 476

Figure 13.2: Fids after walking to the file x in the file server.

After the walk, Plan 9 sent a Topen request to open the file. Actually, to pre-
pare the fid for doing further reads and writes on it. The message mentions which
fid to open, 476 in this case, or /x within the file server. It also mentions which
mode to use. The mode corresponds to the flags given to open(2), or to create(2).
The reply informs about the qid for the file just open. Both requests, Twalk and
Topen are the result of the system call made from the shell to create the file.

Now its time for echo to write to the file. To implement the write system
call, Plan 9 sent a Twrite 9P request. It mentions to which fid to write (which
must be open), at which offset to write, how many bytes, and the bytes to write.
The reply, Rwrite, indicates how many bytes were written.
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The last request, Tclunk, releases a fid. It was sent when the file was closed,
after echo exited and its standard output was closed.

The dialog for reading a file would be similar. Of course, the open mode
would differ, and Tread will be used instead of Twrite. Look this for example.

; cat /n/ram/x
<-12- Twalk tag 14 fid 435 newfid 486 nwname 1 0:x
-12-> Rwalk tag 14 nwqid 1 0:(0000000000000000 2 )
<-12- Topen tag 14 fid 486 mode 0
-12-> Ropen tag 14 qid (0000000000000000 2 ) iounit 0
<-12- Tread tag 14 fid 486 offset 0 count 8192
-12-> Rread tag 14 count 4 ’hola’
hola<-12- Tread tag 14 fid 486 offset 4 count 8192
-12-> Rread tag 14 count 0 ’’
<-12- Tclunk tag 14 fid 486
-12-> Rclunk tag 14

The program cat opens /n/ram/x. It all works like before. The Twalk request
manages to get a new fid, 486, referring to file /x within the file server. However,
the following Topen opens the file just for reading (mode is zero). Now, cat
calls read, to read a chunk of bytes from the file. It asked for reading 8192 bytes.
The reply, Rread, sent only 4 bytes as a result. At this point, the system call
read terminated and cat printed what it could read, the file contents. The pro-
gram had to call read again, and this time there was nothing else to read (the
number of bytes in Rread is zero). So, cat closed the file.

A file can be created by sending a Tcreate request to a file server. This is
the 9P dialog for creating the directory /n/ram/a.

; mkdir /n/ram/a
<-12- Twalk tag 14 fid 435 newfid 458 nwname 1 0:a
-12-> Rerror tag 14 ename file not found
<-12- Twalk tag 14 fid 435 newfid 474 nwname 1 0:a
-12-> Rerror tag 14 ename file not found
<-12- Twalk tag 14 fid 435 newfid 474 nwname 0
-12-> Rwalk tag 14 nwqid 0
<-12- Tcreate tag 14 fid 474 name a perm d-rwxr-xr-x
-12-> Rcreate tag 14 qid (0000000000000003 0 d) iounit 0
<-12- Tclunk tag 14 fid 474
-12-> Rclunk tag 14

Plan 9 tried to access /n/ram/a several times, to see if it existed. It could be
mkdir, calling access, or Plan 9 itself. It does not really matter. What matters is
that the file server replied with Rerror, stating that there was an error: file
not found. Then, a last Twalk was issued to obtain a new fid referring to the
directory where the file is being created. In this case, the fid 474 was obtained to
refer to the root directory in the file server. At last Tcreate asks to create a file
with the name indicated in the name field, i.e., a. After the call, the fid in the mes-
sage refers to the newly created file, and it is open. Because we are creating a direc-
tory, the bit DMDIR would be set in the perm field, along with other file permis-
sions. This is similar to what we did when using create(2).
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There are several other messages. Removing a file issues a Tremove mes-
sage. The Tremove request is similar to Tclunk. However, it also removes the
file identified by the fid. Tstat obtains the attributes for a file. Twstat updates
them.

; rm /n/ram/y
<-12- Twalk tag 14 fid 435 newfid 491 nwname 1 0:y
-12-> Rwalk tag 14 nwqid 1 0:(0000000000000001 0 )
<-12- Tremove tag 14 fid 491
-12-> Rremove tag 14

; ls -l /n/ram/z
<-12- Twalk tag 14 fid 435 newfid 458 nwname 1 0:z
-12-> Rwalk tag 14 nwqid 1 0:(0000000000000002 0 )
<-12- Tstat tag 14 fid 458
-12-> Rstat tag 14 stat ’z’ ’nemo’ ’nemo’ ’nemo’

q (0000000000000002 0 ) m 0644
at 1156033726 mt 1156033726 l 0 t 0 d 0

<-12- Tclunk tag 14 fid 458
-12-> Rclunk tag 14
--rw-r--r-- M 125 nemo nemo 0 Aug 20 01:28 /n/ram/z

; chmod -w /n/ram/z
<-12- Twalk tag 14 fid 435 newfid 458 nwname 1 0:z
-12-> Rwalk tag 14 nwqid 1 0:(0000000000000002 0 )
<-12- Tstat tag 14 fid 458
-12-> Rstat tag 14 stat ’z’ ’nemo’ ’nemo’ ’nemo’

q (0000000000000002 0 ) m 0644
at 1156033726 mt 1156033726 l 0 t 0 d 0

<-12- Tclunk tag 14 fid 458
-12-> Rclunk tag 14
<-12- Twalk tag 14 fid 435 newfid 458 nwname 1 0:z
-12-> Rwalk tag 14 nwqid 1 0:(0000000000000002 0 )
<-12- Twstat tag 14 fid 458 stat ’’ ’’ ’’ ’’

q (ffffffffffffffff 4294967295 dalA) m 0444
at -1 mt -1 l -1 t 65535 d -1

-12-> Rwstat tag 14
<-12- Tclunk tag 14 fid 458
-12-> Rclunk tag 14

At this point, we know enough of 9P and what a file server does to start building a
new file server.

13.3. Semaphores for Plan 9
For most tasks, it would be probably better to use channels, from the thread library,
instead of using semaphores. Semaphores are a synchronization abstraction prone
to errors. But assuming that we need semaphores due to some reason, it may be
useful to write a file server to provide them. Before, we used pipes to implement
semaphores. This is reasonable and works well within a single machine. But what
if you want to use semaphores to synchronize processes that run at different
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machines? Also, using a byte of buffering in the pipe for each ticket in the sema-
phore looks like wasting resources.

We are going to implement a program, semfs, that provides semaphores as
if they were files. It will export a single (flat) directory. Each file in the directory
represents a semaphore. And we have to think of an interface for using a semaphore
by means of file operations. It could be as follows.
% Creating a file in our file server creates a semaphore, with no tickets inside.

That is, its initial value is zero.
% To put tickets in a semaphore, a process may write into its file a string stating

how many tickets to add to the semaphore. We prefer to write the string 3
instead of the binary number 3 because strings are portable (all machines
store them in the same way).

% To get a ticket from a semaphore, a process may read from its file. Each read
would have to await until there is a ticket to get, and it will return some unin-
teresting data once a ticket is available.

Before implementing anything, we want to be sure that the interface could be used.
We can use some wishful thinking and assume that it has been already imple-
mented. And now we can try to use it, just to see if we can. For example, we can
start by providing a C interface for using the semaphores. The function newsem
can create a semaphore and give it an initial number of tickets.

int
newsem(char* sem, int val)
{

int fd;

fd = create(sem, OWRITE, 0664);
if (fd < 0)

return -1;
print(fd, "%d", val);
close(fd);
return 0;

}

Removing a semaphore is easy, we can use remove. To do ups and downs we
can use the following functions.
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int
up(char* sem)
{

int fd;

fd = open(sem, OWRITE);
if (fd < 0)

return -1;
write(fd, "1", 1);
close(fd);
return 0;

}

int
down(char* sem)
{

char buf[1];
int fd;

fd = open(sem, OREAD);
if (fd < 0)

return -1;
read(fd, buf, 1);
return 0;

}

The interface seems to be convenient, because we can even use the shell to initial-
ize and list our semaphores. An invented session could be as follows, provided that
semfs has been mounted at /mnt/sem.

; echo 1 >/mnt/sem/mutex create a sem for mutual exclusion
; touch /mnt/sem/items create a sem with 0 tickets
; ls /mnt/sem list semaphores
mutex items
;

13.4. Speaking 9P
It is quite easy to build a file server that speaks 9P using the 9p(2) library, known
also as lib9p. It provides most of the machinery needed to maintain the data
structures necessary for a file server, and many of the common functions found in
most file servers.

The main data structure provided by lib9p is Srv. The task of a 9P file
server is to serve 9P requests. For each 9P message received, it must execute a
function to perform the actions requested by the message, and reply with an appro-
priate message to the client. This is what Srv represents, the implementation of a
file server. Srv is a structure that contains pointers to functions to implement each
9P message. This is an excerpt of its declaration.
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typedef struct Srv Srv;
struct Srv {

void (*attach)(Req*);
void (*auth)(Req*);
void (*open)(Req*);
void (*create)(Req*);
void (*read)(Req*);
void (*write)(Req*);
void (*remove)(Req*);
void (*stat)(Req*);
void (*wstat)(Req*);
void (*walk)(Req*);
void (*flush)(Req*);
char* (*clone)(Fid*, Fid*);
char* (*walk1)(Fid*, char*, Qid*);
int infd; // T-messages fd
int outfd; // R-messages fd
void* aux; // for you to use
...

};

A file server program initializes a Srv structure with pointers to appropriate imple-
mentations. Then, it calls a function from lib9p that takes care of almost every-
thing else. For example, postmountsrv takes a server implementation (i.e., a
Srv structure), a name for a file to be posted at /srv, and a path for a mount point
(as well as flags for mount).

; sig postmountsrv
void postmountsrv(Srv *s, char *name, char *mtpt, int flag)

This function creates a separate process to run the server, as implemented by Srv.
It creates a pipe and puts the server process in a loop, reading 9P requests from one
end of the pipe and calling the corresponding function in Srv for each request. See
figure 13.3. The other end of the pipe is posted at /srv, using the name given as
an argument. At this point, the file in /srv can be mounted to reach the file server.
Furthermore, postmountsrv mounts the file server at the directory given in
mtpt, using flag as flags for mount. So, postmountsrv provides all the
main-loop logic for a file server, and makes it available to other processes. It is
optional to give name, and mtpt. Passing nil as either value makes
postmountsrv not to post or not to mount the file server respectively.

One thing to note is that the process created by postmountsrv will not
share its name space with the parent process (the one calling postmountsrv). It
could not be otherwise. If it was, a process would have to reply to 9P requests for
the file tree it is using. This would lead to deadlocks. For example, opening a file
would make the process wait for Plan 9 to speak 9P with the server, that would
wait until the server handles 9P requests, and the server would be waiting for the
open to complete. The flag RFNAMEG, RFFDG, and RFMEM are given to rfork by
postmountsrv. This means that the child process shares memory with the par-
ent process, but does not share the name space nor the file descriptors with the par-
ent.
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Figure 13.3: A 9P server process created by a call to postmountsrv.

Things work as shown in figure 13.3. The child process created by
postmountsrv executes the main server loop. This loop, implemented by the
srv function from lib9p, keeps on reading 9P messages from the pipe. When it
reads a Tread message, it calls the function Srv.read to process the request.
The function is expected to perform the read and then reply to the client, by send-
ing perhaps an Rread back to the client. In the same way, Twrite messages are
processed by Srv.write, and so on.

The main server loop function, srv may be used directly when
postmountsrv does not do exactly what we want. It reads messages from
Srv.infd, and sends replies to Srv.outfd. These descriptors usually refer to
the pipe created by postmountsrv, but that does not have to be the case.

Not all functions in Srv have to be implemented. In many cases, leaving a
nil function pointer for a 9P request in Srv provides a reasonable default. For
example, If files cannot be written, the pointer Srv.write may be set to nil, and
the main loop will respond with an appropriate Rerror reply upon write attempts.
The details about which functions must be provided, which ones do not have to be,
and what should such functions do, are described in the 9p(2) manual page. In any
case, if a function is provided for a message, it is responsible for responding.

As an additional help, because walk may be complicated to implement, two
functions that are building blocks for walk may be implemented instead of walk.
This functions are walk1 and clone.

At this point, we can start to implement semfs. To handle 9P messages, we
must implement several functions and place pointers to them in a Srv structure.
All the functions correspond with 9P requests, but for fswalk1 and fsclone,
used by the library to implement walk, and for freefid, which will be
addressed later. Given this structure, it is simple to construct a file server by using
postmountsrv, or its version for programs using the thread library,
threadpostmountsrv.
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!semfs.c !" """"""_______
#include <u.h>
#include <libc.h>
#include <auth.h> // required by lib9p
#include <thread.h>
#include <fcall.h> // required by lib9p
#include <9p.h> // definitions for lib9p
#include "sem.h" // our own definitions

static void fsattach(Req* r) { ... }
static void fscreate(Req* r) { ... }
static void fsread(Req* r){ ... }
static void fswrite(Req* r){ ... }
static char* fswalk1(Fid* fid, char* name, Qid* qid){ ... }
static char* sclone(Fid* fid, Fid* newfid){ ... }
static void fsstat(Req* r){ ... }
static void fsremove(Req* r){ ... }
static void freefid(Fid* fid){ ... }

static Srv sfs=
{

.attach = fsattach,

.create = fscreate,

.remove = fsremove,

.read = fsread,

.write = fswrite,

.walk1 = fswalk1,

.clone = fsclone,

.stat = fsstat,

.destroyfid= freefid,
};

void
usage(void)
{

fprint(2, "usage: %s [-D] [-s srv] [-m mnt]\n", argv0);
threadexitsall("usage");

}
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void
threadmain(int argc, char **argv)
{

char* mnt;
char* srv;

srv = nil;
mnt = "/mnt/sem";
ARGBEGIN{
case ’D’:

chatty9p++;
break;

case ’s’:
srv = EARGF(usage());
break;

case ’m’:
mnt = EARGF(usage());
break;

default:
usage();

}ARGEND;

if(argc!= 0)
usage();

threadpostmountsrv(&sfs, srv, mnt, MREPL|MCREATE);
threadexits(nil);

}

The call to threadpostmountsrv starts a process (containing a single thread)
to serve 9P requests, and dispatches to functions linked at sfs, which handles the
different requests. This program mounts itself (i.e., the file tree served by the child
process) at /mnt/sem, but accepts the conventional option -m to specify a differ-
ent mount point. In the same way, the option -s can be used to specify a file in
/srv where to post a pipe to mount the file server. To aid the debugging process,
the flag -D increments the global flag chatty9p, defined by lib9p. When this
global is non-zero, the library prints 9P messages as they are exchanged with the
client. Like we saw for ramfs.

13.5. 9P requests
The first function we are going to implement is fsattach. This particular

function handles Tattach messages. Its implementation introduces several
important data structures provided and used by lib9p.
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static void
fsattach(Req* r)
{

r->fid->qid = (Qid){0,0,QTDIR};
r->ofcall.qid = r->fid->qid;
respond(r, nil);

}

Like all other functions for 9P messages, fsattach receives a pointer to a Req, a
C structure representing a 9P request. Its definition may be found at
/sys/include/9p.h, and includes the following fields:

typedef struct Req Req;
struct Req
{

ulong tag;
Fcall ifcall;
Fcall ofcall;
Fid* fid;
Dir d;
void* aux;
Srv* srv;
...

};

The tag field is the tag for the request. It is must be the same in the T- message
and in the R- message used to respond. The actual message that was received (as a
request) from the client is kept at ifcall. This structure contains the message
unpacked as a C structure, reflecting the actual message received as an array of
bytes from the connection to the client. The purpose of the function is to handle
the request as found in Req.ifcall, and then fill up a response message. The
response message is actually Req.ofcall. This field contains a structure similar
to that of Req.ifcall, but this one is for the response message instead of being
for the request message.

The function respond (see in fsattach above) builds a response mes-
sage by looking into Req.ofcall and packing the message in an array of bytes,
which is then sent back to the client. It does so if the second argument is nil.
Otherwise, the second argument is taken as an error string, and respond responds
with an Rerror message instead. In our fsattach implementation, we never
respond with errors and accept any request. After the request has been responded
respond releases the Req data structure. A request should never be used again
after responding to it. As you can see in our function, there is no need to fill all
fields in the response. The library takes care of many of them, including setting the
tag and the type in the reply to correspond to those in the request. So, for
fsattach, we only had to fill up the qid sent in the reply.

The data structure Fcall, defined in /sys/include/fcall.h, is used
in Plan 9 to represent a 9P message. It is used both for Req.ifcall and
Req.ofcall. The meaning of its fields is exactly the meaning of the fields in
the 9P message represented by the Fcall, as described in the section 5 of the
manual.
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typedef
struct Fcall
{

uchar type;
u32int fid;
ushort tag;
union {

struct {
u32int msize; /* Tversion, Rversion */
char *version; /* Tversion, Rversion */

};
struct {

ushort oldtag; /* Tflush */
};

struct {
char *ename; /* Rerror */

};
struct {

Qid qid; /* Rattach, Ropen, Rcreate */
u32int iounit; /* Ropen, Rcreate */

};
struct {

Qid aqid; /* Rauth */
};

struct {
u32int afid; /* Tauth, Tattach */
char *uname; /* Tauth, Tattach */
char *aname; /* Tauth, Tattach */

};
struct {

u32int perm; /* Tcreate */
char *name; /* Tcreate */
uchar mode; /* Tcreate, Topen */

};

struct {
u32int newfid; /* Twalk */
ushort nwname; /* Twalk */
char *wname[MAXWELEM]; /* Twalk */

};
struct {

ushort nwqid; /* Rwalk */
Qid wqid[MAXWELEM]; /* Rwalk */

};
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struct {
vlong offset; /* Tread, Twrite */
u32int count; /* Tread, Twrite, Rread */
char *data; /* Twrite, Rread */

};
struct {

ushort nstat; /* Twstat, Rstat */
uchar *stat; /* Twstat, Rstat */

};
};

} Fcall;

Most 9P requests refer to a particular fid, which is a number that represents a
particular file in use by the client. Thus, a Req contains a pointer to a Fid data
structure that represents a fid, maintained by lib9p. The library keeps a table for
fids in use, and a Fid data structure for each one. When the protocol dictates that a
new fid is allocated, the library creates a Fid and updates the table. The library
also releases fids when they are no longer in use. A Fid looks like follows.

typedef struct Fid Fid;
struct Fid
{

ulong fid;
char omode; /* -1 = not open */
Qid qid;
void* aux;
...

};

It contains the fid number, the open mode for the fid (or -1 if it is not open), and
the qid for the file referenced by the fid.

The purpose of fsattach is to let clients attach to our tree, by making the
fid refer to our root directory and replying with an Rattach message informing of
its qid. The library helps in mapping fids to qids, because it handles all the Fid
structures and keeps their qids in each Fid.qid. But the file server must still
map different qids to different files.

In semfs, there is a flat (root) directory that may contain files representing
semaphores. The qid for the directory must have QTDIR set in its type field.
Having just one directory, we may use Qid.type to see if a qid refers to the root
or to any other file in our tree. The path field for the qid (i.e., the actual qid num-
ber) may be just zero, as the version field. Therefore, this is what fsattach
does.

r->fid->qid = (Qid){0,0,QTDIR};
r->ofcall.qid = r->fid->qid;

The fid represented by r->fid (the one mentioned by the Tattach) now refers
to the root directory of our tree. The response message carries the qid back to the
client. That is all we had to do.

We still must invent a scheme for assigning qids to files representing
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semaphores. A simple way is to keep all the semaphores in a single array, and use
the array index as the Qid.path for each file. Given a qid, we would know if it is
the directory or a file. Should it be a file, Qid.path would be the unique index
for each semaphore in the array.

13.6. Semaphores
What is a semaphore? For our server, it is just an instance of a Sem data structure.
We can place in sem.h its declaration and all the definitions needed to use the
implementation for semaphores, that we may keep at sem.c. The file semfs.c
is kept just with the implementation for the different file server requests.

The structure Sem needs to keep the number of tickets. Also, we need to
record the name for the file representing the semaphore and its index in the array
(used to build its qid).

When a down is made on a semaphore with no tickets, we must hold the oper-
ation until there is one ticket available. In our case, when a Tread request is
received for a semaphore that has no tickets, we must hold the request until there is
one ticket and we can reply. Therefore, the semaphore needs to maintain a list of
requests to be replied when tickets arrive. For now, this is all we need. The result-
ing data structure is as follows (Ignore the field Ref by now).
!sem.h !" """""______

typedef struct Sem Sem;
typedef struct QReq QReq;
struct Sem {

Ref;
int id; // index in array; qid.path
char* name; // of file
int tickets;
QReq* reqs; // reads (i.e., downs) pending

};

struct QReq {
QReq* next; // in pending request list
Req* r; // the request pending

};
extern Sem* sems[Nsems];

Before proceeding, we are going to complete the implementation for the semaphore
abstraction by implementing its operations. We need to create semaphores. The
function newsem does that.

The Sem structure is initialized to contain no tickets. The id field keeps the
index in the array, and the name for the file representing the semaphore is kept as
well.
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!sem.c !" """""______

...
Sem* sems[Nsems];

Sem*
newsem(char* name)
{

int i;

for (i = 0; i < Nsems; i++)
if (sems[i] == nil)

break;
if (i == Nsems)

return nil;
sems[i] = emalloc9p(sizeof(Sem));
memset(sems[i], 0, sizeof(Sem));
sems[i]->ref = 2;
sems[i]->id = i;
sems[i]->name = estrdup9p(name);
return sems[i];

}

The function locates a free entry in sems; to keep the new semaphore. When a
semaphore is no longed needed, and is released, we will deallocate it and set its
entry to nil in the array. So, the function sweeps the array from the beginning, look-
ing for the first available entry.

All the semaphores will be kept in the array sems, indexed by their qids.
This violates a little bit the convention that a qid number is never reused for a dif-
ferent file. A semaphore using an array entry that was used before by an old sema-
phore (now removed) is going to have the same qid used by the old one. This may
cause problems if binds are done to semaphore files, and also if any client caches
semaphores. In our case, we prefer to ignore this problem. To fix it, the file server
can keep a global counter to assign qid numbers to semaphores, and increment the
counter each time a new semaphore is created. Nevertheless, the implementation
shown here suffices for our purposes.

Instead of using malloc, we must use emalloc9p. The 9P library pro-
vides implementations for emalloc9p, erealloc9p, and estrdup9p that
mimic the ones with a similar name in the C library. These implementations take
an appropriate action when there is no more memory, and guarantee that they will
always return new memory. The appropriate action is simply aborting the entire
program, but you may implement your own versions for these functions if some-
thing better is needed.

Perhaps surprisingly, there is no function to free a semaphore. The point is
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that we can only free a Sem when we know that no data structure in our program is
using it. But when does that happen? Requests mention fids, that may refer to Sem
data structures. If a user wants to remove a file representing a semaphore, we can
only do so when no references remain to that semaphore. Calling free on a sema-
phore while there might be requests and/or fids pointing to it would be a disaster.

The solution is to do reference counting. Each semaphore contains one inte-
ger, which is called a reference counter. For each reference that points to a Sem we
count one reference using the counter. New references made to the semaphore
increment the counter. When a reference is gone, we decrement the reference
counter. Only when the counter gets down to zero it is safe to release the data struc-
ture. This technique is used in many different places by operating systems, to
release file descriptors when no process is using them, to remove files when
nobody is using them, to destroy windows when no process is using them, etc.

In general, releasing data structures or other resources when they are no
longer needed is called garbage collection. Reference counting is a form of gar-
bage collection that may be used for any data structures that do not form cycles. If
there are cycles, there may be circular lists not referenced from outside, that would
never be deallocated by reference counting because there is at least one reference
for each node (from the previous node in the cycle).

The thread library provides reference counters, protected by locks. They can
be used safely even when multiple processes are incrementing and decrementing
the counters, which by the way, is not the case here. A Ref structure is a reference
counter, containing a ref field with the counter and a lock. The function incref
increments the counter (using the lock to protect from possible races). The function
decref decrements the counter and returns the new value for it.

As you could see, newsem sets sems[i]->ref to 2, because it is return-
ing one reference and also storing another reference in the array of semaphores.
Both references must go away before releasing the semaphore. To release one refer-
ence, the function closesem can be called.

void
closesem(Sem* s)
{

if (s != nil && decref(s) == 0){
assert(s->reqs == nil);
assert(sems[s->id] == s);
sems[s->id] = nil;
free(s->name);
free(s);

}
}

It decrements the reference counter for s, but releases the data structure only when
no other references exist, i.e., only when decref reports that s->ref is zero
after discounting one reference. To allow calls to closesem with nil pointers, a
check for s!=nil was added as well.

Let’s proceed with other operations for our data type. To add tickets we can
simply handle Sem.tickets as we please. To remove tickets we can do the
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same. The only operations that remain to be provided are those handling the list of
pending requests in the semaphore. They are simply implementing a queue of
requests using Sem.reqs. This function enqueues a new pending request in the
semaphore, adding it to the tail of the queue.

void
queuereq(Sem* s, Req* r)
{

QReq* q;
QReq** l;

q = emalloc9p(sizeof(QReq));
q->r = r;
q->next = nil;
for (l = &s->reqs; *l != nil; l = &(*l)->next)

;
*l = q;

}

The next one returns the first request in the queue, and removes it from the head.
Req*
dequeuereq(Sem* s)
{

QReq* q;
Req* r;

if (s->reqs == nil)
return nil;

q = s->reqs;
s->reqs = q->next;
r = q->r;
free(q);
return r;

}

Because we might change this part of the implementation in the future, we add a
function to check if there is any queued request, so that nobody would need to
touch Sem.reqs.

int
queuedreqs(Sem* s)
{

return s->reqs != nil;
}

13.7. Semaphores as files
We have all the tools needed to complete our file server. The following function
serves Tcreate requests, which create semaphores. To do so, it allocates a new
Sem data structure by calling newsem.
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static void
fscreate(Req* r)
{

Fid* fid;
Qid q;
Sem* s;

fid = r->fid;
q = fid->qid;
if (!(q.type&QTDIR)){

respond(r, "not a directory");
return;

}
s = newsem(r->ifcall.name);
fid->qid = (Qid){s->id, 0, 0};
fid->aux = s;
fid->omode = r->ifcall.mode;
incref(s);
r->ofcall.qid = fid->qid;
respond(r, nil);

}

In a Tcreate, the fid in the request (represented by r->fid) should point to a
directory. The server is expected to create a file with the name specified in the
request (which is r->ifcall.name here) within that directory. Also, after the
Tcreate, the fid must point to the newly created file and must be open according
to the mode specified in the request. This is what the function does.

If the qid is not for the directory (the QTDIR bit is not set in its qid), an
Rerror message is sent back to the client, instead of creating the file. This is
achieved by calling respond with a non-null string as the error string. Otherwise,
we create a Sem data structure by calling newsem. The qid in the fid and the
response, r->ofcall, is also updated to refer to the new file.

To make things simpler for us, we place a pointer to the Sem implied by the
qid in the Fid.aux field of each fid. All of Fid, Req, and Srv data structures
contain an aux field that can be used by your programs to keep a pointer to any
data of interest for your file server. In our case, fid->aux will always point to
the Sem structure for the file referenced by the fid. We do so for all fids referring to
semaphore files.

The fsclone routine is called by the library when a new fid is created as a
clone of an existing one, as part of the implementation for the Twalk message
(that creates new fids by cloning old ones). The implementation updates the aux
field for the new fid and the reference counter for the semaphore involved (which is
now pointed to by a new fid). The function might return a non-null string to signal
errors, but this implementation will never fail.
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static char*
fsclone(Fid* fid, Fid* newfid)
{

Sem* s;

s = fid->aux;
if (s != nil)

incref(s);
newfid->aux = s;
return nil;

}

The library uses reference counting to know when a Fid is no longer used (e.g.,
because of a Tclunk that removed the last reference to a fid). When a fid is
released the library calls Srv.destroyfid, which we initialized to point to
freefid. This function releases one reference to the semaphore for the fid. If
this was the last one pointing to the semaphore, it will be released. Note that there
will always be one reference from the array of semaphores, as long as the file has
not been removed.

static void
freefid(Fid* fid)
{

Sem* s;

s = fid->aux;
fid->aux = nil;
closesem(s);

}

Removing of files is done by fsremove, which releases the reference from the
array as well as the one from the fid.

static void
fsremove(Req* r)
{

Req* q;
Sem* s;

s = r->fid->aux;
while(r = dequeuereq(s))

respond(q, "file has been removed");
closesem(s);
r->fid->aux = nil;
closesem(s); // release reference from sems[]
respond(r, nil);

}

Before actually removing anything, all the poor requests waiting for future tickets
are responded, with an error message that reports that the semaphore was removed.

One word about reference counting before continuing. A semaphore may
point to requests, that point to fids, that may point to the semaphore. So, at first
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sight, we have a data structure with cycles and we should not use reference count-
ing to release it. However, upon a Tremove, all the requests in the semaphore are
released. From this point, the semaphore will not create any cycle in the data struc-
ture, and reference counting may be safely used.

The 9P message Tread is handled by fsread. This function implements
reading from a fid (i.e., a file). But note that the root directory may be one of the
files read by the client, e.g., to list its contents. This is very different from reading
for a semaphore file, and the function must take a different course of action if
QTDIR is set in the qid for the file being read.

static void
fsread(Req* r)
{

Fid* fid;
Qid q;
Sem* s;
char nl[2] = "\n";
fid = r->fid;
q = fid->qid;
if (q.type&QTDIR){

dirread9p(r, getdirent, nil);
respond(r, nil);
return;

}

s = fid->aux;
if (s->tickets > 0){

s->tickets--;
readstr(r, nl);
respond(r, nil);

} else
queuereq(s, r);

}

We defer the discussion of reading from the root directory until later. Reading
from a semaphore file means obtaining a ticket from the semaphore. The sema-
phore is pointed to by fid->aux. So, it all depends on the value of
s->tickets. When there is one ticket to satisfy the request (i.e., to do a down in
the semaphore), we decrement s->tickets, to give one ticket to the process
reading. When there are no tickets, the request r is queued in the semaphore by a
call to queuereq. Not responding until we have one ticket means blocking a
down until it obtains its ticket.

But a read must return some bytes from the file (maybe none). What do we
read when we obtain a ticket? To permit using the command read to obtain tickets
using the shell, we return a newline character for each ticket read. For the read
command, a new line terminates the line it should read. For us, reading once from
the semaphore means obtaining one ticket. Both concepts match if we read an
empty line.

The data supposedly contained in the file, read by a Tread request is con-
tained in the string nl. Just an empty line. To satisfy a Tread, the program must
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look at r->ifcall.offset and r->ifcall.count, which contains the off-
set in the file where to start reading and the number of bytes to return at most.
Then, the program must update r->ofcall.count and r->ofcall.data to
reply later with an Rread containing the number of bytes in the message and the
bytes themselves. In our case, we could ignore the offset and do it as follows.

r->ofcall.count = r->ifcall.count;
if (r->ofcall.count > 1)

r->ofcall.count = 1;
memmove(r->ofcall.data, "\n", r->ofcall.count);
respond(r, nil);

We read one byte at most, the new line. And then we respond with the Rread
message.

If we did not ignore the offset in the request, further reads from the file (at
offsets bigger than zero) would always return zero bytes, and not a new line. But
in any case, reading from a semaphore file still would have the semantics of block-
ing until a ticket is obtained, and then returning something (perhaps just nothing).
Nevertheless, we have been assuming that processes using our file system will
open the file for a semaphore before each operation, and then close it after doing it.
The C interface that we designed for using our semaphore file system did it this
way.

In the implementation for fsread, the function did not update the response
message by itself. Instead, it calls readstr, which is a helper function from
lib9p that fills an Rread reply assuming that file contents are those in the string
given as a parameter (in this case, the contents of nl). The function updates
r->ofcall.count and r->ofcall.data, taking care of the offset, the
string size, and the maximum number of bytes requested. After calling readstr,
the only thing pending is calling respond to reply to the client. By the way,
another helper called readbuf is similar to readstr, but reads from an arbitrary
array of bytes, and not just from a string. Calling readstr is similar to calling

readbuf(r, str, strlen(str));

in any case.
That was the implementation for a down. The implementation for an up is

contained in the function that handles Twrite messages. Our convention was that
a write with a number (printed as a string) would add so many tickets to the sema-
phore.

static void
fswrite(Req* r)
{

Fid* fid;
Qid q;
Sem* s;
char str[10];
Req* qr;
char nl[2] = "\n";
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fid = r->fid;
q = fid->qid;
if (q.type&QTDIR){

respond(r, "permission denied");
return;

}

if (r->ifcall.count > sizeof(str) - 1){
respond(r, "string too large");
return;

}

memmove(str, r->ifcall.data, r->ifcall.count);
str[r->ifcall.count] = 0;
s = fid->aux;
s->tickets += atoi(str);

while(s->tickets > 0 && queuedreqs(s)){
qr = dequeuereq(s);
qr->ofcall.count = 1;
s->tickets--;
readstr(qr, nl);
respond(qr, nil);

}
respond(r, nil);

}

Writing to directories is not permitted and the function checks that QTDIR is not
set in the qid for the file being written. When writing to a file, the function takes
the bytes written from r->ifcall.data, and moves the bytes in there to a
buffer, str. The number of bytes sent in the write request is reported by
r->ifcall.count. The offset for the write, kept at r->ifcall.offset, is
ignored.

We had to move the bytes to str to terminate the string written with a final
null byte, so we could use atoi to convert the string to a number, and add so
many tickets to s->tickets. It might seem simpler to write an integer directly,
but then we could not use echo to update semaphores, and we would have to agree
on the endianness for the integers written to the file. It is simpler in this way.

Once the semaphore has been updated, the implementation still has to com-
plete any pending down that may proceed due to the new tickets added. The last
while does just that. While there are tickets and pending requests, we reply to
each one of such requests with an empty line, like fsread did when tickets were
available.

That is all we had to do. We still have to show reading from the file that is the
root directory. The code used by fsread to handle such requests was as follows.
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if (q.type&QTDIR){
dirread9p(r, getdirent, nil);
respond(r, nil);
return;

}

Reading from a directory must return an integral number of directory entries, for-
matted as an array of bytes, neutral to all architectures, so that reading from a direc-
tory would return meaningful data no matter the architecture of the machine used
by the file server and the one used as a client. Attending such reads can be a bur-
den. The function dirread9p, provided by the library, is a helper routine that
fills r->ofcall.data and r->ofcall.count to read correctly from a direc-
tory.

But how can dirread9p know which entries are kept in the directory? That
is, how can it know what bytes should be read? A function, called here
getdirent, and called dirgen by the 9p(2) manual page, is given as an argu-
ment to dirread9p.

What happens is that dirread9p calls getdirent to obtain the first entry
in the directory, then the second, then the third, etc. until it has enough entries to
fill the Rread message in r->ofcall. The parameter n of getdirent shows
which file is the one whose directory entry should be copied into *d by the func-
tion. Each call to getdirent (to a dirgen function) must fill a Dir structure
for the n-th file in the directory, and return zero. Or it must return -1 to signal that
there is no n-th file in the directory. Another common convention is that an index
of -1 given to a dirgen refers to the directory itself, and not to any of its entries.
Although we do not depend on that, we follow it as well. This is the implementa-
tion for getdirent.
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static int
getdirent(int n, Dir* d, void*)
{

d->atime= time(nil);
d->mtime= d->atime;
d->uid = estrdup9p(getuser());
d->gid = estrdup9p(d->uid);
d->muid= estrdup9p(d->uid);
if (n == -1){

d->qid = (Qid){0, 0, QTDIR};
d->mode = 0775;
d->name = estrdup9p("/");
d->length = 0;

} else if (n >= 0 && n < nsems && sems[n] != nil){
d->qid = (Qid){n, 0, 0};
d->mode = 0664;
d->name = estrdup9p(sems[n]->name);
d->length = sems[n]->tickets;

} else
return -1;

return 0;
}

We pretend that the access time and last modification time for the file is just now.
Regarding the owner (and group and last modifier user) for the file we use the user-
name of the owner of our process. That is reasonable.

Now things differ depending on which entry is requested by the caller to
getdirent. If n is -1, we assume that d must be filled with a directory entry
for the directory itself. In this case, we update the qid, permissions, file name, and
length to be those of our root directory. Note that conventionally directories have a
length of zero. Note also how strings kept by the directory entry must be allocated
using estrdup9p, or maybe using emalloc9p.

If n is a valid identifier (index) for a semaphore, we update the qid, permis-
sions, file name, and length in d. Otherwise we return -1 to signal that there is no
such file. Note how d->qid.path is the index for the semaphore. Also, we
report as the file size the number of tickets in the semaphore. In this way, ls can
be used to see if a semaphore has any available tickets in it.

The last parameter in getdirent corresponds to the last parameter we gave
to dirread9p. This function passes such argument verbatim to each call of
getdirent. It can be used to pass the data structure for the directory being iter-
ated through calls to getdirent. In our case, we have a single directory and do
not use the auxiliary argument.

Having implemented getdirent makes it quite easy to implement
fsstat, to serve Tstat requests. The function fsstat must fill r->d with the
directory entry for the file involved. Later, respond will fill up an appropriate
Rstat message by packing a directory entry using the network format for it (simi-
lar to directory entries traveling in Rread messages for directories).
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static void
fsstat(Req* r)
{

Fid* fid;
Qid q;

fid = r->fid;
q = fid->qid;
if (q.type&QTDIR)

getdirent(-1, &r->d, nil);
else

getdirent(q.path, &r->d, nil);
respond(r, nil);

}

When the file for Tstat is the directory, we call getdirent to fill r->d with
the entry for the file number -1, i.e., for the directory itself. Once getdirent did
its job, we only have to call respond.

We are now close to completing our file server. We must still implement the
function fswalk1, used by the library (along with fsclone) to implement
walk. This function receives a fid, a file name and a qid. It should walk to the file
name from the one pointed to by fid. For example, if fid refers to the root
directory, and name is mutex, the function should leave the fid pointing to
/mutex. If later, the function is called with the same fid but the name is .., the
function should leave the fid pointing to /. Walking to .. from / leaves the fid
unchanged. The convention is that /.. is just /. Like it happens with fsclone,
the function must return a nil string when it could do its job, or a string describing
the error when it failed. Besides, both fid->qid and *qid must be updated with
the qid for the new file after the walk. Furthermore, because we keep a pointer to a
Sem in the fid->aux field, the function must update such field to point to the
right place after the walk.

static char*
fswalk1(Fid* fid, char* name, Qid* qid)
{

Qid q;
int i;
Sem* s;

q = fid->qid;
s = fid->aux;
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if (!(q.type&QTDIR)){
if (!strcmp(name, "..")){

fid->qid = (Qid){0,0,QTDIR};
*qid = fid->qid;
closesem(s);
fid->aux = nil;
return nil;

}
} else {

for (i = 0; i < nsems; i++)
if (sems[i] && !strcmp(name, sems[i]->name)){

fid->qid = (Qid){i, 0, 0};
incref(sems[i]);
closesem(fid->aux);
fid->aux = sems[i];
*qid = fid->qid;
return nil;

}
}
return "no such file";

}

Walking to the root directory releases any reference to the Sem that might be
pointed to by fid->aux. Walking to a file adds a new reference to the sema-
phore for the file. But otherwise, the function should be simple to understand.

And this completes the implementation for our semaphore file server. After
compiling it, we can now use it like follows.

; 8.semfs -s sem -m /mnt/sem
; echo 1 >/mnt/sem/mutex
; echo 3 >/mnt/sem/other

; ls -l /mnt/sem
--rw-rw-r-- M 174 nemo nemo 1 Aug 23 00:16 /mnt/sem/mutex
--rw-rw-r-- M 174 nemo nemo 3 Aug 23 00:16 /mnt/sem/other

; read </mnt/sem/other

; ls -l /mnt/sem/other
--rw-rw-r-- M 174 nemo nemo 2 Aug 23 00:16 /mnt/sem/other

; read </mnt/sem/other

; read </mnt/sem/other

; read </mnt/sem/other
This blocks until a ticket is added. And then....

;

The program we built uses a single process to handle all 9P requests. Nevertheless,
we decided to show how to use the thread library together with lib9p. If we
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decide to change the program to do something else, that requires multiple threads
or processes, it is easy to do so. Once again, it is important to note that by process-
ing all the requests in a single process, there is no race condition. All the data struc-
tures for the semaphores are free of races, as long as they are touched only from a
single process.

For example, if this program is ever changed to listen for 9P clients in the
network, it might create a new process to handle each connection. That process
may just forward 9P requests through channels to a per-client thread that handles
the client requests. Once again, there would be no races because of the non-
preemption for threads.

There are several other tools for building file servers in Plan 9. Most notably,
there is a implementation of file trees, understood by lib9p. File servers that
only want to take care of reading and writing to their files may create a file tree and
place a pointer to it in the Srv structure. After doing so, most of the calls that work
on the file tree would be supplied by the library. In general, only reading and writ-
ing to the files must be implemented (besides creation and removal of files). We do
not discuss this here, but the program /sys/src/cmd/ramfs.c is an excellent
example of how to use this facility.

13.8. A program to make things
For all the previous programs, compiling them by hand could suffice. For our file
server program, it is likely that we will have to go through the compile-test-debug
cycle multiple times. Instead of compiling and linking it by hand, we are going to
use a tool that knows how to build things.

The program mk is similar to the UNIX program make. Its only purpose is
to build things once you tell it how to build them. The instructions for building our
products must be detailed in a file called mkfile, read by mk to learn how to
build things.

We placed the source code, along with an initial version for our mkfile, in
a directory for our file server program.

; lc
mkfile sem.c sem.h semfs.c
; cat mkfile
8.semfs: semfs.8 sem.8

8l -o 8.semfs semfs.8 sem.8

semfs.8: semfs.c sem.h
8c -FVw semfs.c

sem.8: sem.c sem.h
8c -FVw sem.c

;

Now, running mk in this directory has the following effect.
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; mk
8c -FVw semfs.c
8c -FVw sem.c
8l -o 8.semfs semfs.8 sem.8
;

The mkfile contains rules, that describe how to build one file provided you have
other ones. For example, this was one rule:

8.semfs: semfs.8 sem.8
8l -o 8.semfs semfs.8 sem.8

It says that we can build 8.semfs if we have both semfs.8 and sem.8. The
way to build 8.semfs according to this rule is to execute the command

8l -o 8.semfs semfs.8 sem.8

All the rules have this format. There is a target to build, followed by a : sign and a
list of dependencies (that is, things that our target depends on). The target and the
list of dependencies must be in the same line. If a line gets too long, the backslash
character, \, can be used to continue writing on the next line as if it was a single
one. A rule says that provided that we have the files listed in the dependencies list,
the target can be built. It is also said that the target depends on the files listed after
the : sign. Following this line, sometimes called the header of the rule, a rule con-
tains one or more lines starting with a tabulator character. Such lines are executed
as shell commands to build the target. These lines are sometimes called the body
for the rule.

When we executed mk, it understood that we wanted to build the first target
mentioned in the mkfile. That was 8.semfs. So, mk checked out to see if it
had semfs.8 and sem.8 (the dependencies for 8.semfs). Neither file was
there! What could mk do? Simple. The program searched the mkfile to see if, for
each dependency, any other rule described to to build it. That was the case. There is
a rule for building sem.8, and one for building semfs.8.

So, mk tried to build semfs.8, using its rule. The rule says that given
semfs.c and sem.h, semfs.8 can be built.

semfs.8: semfs.c sem.h
8c -FVw semfs.c

Both semfs.c and sem.h are there, and mk can proceed to build semfs.8.
How? By executing the command in the body of the rule. This command runs 8c
and compiles semfs.c.

Note one thing. The body of the rule does not use the file sem.h. We know
that the object file semfs.8 comes from code both in semfs.c and sem.h.
But mk does not! You see the same invariant all the times. Programs usually know
nothing about things. They just do what they are supposed to do, but there is no
magic way of telling mk which files really depend on others, and why the com-
mands in the body can be used to build the target.

In the same way, mk uses the rule for the target sem.8, to build this file.
This is the last dependency needed for building 8.semfs.
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sem.8: sem.c sem.h
8c -FVw sem.c

After executing the body, and compiling sem.c, both dependencies exist, and mk
can proceed to build, finally, 8.semfs. How? You already know. It runs the
command in the body of the rule for 8.semfs. This command uses 8l to build a
binary program from the object files.

Mk chains rules in this way, recursively, trying to build the target. A target
may be given as an argument. If none is given, mk tries to build the first target
mentioned.

Suppose we now run mk again. This is what happens.
; mk
mk: ’8.semfs’ is up to date
;

No rule was executed. The program mk assumes that a target built from some other
files, if newer than the other files, is already up to date and does not need to be
built. Because we did not modify any file, the file 8.semfs is newer than
semfs.8 and sem.8. This means that 8.semfs is up to date with respect to its
dependencies. Before checking this out, mk checks if the dependencies themselves
are up to date. The file semfs.8 is newer than its dependencies, which means
that it is up to date as well. The same happens to sem.8. In few words, the target
given to mk is up to date and there is nothing to make.

Suppose now that we edit sem.c, which we can simulate by touching the file
(updating its modification time). Things change.

; touch sem.c
; mk
8c -FVw sem.c
8l -o 8.semfs semfs.8 sem.8
;

The file sem.8, needed because 8.semfs depends on it, is not up to date. One of
the files it depends on, sem.c, is newer than sem.8. This means that the target
sem.8 is old, with respect to sem.c, and must be rebuilt to be up to date. Thus,
mk runs the body of its rule and compiles the file again.

The other dependency for the main target, semfs.8, is still up to date. How-
ever, because sem.8 is now newer than 8.semfs, this file is out of date, and the
body for its rule is executed. In few words, mk executes only what is strictly
needed to obtain an up to date target. If nothing has to be done, it does nothing. Of
course mk only knows what the mkfile says, you should not expect mk to know
C or any other programming language. It does not know anything about your
source code.

What if we want to compile semfs for an ARM, and not for a PC. We must
use 5c and 5l instead of 8c and 8l. Adjusting the mkfile for each architecture
we want to compile for is a burden at least. It is better to use variables.

An mkfile may declare variables, using the same syntax used in the shell.
Environment variables are created for each variable you define in the mkfile.
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Also, you may use environment variables already defined. That is to say that mk
uses environment variables in very much the same way the shell uses it. The next
mkfile improves our previous one.
!mkfile !" """"""_______

CC=8c
LD=8l
O=8

$O.semfs: semfs.$O sem.$O
$LD -o $O.semfs semfs.$O sem.$O

semfs.$O: semfs.c sem.h
$CC -FVw semfs.c

sem.$O: sem.c sem.h
$CC -FVw sem.c

The mkfile defines a CC variable to name the C compiler, an LD variable to
name the loader, and an O variable to name the character used to name object files
for the architecture. The behavior of mk when using this mkfile is exactly like
before. However, we can now change the definitions for CC, LD, and O as follows

CC=5c
LD=5l
O=5

Running mk again will compile for an ARM.
; mk
5c -FVw semfs.c
5c -FVw sem.c
5l -o 5.semfs semfs.5 sem.5
;

As another example, we can prepare for adding more source files in the future, and
declare a variable to list the object files used to build our program. The resulting
mkfile is equivalent to our previous one, like in all the examples that follow.
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!mkfile !" """"""_______

CC=8c
LD=8l
O=8

OFILES=semfs.$O sem.$O

$O.semfs: $OFILES
$LD -o $O.semfs $OFILES

...other rules...

There are several variables defined by mk, to help us to write rules. For example,
$target is the target being built, for each rule. Also, $prereq are the depen-
dencies (prerequisites) for the rule. So, we could do this.
!mkfile !" """"""_______

CC=8c
LD=8l
O=8

OFILES=semfs.$O sem.$O

$O.semfs: $OFILES
$LD -o $target $prereq

...other rules...

Using these variables, all the rules we are using for compiling a source file look
very similar. Indeed, we can write just a single rule to compile any source file. It
would look as follows

%.$O: %.c sem.h
$CC -FVw $stem.c

This rule is called a meta-rule. It defines many rules, one for each thing that
matches the % character. In our case, it would be like defining a rule for
semfs.$O and another for sem.$O. The rule says that anything (the %) termi-
nated in $O can be built from the corresponding file, but terminated in .c. The
command in the body of the rule uses the variable $stem, which is defined by mk
to contain the string matching the % in each case.

All this lets you write very compact mkfiles, for compiling your programs.
But there is even more help. We can include files in the mkfile, by using a <
character. And we can use variables to determine which files to include! Look at
the following file.
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!mkfile !" """"""_______

</$objtype/mkfile
OFILES=semfs.$O sem.$O

$O.semfs: $OFILES
$LD -o $target $prereq

%.$O: %.c sem.h
$CC -FVw $stem.c

It includes /386/mkfile when $objtype is 386. That is our case. The file
/386/mkfile defines $CC, $LD, and other variables to compile for that archi-
tecture. Now, changing the value of objtype changes all the tools used to com-
pile, because we would be including definitions for the new architecture. For exam-
ple,

; objtype=arm mk
5c -FVw sem.c
5l -o 5.semfs semfs.5 sem.5
;

This way, it is very easy to cross-compile. And that was not all. There are several
mkfiles that can be included to define appropriate targets for compiling a single
program and for compiling multiple ones (one per source file). What follows is
once more our mkfile.
!mkfile !" """"""_______

</$objtype/mkfile

OFILES=semfs.$O sem.$O
HFILES=sem.h
TARG=$O.semfs
BIN=$home/bin/$objtype

</sys/src/cmd/mkone

The file mkone defines targets for building our program. It assumes that the vari-
able OFILES lists the object files that are part of the program. Also, it assumes
that the variable HFILES lists the headers (which are dependencies for all the
objects). Each object is assumed to come from a C file with the same name (but
different extension). The variable BIN names the directory where to copy the
resulting target to install it, and the variable TARG names the target to be built.
Now we can do much more than just compiling our program, there are several use-
ful targets defined by mkone.
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; mk
8c -FVw semfs.c
8c -FVw sem.c
8l -o 8.out semfs.8 sem.8
; mk install
cp 8.out /usr/nemo/bin/386/8.semfs
; mk clean
rm -f *.[578qv] [578qv].out y.tab.?
rm -f y.debug y.output 8.semfs $CLEANFILES

As before, changing $objtype changes the target we would be compiling for.
It might seem confusing that install and clean were used as targets.

They are not files. That point is that targets do not need to be files. A target may be
a virtual thing, invented by you, just to ask mk to do something. For example, this
might be the rule for install.

install:V: $O.semfs
cp $O.semfs $BIN

The rule is declared as a virtual target, using the :V: in the header for the rule.
This means that mk will consider install to be something that is not a file and is
never up to date. Each time we build the target install, mk would execute the
body for the rule. That is how mkone could define targets for doing other things.

One final advice. This tool can be used to build anything, and not just bina-
ries. For example, the following is an excerpt of the mkfile used to build a PDF
file for this book.

CHAPTERS=‘{echo ch?.ms ch??.ms}
PROGRAMS=‘{echo src/*.ms}
...
%.ps:%.ms

eval ‘{doctype $stem.ms} | lp -d stdout > $stem.ps

We defined variables to contain the source files for chapters (named ch*.ms), and
for formatted text for programs. These were used by rules not shown here, but you
can still see how the shell can be combined with mk to yield a very powerful tool.
The meta-rule that follows, describes how to compile the source for chapters (or
any other document formatted using troff) to obtain a postscript file.

The program doctype prints the shell commands needed to compile a troff
document, and the eval shell built-in executes the string given as an argument as
if it was typed, to evaluate environment variables or other artifacts printed by
doctype. Again, this is just an example. If it seems confusing, experiment with
the building blocks that you have just seen. Try to use them separately, and try to
combine them to do things. That is what Plan 9 (and UNIX!) is about.

There are several other features, described in the mk(1) manual page, that we
omit. What has been said is enough to let you use this tool. For a full description,
[1] is a good paper to read.
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13.9. Debugging and testing
Having executed our program a couple of times is not enough to say that

semfs is reliable enough to be used. At the very least, it should be used for some
time besides being tested. Also, some tools available in Plan 9 may help to detect
common problems. Reading a book that addresses this topic may also help [2].

To test the program, we might think on some tests to try to force it to the
limit and see if it crashes. Which tests to perform heavily depend on the program
being tested. In any case, the shell can help us to test this program.

The idea is to try to use our program and then check if it behaved correctly.
To do this, we can see if the files served behave as they should. At least, we could
do this for some simple things. For example, if the file system is correct, it must at
least allow us to create semaphores and to remove them. So, executing

; 8.semfs
; for (i in ‘{seq 1 100}) { echo 1 >/mnt/sem/$i }

should always leave /mnt/sem with the same files. One hundred of semaphore
files with names 1, 2, etc., up to 100. This means that executing

; for (i in ‘{seq 1 100}) { echo 1 >/mnt/sem/$i }
; ls /mnt/sem

should always produce the same output, if the program is correct. In the same way,
if semaphores behave correctly, the following will not block, and the size for the
semaphore file after the loop should be zero. Thus, the following is also a program
that should always produce the same output if the file system is correct.

; echo 4 >/mnt/sem/mutex
; for (i in ‘{seq 1 4}) { read </mnt/sem/mutex }
; if (test -s /mnt/sem/mutex)
;; echo not zero sized
;

For all these checks we can think of how to perform them in a way that they always
produce the same output (as long as the program is correct). The first time we run a
check, we check the output by hand and determine if it seems correct. If that is the
case, we may record the output for later. For example, suppose the first check
above is contained in the script chk100.rc, and the last check is contained in the
script chkdowns.rc. We could proceed as follows.

; 8.semfs
; chk100.rc >chk100.rc.out
..inspect chk1.out to see if it looks ok, and proceed....
; chkdowns.rc >chkdowns.rc.out
...do the same for this new check...

Now, if we make a change to the program and want to check a little bit if we broke
something, we can use the shell to run our tests again, and compare their output
with previous runs. This is called regression testing. That is, testing one program
by looking at the output of previous versions for the same program.
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; for (chk in chk*.rc) {
;; cmp <{$chk} $chk.out || echo check $chk failed
;; }

This loop could perhaps be included in a rule for the target check in our mkfile,
so that typing

; mk check

suffices.
What we said does not teach how to test a program, nor tries to. We tried to

show how to combine the shell and other tools to help you in testing your pro-
grams. That is part of development and Plan 9 helps a lot in that respect.

There are many other things that you could check about your program. For
example, listing /proc/$pid/fd for the program should perhaps show the same
number of file descriptors for the same cases. That would let you know if a change
you make leaks any file descriptor (by leaving it open). The same could be done by
looking into memory usage and alerting about huge increases of memory.

There are other tools to help you optimize your programs, including a profiler
that reports where the program spends time, and several tools for drawing graphics
and charts to let you see if changes improve or not the time spent by the program
(or the memory) for different usages. All of them are described in the manual.
Describing them here would require many more space, and there are good books
that focus just on that topic.

To conclude with this notes about how to check your program once it has
been executed a couple of times, we must mention the leak tool. This tool helps a
lot to find memory leaks, a very common type of error while programming. A
memory leak is simply memory that you have allocated (using malloc or a rou-
tine that calls malloc) but not released. This tool uses the debugger (with some
help from the library implementing dynamic memory) to detect any such leak. For
example,

; leak -s page
leak -s 1868 1916 1917 1918

tries to find memory leaks for the process running page. The program prints a
command that can be executed to scan the different processes for that program for
memory leaks. Executing such command looks like follows:

; leak -s page|rc
;

There was no output, which meant that there seems to be no memory leaks. How-
ever, doing the same for a program called omero, reported some memory leaks.
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; leak -s omero|rc
src(0x0000dd77); // 7
src(0x000206a8); // 3
src(0x000213bc); // 3
src(0x00027e68); // 3
src(0x00027fe7); // 2
src(0x00002666); // 1
src(0x0000c6ff); // 1

Each line can be used as a command for the debugger to find the line where the
memory (leaked) was allocated. Using

; src -s 0x0000dd77 omero

would point our editor to the offending source line that leaked 7 times some mem-
ory, as reported by the first line in the output of leak. Once we know where the
memory was allocated, we may be able to discover which call to free is missing,
and fix the program.

Problems
1 Convert the printer spooler program from a previous problem into a file

server.
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14 ! Security
______

14.1. Secure systems
Security is a topic that would require a book on its own. Here we just show the
abstractions and services provided by Plan 9 to secure the computer system. But in
any case you should keep in mind that the only secure system is one that is pow-
ered down (and also kept under a lock!). As long as the system can perform tasks,
there is a risk that some attacker convinces the system to do something that it
should not legitimately do.

In general, there is a tradeoff between security and convenience. For example,
a stand-alone Plan 9 machine like a laptop that is not connected to the network
does not ask for a password to let you use it. Thus, any person that gets the laptop
may power it up and use it. However, you do not have to type a password to use it,
which is more convenient. If, on the contrary, your laptop requires a password to be
used, typing the password would be an inconvenience. Nevertheless, you might
think that this makes the laptop more secure because it requires to know a pass-
word just to use it.

By the way, this is not true because as long as a malicious person has your
laptop in his or her hands, the laptop will be broken into and the only question is
how much time and effort it will require to do so. So, using a password to protect
the laptop would be given a false feeling that the system is secure. Furthermore,
although it is common for laptops that might be used on its own, terminals in Plan
9 are not supposed to have local storage nor any other local resource to protect! A
Plan 9 terminal is just a machine to connect to the rest of services in the network.

What does security mean? It depends. For example, the dump in the file
server protects your files from accidental removals or other errors. At least, it pro-
tects them in the sense that you may still access a copy of the entire file tree, as it
was yesterday, even if you lose today’s files. Furthermore, because old files kept in
disk will never be overwritten by the file server once they are in the dump, it is
very unlikely that a bug or a software problem will corrupt them. The dump, like
other backup tools, is preserving the integrity of your data (of your files). This is
also part of the security provided by the computing system. In any case, it is com-
mon to understand security in a computer as the feature that prevents both
1 unauthorized use of the system (e.g., running programs), and
2 unauthorized access to data in the system (e.g., reading or modifying files).
We will focus on security understood in this way, that is, as something to deter-
mine who can do which operations to which objects in the system. But keep in
mind that security is a much wider subject.

We have already seen several abstractions that have to do with security,
understood this way. First, the persons who can perform actions on things in the
computer system are represented by users. A user is represented in the system by a
user name, as you saw. Users rely on networked machines or systems to do things
in the computing system. Machines execute programs. Indeed, the only way for a
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user to do something on a machine is to execute a program (or to use one already
running). Protecting the system to permit using it only to authorized users means
just protecting machines so that only authorized users may convince already run-
ning processes to do things for them. Things like, for example, running new pro-
grams and reading and writing files.

In Plan 9, some of the machines are terminals for the users. Other machines
are CPU servers that accept connections from other machines to execute commands
on them. Also, you have one or more file servers, that are machines whose solely
purpose is providing files by running programs similar to the one we developed in
the previous chapter. Most (if not all) the objects in the computer system are repre-
sented by files. Thus, the objects that must be protected by the system are files.
Protecting access to files means deciding if a particular process (acting on behalf of
a user) may or may not do a particular operation on a file.

14.2. The local machine
You know that there are many machines involved in your computing system. But
let’s start by considering just the one you are using, or, in general, a single
machine.

A user may execute commands in a terminal, and use any of its devices, by
booting it and supplying a user name. Terminals are not supposed to keep state
(local storage) in Plan 9 and so there is no state to protect. Also, terminals are not
supposed to export their devices to the network, by listening to network calls made
to access them. This means that nobody should be able to access a terminal, but for
the user who brought it into operation. Also, a terminal is a single-user machine.
It is not meant to be shared by more than one user. Computers are cheap these
days.

How is your terminal secured? The local machine is protected merely by
identifying the user who is using it. Identification is one of the things needed to
secure a system. Plan 9 must know who is trying to do something, before deciding
if that action is allowed or not. In Plan 9, the user who switched on the machine is
called the machine owner and allowed to do anything to the machine. This applies
not just for terminals, but for any other Plan 9 machine as well.

The console device, cons(3), provides several files that identify both the
machine and its owner. The file /dev/hostowner names the user who owns the
machine, and /dev/sysname names the machine itself.

; cat /dev/hostowner
nemo;
; cat /dev/sysname
nautilus;

It may be a surprise, but the machine name is irrelevant for security purposes.
Only the host owner is relevant. This terminal trusts that the user who owns it is
nemo, only because one user typed nemo when asked for the user name during the
booting of the machine. That is all that matters for this machine. Initially, Plan 9
created a boot process, described in boot(8). Besides doing other things, it asked
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for a user name and wrote /dev/hostowner. But note that in our example it
might happen that the user was not actually nemo! For the local machine, it does
not matter.

Deciding who is able to do what is called authorization. Authorization for
the host owner is automatic. The kernel is programmed so that the machine owner
is authorized to do many things. For example, ownership of console and other
devices is given to the host owner.

; ps | sed 4q
nemo 1 0:00 0:00 1276K Await bns
nemo 2 0:58 0:00 0K Wakeme genrandom
nemo 3 0:00 0:00 0K Wakeme alarm
nemo 5 0:00 0:00 0K Wakeme rxmitproc
; ls -l ’#c’
--rw-rw-r-- c 0 nemo nemo 24 May 23 17:44 ’#c/bintime’
--rw-rw---- c 0 nemo nemo 0 May 23 17:44 ’#c/cons’
---w--w---- c 0 nemo nemo 0 May 23 17:44 ’#c/consctl’
--r--r--r-- c 0 nemo nemo 72 May 23 17:44 ’#c/cputime’
--r--r--r-- c 0 nemo nemo 0 May 23 17:44 ’#c/drivers’
...

This can be double checked by changing the host owner, which is usually a bad
idea.

; echo -n pepe >/dev/hostowner we set a new host owner...
; ls -l ’#c’
--rw-rw-r-- c 0 pepe pepe 24 May 23 17:44 ’#c/bintime’
--rw-rw---- c 0 pepe pepe 0 May 23 17:44 ’#c/cons’
---w--w---- c 0 pepe pepe 0 May 23 17:44 ’#c/consctl’
...
; echo -n nemo >/dev/hostowner ...and now restore the original one

The host owner can do things like adjusting permissions for files in /proc, which
are owned by him. There is nothing that prevents this user from adding permissions
to post notes, for example, to kill processes.

; ls -l /proc/$pid/note
--rw-r----- p 0 nemo nemo 0 May 23 17:44 /proc/1235/note
; chmod a+w /proc/$pid/note
; ls -l /proc/$pid/note
--rw-rw--w- p 0 nemo nemo 0 May 23 17:44 /proc/1235/note

The truth is that users do not exist. For the system, processes are the ones that may
perform actions. There is no such thing as a human. For example, the human using
the window system is represented by the user name of the process(es) implement-
ing the window system. Therefore, each process is entitled to a user, for identifica-
tion purposes. In a terminal, all the processes are usually entitled to the host owner.
But how can this happen?

What happens is that the initial process, boot was initially running on the
name of the user none, which represents an unknown user. After a user name was
given to boot, while booting the terminal, it wrote such user name to
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/dev/user and, from there on, the boot process was running on the name of
nemo. The file /dev/user provides the interface for obtaining and changing the
user name for the current process (for the one reading or writing the file). The user
name can only be set once, initially. From there on, the user name can only be read
but not changed. For example, the following happens when using the user name for
our shell.

; cat /dev/user
nemo;
; echo -n pepe >/dev/user
echo: write error: permission denied

Child processes inherit the user name from their parents. So, all the processes in
your terminal are very likely to be owned by you, because they all descend from
the boot process, that changed its ownership to your user name.

It is important for you to notice that only the local machine trusts this. You
are perfectly free to change the kernel in your terminal to do weird things like
changing /dev/user. Other machines do not trust this information at all. As a
result, running a custom made kernel just to break into the system would only
break into the terminal running that kernel, and not into other machines.

This does not happen on other systems. For example, UNIX was made when
a computing system was just a single machine. Networks came later and it was
considered very unlikely that a user could own a machine, attach it to the network,
and run a fake kernel just to break into the system. The result is that most UNIX
machines tend to trust the users responsible for the kernels at different machines
within the same organization. Needless to say that this is a severe security problem.

14.3. Distributed security and authentication
We have seen that a terminal is secured just by not sharing it. It trusts whoever
boots it. This allows you to run processes in your terminal and use its devices.
However, the terminal needs files to do anything. For example, unless you have a
binary file you cannot execute a new program. There are some programs compiled
into the kernel, kept at /boot, just to get in touch with the file server machine, but
that does not suffice to let the user do any useful work.

Files are provided by file server programs, like the ones we have seen before.
Each file server is responsible for securing its own files. Therefore, there is no such
thing as an account in Plan 9. Strictly speaking, each file server has a list of user
(and group) names known to it, and is responsible for deciding if a user at the other
end of a 9P connection is allowed to do something on a file or not.

Each file server has some mechanism to open accounts and authorize users.
How to do this is highly dependent on the particular file server used. For example,
each fossil has a file /adm/users that lists users known to it. Any user that
wants to mount a particular fossil file server must be listed in the
/adm/users file kept within that fossil. My file server knows me because its
administrator included nemo in its users file.
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; grep ’^nemo’ /adm/users
nemo:nemo:nemo:

In this case, the fossil administrator used the uname and users commands in the
fossil console to create my user in that file server.

main: uname nemo nemo add the user nemo
main: users -w and update the /adm/users file in disk

But to use other file servers I need other accounts. One per file server. For each file
server program its manual page must provide some help regarding how to let it
know which user names exist.

Note that a user name in a file server is only meaningful to that file server.
Different file servers may have different lists of users. Within a single organization,
it is customary to have a central, main, file server and to use its /adm/users file
to initialize the set of users for other secondary file servers also installed. This is
how users are authorized to use file servers.

Besides, a file server must also identify the user who is using it. This is done
using 9P. When a process mounts a file server in its name space, the user name is
sent in the Tattach request. As you know, the attach operation gives a handle, a
fid, to the client attaching to the file system. This permits the file server to identify
the user responsible for operations requested on that fid. When new fids are
obtained by walking the file tree, the file server keeps track of which user is
responsible for which fids.

Access control, that is, deciding if a particular operation is to be allowed or
not, is performed by the file server when a user opens a file, walks a directory, and
tries to modify its entries (including creating and removing files). When a process
calls open on a file, the system sends a Topen request to the file server providing
the file. At this point, the file server takes the user name responsible for the request
and decides whether to grant access or not. You know, from the first chapter, that
this is done using per-file access control lists, that determine which operations can
be performed on which file. Once a file has been open for a particular access mode
(reading, writing, or both), no further access control check is made. The file
descriptor, (or the fid for that matter) behaves like a capability (a key) that allows
the holder to perform file operations consistent with the open mode.

These are all the elements involved in securing access to files, but for an
important one. It is necessary to determine if the user, as identified for a file server,
is who he or she claims to be. Users can lie! This operation is called
authentication. Authenticating a user means just obtaining some proof that the
user is indeed the one identified by the user name. Most of the machinery provided
for security by Plan 9 is there just to authenticate users.

And here comes the problem. In general, the way a program has to convince
another of something is to have a secret also known to the other. For example,
when an account is open for a user in a Plan 9 environment, the user must go near
the console of a server machine and type a password, a secret. The same secret is
later typed by the same user at a terminal. Because the terminal and the server
machine share the same secret, the sever can determine that the user is indeed who
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typed the password while opening the account. Well, indeed, the server does not
know if the password is also known by another user, but the server assumes this
would not happen.

Authentication is complex because it must work without trusting the network.
There are many different protocols consisting on messages exchanged in a particu-
lar way to allow an end of a connection to authenticate the other end, without per-
mitting any evil process spying or intercepting network messages to obtain unau-
thorized access. Once more, we do not cover this subject in this book. The impor-
tant point is that there are multiple authentication protocols, and that there is an
interface provided by the system for this purpose.

The mount system call receives two file descriptors, and not just one (even
though a file descriptor for a connection to a file server is all we need to speak 9P
with it).

; sig mount
int mount(int fd, int afd, char *old, int flag, char *aname)

The fd descriptor is the connection to the file server. The second one, afd, is
called an authentication file descriptor, used to authenticate to the file server.
Before calling mount, a process calls fauth to authenticate its user to a file
server at the other end of a connection.

; sig fauth
int fauth(int fd, char *aname)

For example, if the file descriptor 12 is connected to a file server,
afd = fauth(12, "main")

obtains an authentication file descriptor for authenticating our user to access the file
tree main in the file server. This descriptor is obtained by our system using a
Tauth 9P request. And now comes the hard part. We must negotiate with the file
server a particular authentication protocol to use. Furthermore, we must exchange
messages by reading and writing afd according to that protocol, to give proof of
our identity to the file server. This is complex and is never done by hand. Assum-
ing we already made it, afd can be given to mount, to prove that we have been
already authenticated. For example, like in

mount(12, afd, "/n/remote", MREPL, "main");

In most cases, the library function amount does this. So, it would have been the
same to do just

amount(12, "/n/remote", MREPL, "main");

instead of calling fauth, following an authentication protocol, and calling
mount. It is easier to let amount take care of authentication by itself. In the next
section we will show how this could be.

For now, the important point is to note how authentication is performed by
exchanging messages between the two processes involved. In this case, the file
server and our client process. The authentication file descriptor obtained above is
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just a channel where to speak an authentication protocol, using some sort of shared
secret to convince the other process, nothing else. It permits keeping the authentica-
tion messages apart from 9P.

If there was only a single server, providing a secret to it for each user would
suffice to authenticate all users in the Plan 9 network. However, there can be may
ones. Furthermore, authentication is used not just to convince file servers. It is also
used to convince other servers providing different services, like command execu-
tion. Instead of having to open an account with the user’s secret for each server,
authentication is centralized in, so called, authentication servers.

An authentication server is a machine that runs an authentication server pro-
cess, perhaps surprisingly. The idea behind an authentication server is simple.
Authentication is delegated to this server. Instead of sharing a secret, and trusting
each other because of the shared secret, both the client process and the server pro-
cess trust a third process, the authentication server. This means that both processes
must share a secret with the third trusted one.

No matter how many servers there are, the client only needs one secret, for
using the authentication server. Using it, the client asks the authentication server
for tickets to gain access to servers. Each ticket is a piece of data that is given to a
client, and can be used to convince the server that the client is indeed who it claims
to be. This can be done because the authentication server may use the secret it
shares with the server to encrypt some data in the ticket given to the client. When
the client sends the ticket to the server, the server may know that the ticket was
issued by someone knowing its own secret, i.e., by the authentication server.

The authentication server in Plan 9 is implemented by the program
authsrv, described in auth(8). It runs on a machine called the authentication
server, as you might guess. In many cases, this machine may be the same used as
the main file server, if it runs such process as well.

Things are a little bit more complex, because a user might want to use servers
maintained by different organizations. It would not be reasonable to ask all Plan 9
file servers in the world to share a single authentication server. As a result,
machines are grouped into, so called, authentication domains. An authentication
domain is just a name, representing a group of machines that share an authentica-
tion server, i.e., that are grouped together for authentication purposes. Each Plan 9
machine belongs to an authentication domain, set by the machine boot process
(usually through the same protocol used to determine the machine’s IP address, i.e.,
DHCP).

The file /dev/hostdomain, provided by the cons(3) device, keeps the
authentication domain for the machine.

; cat /dev/hostdomain
dat.escet.urjc.es;
;

Regarding authentication, a user is identified not just by the user name (e.g., that in
/dev/hostowner), but also by the associated authentication domain. A single
user might have different accounts, for using different servers, within different
authentication domains. In many cases, the same user name is used for all of them.
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However, a user might have different user names for each different authentication
domain.

14.4. Authentication agents
In any case, we still have to answer some questions. How does a client (or a sever)
run the authentication protocol? How do they speak with the authentication server?
Where do they keep the secrets? Strictly speaking, in Plan 9, neither process does
any of these tasks! All the authentication protocols are implemented by a program
called factotum. This program is what is known as an authentication agent,
i.e., a helper process to take care of authentication. A factotum keeps the secrets
for other processes, and is the only program that knows how to perform the client
or the server side of any authentication protocol used in Plan 9.

Factotum keeps keys. A key is just a secret, along with some information
about the secret itself (e.g., which protocol is the secret for, which user is the secret
for, etc.) Factotum is indeed a file system, started soon after the the machine boots,
which mounts itself at /mnt/factotum. Its interface is provided through the
files found there.

; lc /mnt/factotum
confirm ctl log needkey proto rpc

The file ctl is used to control the set of secrets kept by the factotum. Reading it,
reports the list of keys known (without reporting the actual secrets!)

; cat /mnt/factotum/ctl
key proto=p9sk1 dom=dat.escet.urjc.es user=nemo !password?
key proto=p9sk1 dom=outside.plan9.bell-labs.com user=nemo !password?
key proto=vnc dom=dat.escet.urjc.es server=aquamar !password?
key proto=pass dom=urjc.es server=orson service=ssh user=nemo !password?
key proto=rsa service=ssh size=1024 ek=10001 n=DE6D279E8B49C9B1F44B
9CA26114005BD2EB1B255A92F42D475B49D333FA4886990DDF17108
FE4237A2FD6E1CB2C040C1F5361F03352DAE67243B62CE2664663B
E0AE1F1933CDF935 !dk? !p? !q? !kp? !kq? !c2?

Each one of the lines above corresponds to a single key kept by this factotum pro-
cess, and starts with key. The last line is so large, that it required four output files
in the terminal session reproduced above.

The first line shown above corresponds to the key used to authenticate to file
servers using the P9SK1 authentication protocol (Plan 9 Shared Key, 1st).

key proto=p9sk1 dom=dat.escet.urjc.es user=nemo !password?

As you can see, a key is a series of attribute and value pairs. In this key, the
attribute proto has as value p9sk1. The purpose of this attribute is to identify
the protocol that uses this key. Other attributes depend on the particular authenti-
cation protocol for the key. In P9SK1 keys, dom identifies the authentication
domain for a key. This is just the name that identifies a set of machines, for orga-
nizative purposes, that share an authentication server. The attribute user identifies
our user name within that domain. Note that we might have different P9SK1 keys
for different authentication domains, and might have different user names for them.
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The attribute password has as its value a secret, that is not shown by factotum.
New keys can be added to factotum by writing them to the ctl file, using the

same syntax. The next command adds a key for using P9SK1, as the user nemo,
for the foo.com authentication domain.

; echo ’key proto=p9sk1 dom=foo.com user=nemo !password=whoknows’ \
;; >/mnt/factotum/ctl
; grep foo.com /mnt/factotum/ctl
proto=p9sk1 dom=foo.com user=nemo !password?
;

The value for the attribute password is the shared secret used to authenticate the
user nemo, by using the authentication server for the foo.com domain. Because
the attribute name was prefixed with a ! sign, factotum understands that it is an
important secret, not to be shown while reading ctl. In general, factotum does its
best to avoid disclosing secrets. It keeps them for itself, for use when speaking the
authentication protocols involved. Look what happens below.

; ps | grep factotum
nemo 6 0:00 0:00 268K Pread factotum
; acid 6
/proc/6/text:386 plan 9 executable

<stdin>:1: (error) setproc: open /proc/6/mem: permission denied
/sys/lib/acid/port
/sys/lib/acid/386
no symbol information
acid:

You cannot debug factotum! It protects its memory, to prevent any process from
reading its memory and obtaining the keys it maintains. This can be done to any
process by writing the string private to the process ctl file. That is what facto-
tum did to itself to keep its memory unreadable from outside. In the same way, fac-
totum wrote noswap to its process control file, to ask Plan 9 not to swap its mem-
ory out to disk when running out of physical memory.

It is now clear how to add keys to factotum, but how can a process authenti-
cate? A process can authenticate to another peer process by relying messages
between its factotum and the other peer. As figure 14.1 shows, during authentica-
tion, a client process would simply behave as an intermediary between its factotum
and the server. When its factotum asks the process so send a message to the other
end, it does so. When it asks the process to receive a message from the other end,
and give it to it, the process obeys. In the same way, a server process relays mes-
sages to and from its own factotum to authenticate clients.

The protocol is only understood by the factotum. So, if both the client and the
server have a factotum, it is both factotums the ones speaking the authentication
protocol. The only peculiarity is that messages exchanged for authentication
between both factotums pass through the client and the server processes, which
behave just as relays. As the figure shows, different servers might have different
factotums. The same happens for clients. And of course, more than one process
may use the same factotum. Which factotum is used is determined by which
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Figure 14.1: A process relays messages to and from its factotum to authenticate.

factotum is mounted at /mnt/factotum.
For example, executing a new factotum mounts another factotum at

/mnt/factotum, isolating the processes that from now on try to authenticate in
our name space.

; auth/factotum
; cat /mnt/factotum/ctl
; This one has no keys!

There is another important thing to note. A process may use a factotum even if the
other peer does not. For example, the lower server shown in the figure 14.1 does
not use a factotum and is implementing the authentication protocol on its own. As
long as a process speaks properly the necessary authentication protocol, it does not
matter if it is the one actually speaking, or just a relay for a factotum.

The connection kept between a process and its factotum during an authentica-
tion session is provided by the /mnt/factotum/rpc file. This file provides a
distinct channel each time it is open. It is named rpc because the process performs
RPCs to the factotum by writing requests through this file (and reading replies
from factotum), to ask what it should do and rely messages.

The auth(2) library provides authentication tools that work along with facto-
tum. Among other things, it includes a function called auth_proxy that takes
care of authentication by relying messages between the factotum reached through
/mnt/factotum/ctl and the other end of a connection. It returns a data struc-
ture with some authentication information.

; sig auth_proxy
AuthInfo* auth_proxy(int fd, AuthGetkey *getkey, char *fmt, ...);

To show how to use this function, the following program mounts a file server and
performs any authentication necessary to gain access to the server’s file tree. The
auth library provides amount to do this. Instead of using it, the program imple-
ments its own version for this function.
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!amount.c !" """"""""_________
#include <u.h>
#include <libc.h>
#include <auth.h>
int
authmount(int fd, char *mntpt, int flags, char *aname, AuthInfo** aip)
{

int afd, r;

afd = fauth(fd, aname);
if (afd < 0){

*aip = nil;
fprint(2, "fauth: %r\n");
return mount(fd, afd, mntpt, flags, aname);

}
*aip = auth_proxy(afd, amount_getkey,

"proto=p9any role=client");
if (*aip == nil)

return -1;
r = mount(fd, afd, mntpt, flags, aname);
close(afd);
if (r < 0){

auth_freeAI(*aip);
*aip = nil;

}
return r;

}
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void
main(int argc, char*argv[])
{

AuthInfo*ai;
int fd;

if (argc != 4){
fprint(2, "usage: %s file mnt aname\n", argv[0]);
exits("usage");

}
fd = open(argv[1], ORDWR);
if (fd < 0)

sysfatal("open %s: %r", argv[1]);
if (authmount(fd, argv[2], MREPL|MCREATE, argv[3], &ai) < 0)

sysfatal("authmount: %r");
if (ai == nil)

print("no auth information obtained\n");
if (ai != nil){

print("client uid: %s\n", ai->cuid);
print("server uid: %s\n", ai->suid);
print("cap: %s\n", ai->cap);
auth_freeAI(ai);

}
exits(nil);

}

The first argument for the program is a file used as a connection to the server. The
program opens it and calls its own authmount function. This function returns the
Authinfo obtained by calling auth_proxy using its last parameter, and our
program prints some diagnostics about such structure before calling
auth_freeAI to release it.

The important part of this program is the implementation for authmount,
similar to that of amount but for returning the Authinfo to the caller.

int
authmount(int fd, char *mntpt, int flags, char *aname, AuthInfo** aip)
{

int afd, r;

afd = fauth(fd, aname);
if (afd < 0){

*aip = nil;
fprint(2, "fauth: %r\n");
return mount(fd, afd, mntpt, flags, aname);

}

*aip = auth_proxy(afd, amount_getkey,
"proto=p9any role=client");

if (*aip == nil)
return -1;
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r = mount(fd, afd, mntpt, flags, aname);
close(afd);
if (r < 0){

auth_freeAI(*aip);
*aip = nil;

}
return r;

}

The function is used by a client process to authenticate to a (file) server process.
First, the client process must obtain a connection to the server and pass its descrip-
tor in fd. Before authentication takes place, the function calls fauth to obtain a
file descriptor that can be used to send and receive messages for authenticating
with the server, and keeps it in afd. In general, clients may use the initial connec-
tion to a server to authenticate. However, for a 9P file server, you know that a sepa-
rate (authentication) descriptor is required instead.

In any case, the point is that calling auth_proxy with a descriptor to reach
the server process, afd in this case, suffices to authenticate our user to the server.
Auth_proxy opens /mnt/factotum/ctl, and loops asking factotum what to
do, by doing RPCs through this ctl file. If factotum says so, auth_proxy reads
a message from the peer, by reading afd, and writes it to factotum (to the ctl
file). If factotum, instead, asks for a message to be sent to the peer, auth_proxy
takes the message from the ctl file and writes it to afd.

Which protocol to speak, and which role to take in that protocol (client or
server), is determined by the last parameters given to auth_proxy. Such param-
eters are similar to the arguments for print, to permit may different invocations
depending on the program needs. In our case, we gave just the format string

"proto=p9any role=client"

But passing more arguments in the style of print can be done, for example, to
specify the user for the key, like here:

char* user;
auth_proxy(afd, getkey, "proto=p9any role=client user=%s", user);

Such string is given to factotum, which matches it against the keys it keeps. It is
used as a template to select the key (and protocol) to use. In this case, any key
matching the p9any protocol can be used, using the role of a client. The p9any
protocol is not exactly a protocol, but a way to say that we do not care about which
particular Plan 9 authentication protocol is used. When this meta-protocol is used,
both the client and the server negotiate the actual authentication protocol used, like
for example, P9SK1.

Once auth_proxy completes, it may have succeeded authenticating the
user or not. If it does, it returns an Authinfo structure, which is a data structure
that contains authentication information returned from factotum.
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typedef struct AuthInfo AuthInfo;
struct AuthInfo
{

char *cuid; /* caller id */
char *suid; /* server id */
char *cap; /* capability */
int nsecret; /* length of secret */
uchar *secret; /* secret */

};

For example, this is what results from using 8.amount to mount several file
servers. First, we start a new ramfs, which does not require any authentication,
and mount it.

; ramfs -s ram
; 8.amount /srv/ram /n/ram ’’
fauth: authentication not required
no auth information obtained

The call to fauth (which sends a Tauth request to the server) fails with the error
authentication not required. So, the function authmount simply
called mount using -1 as afd, after printing a diagnostic for us to see. As a
result, no AuthInfo is obtained in this case.

Second, we use 8.amount to mount our main file server, wich does require
authentication (the key for authenticating to the server using P9SK1 was known to
the factotum used).

; 8.amount /srv/tcp!whale!9fs /n/whale main/archive
client uid: nemo
server uid: nemo

In this case, auth_proxy was called and could authenticate using factotum.
The AuthInfo structure returned contains nemo in its cuid field (client uid).
That is the actual user id we are using at our terminal. It also contains nemo in its
suid field (server uid). That is the user id as known to the server. In our case, both
user names were the same, but they could differ if I was given a different user name
for the account at whale.

In most cases, a client is only interested in knowing if it could authenticate or
not. Like in our example (and in amount), most clients would just call
auth_freeAI, to release the AuthInfo structure, after a successful authentica-
tion. For server programs, things may be different. They might employ the infor-
mation returned from factotum as we will see later.

But what would happen when factotum does not know the key needed to
authenticate to the server? In the call to auth_proxy, the function
amount_getkey was given as a parameter. This function is provided by the
auth(2) library and is used to ask the user for a key when factotum does not have
the key needed for the protocol chosen. For example, below we try to mount the
file server whale, in the window where we started a new factotum, which starts
with no keys.
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; auth/factotum
; cat /mnt/factotum/ctl
; This one has no keys!
; 8.amount /srv/tcp!whale!9fs /n/whale main/archive

!Adding key: dom=dat.escet.urjc.es proto=p9sk1
user[nemo]: we pressed return
password: we typed the password here
!
client uid: nemo
server uid: nemo

Here, auth_proxy called the function amount_getkey, given as a parameter,
to ask for a key to mount whale. At this point, the message starting !Adding
key... was printed, and we were asked for a user name and password for the
P9SK1 protocol within the dat.escet.urjc.es authentication domain. That
information was given to factotum, to install a new key, and authentication could
proceed. After that, factotum has the new key for use in any future authentication
that requires it.

; cat /mnt/factotum/ctl
key proto=p9sk1 dom=dat.escet.urjc.es user=nemo !password?

We will never be prompted for that key again as long as we use this factotum.

14.5. Secure servers
Handling authentication in a server can be done in a similar way. In general,

the server calls auth_proxy to relay messages between the client and
factotum. The only difference is that the role is now server, instead of
client.

For 9P servers, the 9p(2) library provides helper routines that handle authenti-
cation. A 9P server that implements authentication for its clients must create (fake)
authentication files in response to Tauth requests. Such files exist only in the pro-
tocol, and not in the file tree served. They are just a channel to exchange authenti-
cation messages by using read and write in the client.

To secure our semfs file server (developed in a previous chapter), we first
provide a key template in the Srv structure that defines the implementation for the
server. The function auth9p provided by the library can be used as the implemen-
tation for the auth operation in Srv. It allocates authentication files, flagging
them by setting QTAUTH in their Qid.types.
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static Srv sfs=
{

.auth = auth9p,

.attach = fsattach,

.create = fscreate,

.remove = fsremove,

.read = fsread,

.write = fswrite,

.walk1 = fswalk1,

.clone = fsclone,

.stat = fsstat,

.destroyfid= freefid,

.keyspec = "proto=p9any role=server"
};

Because there are authentication files, the implementation of fsread and
fswrite must behave differently when the file read/written is an authentication
file. In this case, the data must be relayed to factotum and not to a file served. The
new implementation for fsread would be as follows.

static void
fsread(Req* r)
{

Fid* fid;
Qid q;
Sem* s;
char nl[2] = "0;

fid = r->fid;
q = fid->qid;
if (q.type&QTAUTH){

authread(r);
return;

}
...everything else as before...

}

It calls the helper function authread, provided by lib9p, to handle reads from
authentication files (i.e., to obtain data from the underlying factotum to be sent to
the client). In the same way, fswrite must include

if (q.type&QTAUTH){
authwrite(r);
return;

}

to take a different course of action for writes to authentication files. The library
function authwrite takes care of writes for such files.

Fids for authentication files keep state to talk to the underlying factotum. The
function authdestroy must be called for fids that refer to authentication files.
This means that we must change the function freefid, which we used to release
the semaphore structure for a fid, to release resources for authentication fids.
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static void
freefid(Fid* fid)
{

Sem* s;

if (fid->qid.type&QTAUTH)
authdestroy(fid);

else {
s = fid->aux;
fid->aux = nil;
closesem(s);

}
}

The purpose of the entire authentication process is to demonstrate in the Tattach
request that the user was who he/she claimed to be. So, fstattach must be
changed as well. The library function authattach makes sure that the user is
authenticated. When it returns -1, to signal a failure, it has already responded with
an error to the caller, and the server should not respond. Otherwise, the user has
been authenticated.

static void
fsattach(Req* r)
{

if (authattach(r) < 0)
return;

r->fid->qid = (Qid){0,0,QTDIR};
r->ofcall.qid = r->fid->qid;
respond(r, nil);

}

After compiling the new program into 8.asemfs, we can try it. As you may
remember, 8.asemfs mounts itself at /mnt/sem (the parent process spawns a
child to speak 9P, and mounts it). Using the flag -D, we asked for a dump of 9P
messages to see what happens. First, we execute it while using a factotum that has
no keys.

; 8.asemfs -D
<-11- Tversion tag 65535 msize 8216 version ’9P2000’
-11-> Rversion tag 65535 msize 8216 version ’9P2000’
<-11- Tauth tag 10 afid 485 uname nemo aname
-11-> Rauth tag 10 qid (8000000000000001 0 A)
<-11- Tread tag 10 fid 485 offset 0 count 2048
-11-> Rerror tag 10 ename authrpc botch
<-11- Tattach tag 10 fid 487 afid 485 uname nemo aname
-11-> Rerror tag 10 ename authrpc botch
<-11- Tclunk tag 10 fid 485
-11-> Rclunk tag 10
8.asemfs: mount /mnt/sem: authrpc botch
;

This time, the server replied to Tauth with an Rauth message, and not with an
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Rerror to indicate that authentication was not required. Because of this, the
amount call made by the client (the parent process) calls auth_proxy to
authenticate the user to the server.

You may see how the poor client tries to read the authentication fid (485), to
obtain a message from the server as part of the authentication protocol. It fails. The
server’s factotum informed with an authrpc botch error that it could not
authenticate. This is not a surprise, because the factotum for the server had no keys.
The optimistic (but still poor) client tried to attach to the server, anyway. The
server refused this time, because the client was not authenticated. Things are differ-
ent when the server’s factotum is equipped with a key for P9SK1.

; 8.asemfs -D
<-11- Tversion tag 65535 msize 8216 version ’9P2000’
-11-> Rversion tag 65535 msize 8216 version ’9P2000’
<-11- Tauth tag 10 afid 465 uname nemo aname
-11-> Rauth tag 10 qid (8000000000000001 0 A)
<-11- Tread tag 10 fid 465 offset 0 count 2048
-11-> Rread tag 10 count 24 ’7039736b 31406461 ....’
<-11- Twrite tag 10 fid 465 offset 24 count 24 ’7039736b 31206461 ...’
-11-> Rwrite tag 10 count 24
<-11- Twrite tag 10 fid 465 offset 48 count 8 ’7501af21 166c2391’
-11-> Rwrite tag 10 count 8
<-11- Tread tag 10 fid 465 offset 56 count 141
-11-> Rread tag 10 count 141 ’016e656d 6f000000 ....’
<-11- Twrite tag 10 fid 465 offset 197 count 85 ’f63182df 120add32 ...’
-11-> Rwrite tag 10 count 85
<-11- Tread tag 10 fid 465 offset 282 count 13
-11-> Rread tag 10 count 13 ’2be8ff3e d96f0f29 ...’

<-11- Tattach tag 10 fid 234 afid 465 uname nemo aname
authenticate nemo/: ok
-11-> Rattach tag 10 qid (0000000000000000 0 d)
<-11- Tclunk tag 10 fid 465
-11-> Rclunk tag 10

In this output, you see how the client sends read and write requests, successfully, to
the authentication fid 465. Such operations obtain messages and send them to the
server’s factotum, respectively. After a series of messages authenticate the client
using the P9SK1 protocol, the client sends a Tattach request providing the
authentication file (fid 465) as a proof of identity. The server accepts the proof, and
the client manages to attach to the server. At this point, the authentication file is no
longer useful and is clunked by the client (because its afid was closed).

This was the idea. Both the client and the server managed to speak P9SK1 to
authenticate without having a single clue about that authentication protocol. They
just arranged for their factotums to speak the protocol, on their behalf.
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14.6. Identity changes
At this point, despite our efforts, we could ask the question: is the server secure?
In this case, semfs does not listen to requests in the network, and authenticates
clients. That seems secure enough. However, there is an important common sense
rule in security, called the least privilege principle. This rule says that a program
should have no more rights than needed to perform its job. The semfs file server
serves semaphores. But a bug in the program might make it access files or do any
other weird thing. Attackers might exploit this.

What we can do is to put the server in a sandbox, and remove any privileges
that the user who starts it might have. This can be done by changing our user to
none, which can always be done for a process by writing none to /dev/user.
Also, we can rebuild the process name space from scratch, for the new user name,
using newns, provided by the auth library. This function may be called to become
the user none.

void
becomenone(void)
{

int fd;

fd = open("#c/user", OWRITE);
if (fd < 0)

sysfatal("#c/user: %r");
if (write(fd, "none", 4) < 0)

sysfatal("can’t become none");
close(fd);
newns("none", nil);

}

The second parameter to newns names a namespace file, which is
/lib/namespace by default. After modifying our asemfs file server to call
becomenone early in fstattach, we can see the effect.

; 8.asemfs -s sem
; ps | grep asemfs
nemo 1410 0:00 0:00 204K Pread 8.asemfs
; mount -c /srv/sem /mnt/sem
; ps | grep asemfs
none 1410 0:00 0:00 240K Pread 8.asemfs

The first command started 8.asemfs, asking it to post at /srv/sem a file
descriptor to mount its file tree. As you can see, at this point the process is owned
by the user who started the server, i.e., nemo. The server may potentially access
any resource this user could access. However, after mounting it, ps reports that
the process is entitled to user none. It no longer can access files using nemo as its
identity. This limits the damage the server can do, due to any bug. Furthermore,
reading /proc/1410/ns would report that this process now has a clean names-
pace, built from the scratch for the user none. Any resource obtained by nemo,
by mounting file servers into its namespace, is now unaccessible for this process.

We could go even further by calling rfork(RFNOMNT) near the end of
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becomenone. This prevents the process from mounting any other resource into
its namespace. It will be confined for life, with almost no privilege.

In general, for a server, calling a function like becomenone would be done
early in main, before servicing requests from the network. In our case, we cannot
do this in the main function, because the process that has to belong to none is the
one implementing the file server. This process is started by
threadpostmountsrv, and therefore we must arrange for such a process (and
not the parent) to call becomenone. We placed the call in fstattach, because
the server is not likely to do any damage before a client can mount it.

Becoming the user none was an identity change. In general, this is the only
identity change made by most programs. In CPU servers it is usual for processes
that listen for network requests, like HTTP servers, to run as none.

Sometimes, it may be necessary to become a different user, and not just
none. Consider again CPU servers. Running on them, there are other server pro-
cesses that must execute commands on behalf of a user. For example, the processes
listening for remote command execution requests must execute commands on
behalf of a remote user.

There is one interesting thing to learn here. Executing new processes for a
remote user can be done perfectly by a server process without changing its user id.
After authenticating a client, a server may just spawn a child process to execute a
command for the remote user. But this works as long as the process for the remote
user does not try to use resources outside the CPU server. As soon as it tries, for
example, to mount a file server, it would need to authenticate and identify itself
using the client user id, and not the user id for the server that provides remote exe-
cution in the CPU server. Of course, in practice, a process for a remote user is very
likely to access resources outside the CPU server and therefore requires some
means to change its user id.

And there is an even more interesting thing to see now. When you connect to
a CPU server to execute a command on it, the name space from your terminal is
exported to the server process that runs the command in the CPU server. We saw
this earlier. The name space is exported using the connection to the CPU server,
after authentication has been performed. As a result, the process started for you in
the CPU server does not require to change its ownership to use any of the files re-
exported from your terminal for it. Is has all of them in its name space. Of course,
mounting something while running in a CPU server is a different thing, and
requires an identity change as you now know.

Because speaking for others (as a result of changing the user identity) is
potentially very dangerous. The authentication server takes precautions to allow
only certain users to speak for others within its authentication domain. The file
/lib/ndb/auth lists which users may speak for which others. Usually, CPU
servers are started by fake users whose sole purpose is to boot such servers. Such
users are usually the only ones allowed to speak for other users, to prevent a user
impersonating as another.

A notable example of a tool that requires identity changes is auth/cron.
This command executes commands periodically, as mandated by each user, on a
CPU server chosen by each user. Each user has a file /cron/$user/cron that
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lists periodic commands. For example, this is the cron file for nemo.
; cat /cron/nemo/cron
#m h dm m dw host
0 0 * * * whale chmod +t /mail/box/nemo/spam
0 0 * * * aquamar /usr/web/cursos/mkcursos

Each line describes a periodic job. It contains the times when to execute it, using
fields to select which minute, hour, day of month, month, and day of week. In this
case, both jobs are executed at midnight. The first job is to be executed at the CPU
server whale, and the second one is to be executed at the CPU server aquamar.
Each job is described by the command found last in each line.

The point is that for commands like cron and cpu to work, it is necessary to
change the identity of the processes that run in the CPU server on behalf of a user.
As you know, initially, all processes in the CPU server are entitled to the machine
owner (but for perhaps a few that decided to switch to the user none). However,
some of these processes might want to change the user id.

This can be done by using the cap(3) device. This device provides
capabilities to change ownership. A capability is just a key that allows a process to
do something. In this case, a capability may be used to convince the kernel to
change the user id for a process.

As you know, the host owner is very powerful within the local machine. A
process running on the name of the host owner may permit any other process in the
machine to change its user identity by means of the files /dev/caphash and
/dev/capuse provided by cap.

The idea is as follows. When a user authenticates to a server, the factotum for
the server process, if running on the name of the host owner, may help the server to
change its identity to that of the user who authenticated. After a successful authen-
tication, the function auth_proxy returns an AuthInfo structure with authenti-
cation information for the user. This happens also for a server process, when it uses
auth_proxy (i.e., factotum) to authenticate the client. Besides the cuid and
suid fields, with the user ids for the client and the server, an AuthInfo contains
a cap field with some data that is a capability for changing the user id to that of
the user authenticated.

What happens is that cap(3) trusts factotum, because it runs on the name
of the host owner. Besides returning the AuthInfo to the user, factotum used
the cap device to ask the kernel to allow any process holding the data in
Authinfo.cap to change its id to the user who authenticated. It did so by writ-
ing a hash of the capability to /dev/caphash. Later, our server process may
write to /dev/capuse the capability in Authinfo.cap, and change its iden-
tity.

The function auth_chuid, from the auth library, takes care of using the
capability in AuthInfo for changing the user id. Also, as an extra precaution, it
builds a new name space according to the name space file supplied, or
/lib/namespace if none is given. The following code might be used by a
server program to authenticate a client and then changing its user id to continue
execution on the user’s name.
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int fd; // file descriptor to the client process
AuthInfo*ai;

...
ai = auth_proxy(fd, getkey, keyspec);
if (ai == nil)

sysfatal("authentication failed");
auth_chuid(ai, nil);
auth_freeAI(ai);

This should be done by the process servicing the client. In some cases, the process
handling the client is the initial process for the server, if the server is started by
listen. That is because this program spawns one server process for each client.
In other cases, this has to be done after creating a child process in the server pro-
gram just to serve a connection to a client.

One program that uses auth_chuid is auth/login. It can be used to
simulate a user login at a terminal. The program prompts for a user name and a
password, and then changes the user identity to that of the new user, adjusting also
the name space and the conventional environment variables. We use it now to
become the user elf.

; cat /mnt/factotum/ctl
key proto=p9sk1 dom=dat.escet.urjc.es user=nemo !password?
; auth/login elf
Password:
% cat /mnt/factotum/ctl
key proto=p9sk1 dom=dat.escet.urjc.es user=elf !password?
% cat /dev/user
elf%
% cat /dev/hostowner
nemo%
control-d
;

Initially, the factotum used contains just the key for nemo, to authenticate with
Plan 9 servers in dat.escet.urjc.es. After running auth/login, we
obtain a new shell. This one is running with the user id elf, and not nemo. As
you see, the program started a new factotum for the new shell, which was given a
key for using Plan 9 servers as the user elf.

A program might do the same by calling the function auth_login, which
does just this. It uses code like the following one.

/* authenticate */
ai = auth_userpasswd(user, pass);
if(ai == nil || ai->cap == nil)

sysfatal("login incorrect");

/* change uid */
auth_chuid(ai, "/lib/namespace");

First, it calls the library function auth_userpasswd to authenticate a user given
its user name and its secret. Then, auth_chuid is used to become the new user.
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14.7. Accounts and keys
We are near the end of the discussion about security tools provided by the operat-
ing system, but we did not show how can the authentication server know which
users there are, and which secrets can be used to authenticate them. Furthermore,
we still need to know how the initial password for a user is established, and how
can a user change it.

Secrets, that is, keys, are not are maintained by the authentication server pro-
cess. Instead, another server keeps them. All the keys for users are handled by a file
server, called keyfs.

The keys and other information about the user accounts are actually stored in
the file /adm/keys, stored in the file server. To avoid disclosure of the keys, the
file is encrypted using the secret of the host owner in the authentication server
machine. The program keyfs decrypts this file, and serves a file tree at
/mnt/keys that is the interface for authentication information used by other pro-
grams, including the authentication server authsrv.

For example, the directory /mnt/keys/nemo contains information about
the account for the user nemo. In particular, /mnt/keys/nemo/key is the key
for such user. That is how the authentication server can access the secret for nemo
to know if a remote user is indeed nemo or not. All the operations to create,
remove, enable, and disable user accounts are done through this file system. Creat-
ing another directory under /mnt/keys would create another user entry in
/adm/keys. And so on.

In any case, it is not usual to use the file interface directly for handing user
accounts. Instead, commands listed in auth(8) provide a more convenient interface.
For example, a new user account is created using likeauth/changeuser,

; auth/changeuser nemo
...

This command is executed in the authentication server. It prompts for the secret for
the new user (which should be only known to that user, and therefore is typed by
him or her), along with some administrative information. For example, the program
asks when should the account expire, how can the user be reached by email, etc.

The account created is just a key along with a new user name, that will be
kept encrypted in /adm/keys. But this does not allow the new user to use any
file servers! Each file server maintains its own list of users, as you saw. Accounts
in the authentication servers are just for authentication purposes.

Sometime later, a user might decide to change the secret used for authentica-
tion. This is done with the passwd command, which talks directly to the authenti-
cation server to change the secret for the user. This server updates the key using the
/mnt/keys/$user/key file for the user.

Because of what we said, you might think that it is necessary for an adminis-
trator to come near each authentication server to type the password for the host
owner. Otherwise, how could keyfs decrypt /adm/keys? And the same might
apply to file servers and CPU servers. They need the secret of the host owner to
authenticate themselves.



- 456 -

This is not the case. CPU servers and file servers keep the authentication
domain, the user id of the host owner, and its secret in non-volatile RAM or
nvram. Here, nvram is just an abstraction, usually implemented using a partition
called nvram in the hard disk. When a server machine is installed, it is supplied
with the information needed to authenticate. The program auth/wrkey prompts
for such information and stores it in the nvram. From that point on, the machine
can boot unattended. This is very convenient, specially when considering that CPU
servers tend to reboot by themselves when they loose the connection to the file
server.

There is another place where keys are kept. The nvram for the server
machines would suffice, because each user knows the relevant password and can
perfectly type it to the factotum used when needed. However, users tend to have
so many keys these days that it would be a burden for the user to have to type all of
them whenever they are needed.

The program secstore provides, so called, single sign on to the system. A
single sign on facility is one that allows a user to give just one password (to sign on
just once). After that, the user may just access any of the services he is authorized
to use without providing any other secret.

The secstore is a highly secure file server (it uses strong encryption algo-
rithms) that may store files for each user. The storage used by the secstore is
encrypted using the host owner key. Besides, to prevent the host owner from
accessing the secure files for a user, the files stored are encrypted with the user key
before sending them to the secstore.

The most popular use for secstore is keeping a file with all the keys for a
user, using the format expected by factotum. When a user has an account in the
secstore file server, factotum prompts the user for the secret used to access
such store. Then, it retrieves a file named factotum from the secure store for the
user that is supposed to contain all the user keys. Because all the keys are now
known to factotum, the user is no longer bothered to supply secrets.

14.8. What now?
Before concluding, it seemed necessary to note that there are many other tools for
security in Plan 9, like in most other systems. Not to talk about tools for cryptogra-
phy, which are the building blocks for security protocols and therefore, also avail-
able in the system.

For example, it is important in a distributed system to encrypt the connections
between processes running at different machines so that causal users tapping on the
network do not see the data exchanged in clear.

While using Plan 9, the commands provided by the system try to make sure
that the system remains secure. For example, passwd may be run only on a termi-
nal, to change the password. Running it on a CPU server would mean that the char-
acters might be sent in clear from the terminal to the CPU server. These days, con-
nections to CPU servers are usually encrypted, but historically this was an issue
and passwd refused to run at a CPU server.
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The AuthInfo structure contains two fields, nsecret and secret with a
shared secret provided from the authentication server to both the client and the
server. This shared secret could be used to encrypt and secure the communication
channel, before exchanging data between the client and the server process. We did
not show how to do this, but that is why you have manual pages, which contain
examples.

The tls(3) devices provides transparent encryption for network connections.
It was not discussed here. But it is important to exchange data with servers or
clients requiring TLS to secure their connections.

Libraries functions, like those described in encrypt(2), provide facilities to
encrypt and decrypt data. These ones in particular use the DES encryption algo-
rithm.

You have come a long way. It is likely that you have found many different
and new concepts while reading this book. What remains is to practice, and use
them. Hopefully, now that you understand what an operating system is, and how
its abstractions, calls, and commands help you use the machine, you will not be
scared of reading the reference manual that is usually contained along with each
operating system. Good luck.

Problems
1 Use Plan 9 to do things you know how to do with other systems.
2 Optimize answers to the previous question
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flag -s, 261
silent, 261

group, 23
environment, 186
environment process, 181
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child process, 187
execution, 35, 99

indexing, list, 213
information

authentication, 444
network connection, 168

inheritance, 125
init, 203
initdraw, 359
initialization

disk, 391
graphics, 359
keyboard, 371
mouse, 355

initializer, array, 219
initkeyboard, 371
initmouse, 355
inner expression, 239
input

and output redirection, 126
base, 216
focus, 383
keyboard, 371
mouse, 352
record, 259
redirection, 121

standard, 66'67, 120, 122
inquiry, 387
insensitive, case, 247
install, format, 356
install, mk, 428
installation, stand-alone, 391
instruction

atomic, 274
order, 275

instruction, tas, 278
integrity, 433
Intel, 26
interface, file, 59, 212
interleaving, 272
internet

probe, 223
protocol, 160

interpreted program, 114
interpreter, 114

command, 31
interrupt, 138, 274

hardware, 32
process, 139
program, 349
software, 30

interrupt note, 138, 141, 184, 252,
263, 380
intfork.c, 101
into, logging, 5
invocation syntax, command, 47
I/O, 65

buffered, 87, 90, 328
redirection, 119
thread, 328
user, 345

IP, 160
ip/ping, 166, 223
iredir.c, 122
is a file, everything, 59

K
Ken Thompson, 27, 350
kernel, 1, 30, 55, 188, 311, 436

compilation, 227
key, 455

adding, 447
escape, 347
reading, 446

key, 440
keyboard, 350

initialization, 371
input, 371
library, 371

Keyboardctl, 372
keyboardthread, 375



keyfs, 455
keys, 440

arrow, 347
kfs, 391
kill

broken process, 128
process, 140

kill, 61, 256
killing a process, 61

L
label, window, 360, 382
language

arithmetic, 216
C, 26
programming, 211

laptop computer, 433
layout

automatic, 384
screen, 384

lc, see ls
lc, 84
$LD, 425
leak, memory, 430
leak, 430
least privilege principle, 451
leaving the system, 7
length

file, 80
line, 94
variable, 213

letter, greek, 350
lib9p, 401

memory allocation, 410
libc.h, 27, 80
/lib/namespace, 205, 240, 451
/lib/ndb/auth, 452
libraries, 1
library, 26, 159

9P, 401
C, 80
function, 29
keyboard, 371
mouse, 354
thread, 311

library
auth, 442
plumb, 153
window, 381

line
command, 6, 31, 50, 114, 119, 136, 225,

229
directory, 161, 172, 359
discipline, 347
end of, 237

fields, 253
length, 94
new, 71
number, 246
read, 94
start of, 237

line-feed character, 21
lines

print, 231
unique, 245

linker, 37
list

access control, 23
concatenation, 213
directory, 84
empty, 215
file, 84
indexing, 213
null, 215
process, 119

list AWK script, 259
list2grades rc script, 264
list2usr, 260
listen, 175
listen, 172, 175

command, 177
listen1, 178
listen.c, 173
lists, access control, 437
lists, rc, 212
load

machine, 119
system, 149

loaded program, 37
loader, 26, 39

program, 38
loading

on demand, 41
program, 97

Local, 193
local

address, 168
disk, 391
storage, 433

local file, 162
localtime, 338
Lock, 277
lock, 275, 277

contention, 293
queueing, 283
resource, 277
spin, 283

lock, 277
lock.c, 277
locks, read/write, 291
logging into, 5



logical
and, 225
or, 226

login, 5
login, 454
loging out, 5, 7
logout, 5, 7
lookman, 12, 216
loop, server, 403
loop, rc, 220
lp, 62
lr, 244
lrusers, 245
ls, 13, 80, 84

flag -d, 19
flag -l, 37
flag -m, 19
flag -s, 14

lsdot.c, 82
lstk acid command, 58
luck, good, 275

M
#m device driver, 352
machine

load, 119
owner, 434
services, 177
stand-alone, 433
start script, 178
virtual, 2

machines, 433
MAFTER mount flag, 201
magic, 3
mail, 159

server, 178
mail, 132, 147, 226
main, 42, 58, 98
main/active, 193
make, 422
making calls, 166
malicious person, 433
malloc, 41, 81, 430
man, 11
manager, resource, 3
manual, 11

page, 153
search, 216

mask, 361'362
match

context, 239
string, 222, 224
sub-expression, 239

match.c, 241
matching, 84

text, 237
maximum, 257
MBEFORE mount flag, 201
MCREATE mount flag, 201
meaning

of, data, 23
of program, 272

measurement, performance, 229
mem file, process, 60
memory

image, 38
leak, 430
private, 441
process, 54, 99
segment, 41, 57, 61
segment, virtual, 181
shared, 271, 402
usage, 256
virtual, 39, 41, 54

memory allocation, lib9p, 410
menu, rio, 7, 383
message

attribute, plumb, 154
attributes, plumb, 153
delimiters, 130, 162
delivering, 151
dump, 449
handler, 9P, 403
plumb, 151
reader, 286
receive, plumb, 154
size, 394
tag, 394
type, 393

messages, 9P, 393
metadata, 79
meta-protocol, 445
meta-rule, 426
mk, 422

install, 428
predefined variables, 426
rules, 423
targets, 423
variables, 424

mkdir, 18
mkfile, 422, 430
mkone, 427
/mnt/plumb file system, 151
/mnt/sem, 401
/mnt/term, 206
/mnt/wsys, 380
mode

cooked, 346'347
file, 80
graphics, 357
hold, 347



octal, 25
open, 68
privileged, 3, 30
raw, 347
scroll, 384
text, 357

mode, AEXEC access, 110
modification

time, 419
time, file, 80
user id, 81

$monitor, 358
monitor, 299, 356
mount

authentication, 201
file server, 395
file system, 189
point, 190, 196, 199
specifier, 193, 200
table, 189'190
union, 198

mount flag
MAFTER, 201
MBEFORE, 201
MCREATE, 201
MREPL, 201

mount, 189, 200, 438
mounted file, 190
Mouse, 355
mouse

button, 7
button-1, 354, 370
button2, 354
button-3, 151
coordinate, 353
device, 352
event, 353
event channel, 355
event processing, 365
initialization, 355
input, 352
library, 354
position, 353

Mousectl, 355
mousethread, 365
Move, 7
move

file, 18
files, 233

MREPL mount flag, 201
MS Word viewer, 152
mtime, 80
MT-Safe, 340
multiple reader, 291
multiplexing

console, 379

resource, 3
multiprogramming, 55
multiway

branch, 224
communication, 332

mutex, 306, 420
mutual exclusion, 276, 278, 306
mv, 18

N
name

file, 16, 68, 80, 85, 181, 187
patterns, file, 84
process, 53
program, 107
resolution, 187'188
service, 188
service, 162, 164, 171
space, 181, 187'188, 200
space, new, 202
space, standard, 205
system, 52, 203
thread, 315
translation, 164
user, 5, 51, 203, 436
window, 363

names, # file, 197
namespace, new, 451
namespace file, 240
ndata, 153
ndb, 164
ndb/cs, 165
ndb/csquery, 165
/n/dump, 86
negation, 224
/net file system, 159
NetConnInfo, 168
netecho.c, 174
/net/ipifc, 160
netmkaddr, 167
netstat, 165, 172

flag -n, 165
network

address, 159, 162, 164
computer, 159
connection, 159'160, 166, 188
connection information, 168
database, 164
device, 159
echo server, 174
format, 79, 82
port, 160
port creation, 171
protocol, 164
services, 159, 177



status, 165
network

ctl file, 161
data file, 161

New, 7
new

account, 455
fid, 397
line, 71
name space, 202
namespace, 451
process, 182
user, 437, 455
window, 7, 380

newline, 346
new-line character, 21
newns, 202, 451
newuser, 6
next AWK command, 259
nm, 28

flag -n, 39
no attach, 205
none, 451

become, 452
non-linear pipe, 137, 245
noswap, 441
not, if, 222
note

group, 182, 184
handler, 139, 141
handler, shell, 252
post, 138
process group, 181

note
handler, rc, 263
hangup, 139, 252, 263
interrupt, 138, 141, 184, 252,

263, 380
note file, process, 139, 141
notepg file, process, 139, 141
noterfork.c, 184
notes, 138, 343
/NOTICE, 71
nread.c, 76
ns, 192

file, process, 192
null

list, 215
pointer, 61
variable, 215

number
line, 246
port, 160, 164
version, 286

NVRAM, 456
nvram, 456

nwname, 397

O
$O, 425
object file, 28
$objtype, 427
octal

mode, 25
permissions, 81

of
control, flow, 55
file, end, 22, 131
identity, proof, 437

ofcall, 406
offset, 20, 71

file, 70, 72
shared, 105

OFILES, 427
on

demand, loading, 41
single sign, 456

onefork.c, 98
only, append, 75
open

account, 5
exclusive, 352
mode, 68
plumb port, 154

open
flag, ORCLOSE, 141
mode, OREAD, 69
mode, OTRUNC, 74
mode, OWRITE, 69, 72

open, 68, 72, 77, 87, 187
openfont, 378
operating system, 1
operation

alternative channel, 339
permitted, 437
simultaneous channel, 339

operator
compare, 222
concatenation, 213

option, 14
argument, 45
command, 12

option
--, 43
-e, hoc, 216

optional string, 238
or, logical, 226
ORCLOSE open flag, 141
order, instruction, 275
OREAD open mode, 69
origin, screen, 362



OTRUNC open mode, 74
out, loging, 5, 7
output

base, 216
discard, 126
formatted, 65
redirection, 119
redirection, standard, 124
standard, 66'67
verbose, 234

overlap, window, 383
owner

file, 80
machine, 434

ownership, file, 23
OWRITE open mode, 69, 72

P
#p device driver, 60, 192, 197
P format, 356
page, manual, 153
page, 152, 430
paging, demand, 41
pair, address, 230
panel process, 286
panels, airport, 285, 328
parallel, 37

execution, 36
parent process, 98, 103, 181
parsing, 227
partition, 388
partition

9fat, 389
fs, 389
plan9, 389

partitioning
automatic, 390
disk, 390

partitions, 388
adding, 389
deleting, 389

passwd, 455
password, 433, 441
$path, 51
path, 16, 68, 181, 187

device, 197
relative, 43

path, 62
Qid, 396
variable, 202

paths
absolute, 17
relative, 17

pattern, 225
AWK, 254

character range, 86
pattern

*, 84
?, 86
BEGIN, 257
END, 257

patterns, file name, 84
patterns file, 247
pc.c, 305
performance, 89

measurement, 229
permission check, 437
permissions, 80

change, 25
directory, 24
file, 23
in octal, 25
octal, 81

permitted operation, 437
person, malicious, 433
Pfmt, 356
picture element, 353
$pid, 53, 69
PID, 316
pid, 53

shell, 53
window, 381

pid.c, 54
Pike, Rob, 8, 350
ping, 166, 223
ping-pong, 323
pipe, 126'127, 130, 138, 146, 151, 160,
217, 300

bidirectional, 129
broken, 131
closed, 132
conditional, 225
creation, 134
device, 265
end of, 265
non-linear, 137, 245
to child process, 132

pipe command, acme, 136
pipe, 129
pipe.c, 129
pipeto, 134
pipeto.c, 132
pixel, 353
plan9 partition, 389
plumb

message, 151
message attribute, 154
message attributes, 153
message receive, 154
port open, 154

plumb port, edit, 152



plumb, 155
command, 153
library, 153

Plumbattr, 154
plumber port, 151
plumber

rules, 151
send, 151

plumber, 151, 195
plumbing, 151, 195
plumbing, acme, 151
plumbing, 152, 196
Plumbmsg, 154
plumbopen, 154
plumbrecv, 154
plumbsend, 156
plumbsendtext, 156
Point, 356
point

mount, 190, 196, 199
program entry, 42
to type, 10

pointer, null, 61
pollb.c, 149
poll.c, 148
polling, 147, 150, 296
pong.c, 324
port, 151

announce, 171
creation, network, 171
network, 160
number, 160, 164
plumber, 151

position, mouse, 353
post

file descriptor, 144, 189, 393
note, 138

postmountsrv, 402
PostScript viewer, 152
practice, programming, 48
pragma, 27
Pread, 54
predefined variables, mk, 426
preemptive scheduling, 55
prep, 389
$prereq, 426
principle, least privilege, 451
print

current directory, 18
lines, 231

print, 29, 49
channel, 340

privacy, 23
private memory, 441
privilege principle, least, 451
privileged mode, 3, 30

probe, internet, 223
/proc file system, 60, 139, 192
proccreate, 330
procedure call, remote, 31
process, 35, 54, 59, 97, 311

alarm, 142
average, 258
birth, 42
blocked, 131
child, 98, 101, 103, 115, 181, 186
communication, 128, 321
creation, 97'98, 181, 330
death, 42
environment, 97
execution, 272
frozen, 136
group, 50, 138'139
group, environment, 181
group, file descriptor, 181
group, note, 181
id, 53
independent child, 187
interrupt, 139
kill, 140
kill broken, 128
list, 119
memory, 54, 99
name, 53
new, 182
panel, 286
parent, 98, 103, 181
resource, 181
runaway, 102
server, 402, 434
stack, 282, 312
state, 53'54, 149
structure, 332
synchronization, 289
termination, 47, 99, 187, 290
time, 111

process
ctl file, 61
fd file, 69
mem file, 60
note file, 139, 141
notepg file, 139, 141
ns file, 192

processes, concurrent, 37
processing

data, 211
data, 258
mouse event, 365
read, 416
stat, 419
walk, 421
write, 417



procexec, 341
procexecl, 341
producer/consumer, 299, 308
profile, 179
profile, 6, 152
program

arguments, 42
AWK, 259
boot, 178
C, 26
checking, 429
counter, 36
entry point, 42
execution, 32, 97, 106, 341
file server, 193, 387
interpreted, 114
interrupt, 349
loaded, 37
loader, 38
loading, 97
meaning of, 272
name, 107
running, 35
shell, 212
source, 57
symbols, 28
termination, 305, 329
text, 28

programming
concurrent, 106, 271
language, 211
practice, 48

prompt, 5
proof of identity, 437
protection, debug, 441
protocol, 160

authentication, 438
file system, 188, 392
internet, 160
network, 164
telnet, 163
transport, 160

providing services, 171
ps, 54, 60, 119, 128
pseudo-parallel execution, 37
Pt, 369
Put, 10
put, 300
putenv, 53
pwd, 18, 51
Pwrite, 131
PXE, 5

Q
qcnt.c, 285
QID, 81
Qid

, 396
conventions, 410
file, 395

Qid
path, 396
type, 396

qids, 395
QLock, 284, 290
qlock, 284, 290, 300
QTAPPEND, 396
QTAUTH, 447
QTDIR, 396, 413
QTEXCL, 396
quantum, 55
queue, 412
queueing lock, 283
qunlock, 284
quoting, 52, 87, 217

R
r, 49
rabbits.c, 103
race condition, 106, 271
ram file system, 267
ramfs, 267, 393
range

character, 237
pattern, character, 86

Rattach, 393
Rauth, 438
raw mode, 347
raw.c, 348
rawoff, 347
rawon, 347, 371
rc, 6

conditionals, 224
flag -c, 134
in pipes, 128
lists, 212
loop, 220
note handler, 263
script, 215
script, 9fs, 190, 193
script, args, 222
script, cdcopy, 267
script, copy, 186
script, d2h, 217
script, file, 224
script, h2d, 219
script, list2grades, 264
script, when, 226, 228



using, 211
/rc/bin/service, 177
rcecho rc script, 116
rcinr.c, 276
Rclunk, 397
read

console, 346
directory, 81
line, 94
processing, 416
robust file, 142
simultaneous, 345
string, 94

read, 66, 68, 87, 90, 92, 142
command, 113

readbuf, 416
read.c, 67'68
reader

console, 286
message, 286
multiple, 291

reading, key, 446
readn, 142
reads, directory, 417
readstr, 416
read/write locks, 291
Ready, 149, 311
ready, 55
receive, plumb message, 154
receiving, call, 173
record

input, 259
skip, 259

Rect, 369
Rectangle, 361
rectangle

height, 370
width, 370

rectangle, screen, 361
recv, 321, 356
recvp, 327
recvul, 327
redirection

append, 125
file descriptor, 119
input, 121
input and output, 126
I/O, 119
output, 119
standard error, 222
standard output, 124

Ref, 411
reference counting, 411
Refnone, 366
regcomp, 241
regexp, 241

region, critical, 276, 278
registers, 99
registry, 144
regression testing, 429
regular expression, 152, 237

compiler, 241
relative

path, 43
paths, 17

relying, 442
remote

command execution, 179
debugging, 208
execution, 206
file system, 206
procedure call, 31

remote file, 162
remove

duplicates, 245
file, 14, 414

remove, 78
rename, file, 18, 233
Rendez, 297, 300
rendez.c, 295
rendezvous, 326

group, 182
tag, 294

rendezvous, 182, 293
repl, 369
replace string, 229
replicated image, 369
representation, text, 350
Reprog, 241
Req, 406
request, 9P, 392, 406
Rerror, 394
rerrstr, 49
Resize, 7
resize

event, 363, 366
window, 362'363, 384

resize.c, 365
resizethread, 366
resolution

name, 187'188
screen, 357

resource
fork, 181
lock, 277
manager, 3
multiplexing, 3
process, 181
shared, 104, 106
sharing, 115, 181, 186

respond, 406
Return, 5



return, carriage, 163
return value, fork, 98
reverse sort, 256
RFENVG rfork flag, 186
RFFDG rfork flag, 182
RFMEM rfork flag, 271
RFNOMNT rfork flag, 205, 451
RFNOTEG rfork flag, 184
RFNOWAIT rfork flag, 187
rfork, 181, 194, 271, 281, 330

command, 186, 215
flag, RFENVG, 186
flag, RFFDG, 182
flag, RFMEM, 271
flag, RFNOMNT, 205, 451
flag, RFNOTEG, 184
flag, RFNOWAIT, 187
flag, RFPROC, 182

rforkls.c, 182
RFPROC rfork flag, 182
RFREND, 330
rincr.c, 271
rio, 6, 50, 62, 345, 378

commands, 7
file system, 204, 379
menu, 7, 383

RJ45, 159
rlock, 291
rm, 14, 18, 78, 86'87

flag -f, 15
flag -r, 78

rm.c, 78
Rob Pike, 8, 350
robust file read, 142
robustreadn, 142
role, 445
ROM, 357
/root, 203
root

device, 196
directory, 16, 181
directory, file server, 395

Ropen, 397
round trip time, 166
rpc file, 442
Rpt, 369
rsleep, 296
RTT, 166
rule, implicit, 426
rules, mk, 423
rules, plumber, 151
runaway process, 102
Rune, 351
rune, 20, 350

conversion, 352
rune.c, 351

runetochar, 351
runlock, 291
runls.c, 98
Running, 149
running, 55

program, 35
Rversion, 393
rwakeup, 296
rwakeupall, 296
Rwalk, 397
Rwrite, 397
rx, 179

S
#S device driver, 208, 387
#s device driver, 144
sandbox, 205
sandboxing, 204, 451
scheduler, 55
scheduling, 53, 55, 272, 311

preemptive, 55
screen, 353, 359

blank, 358
image, 62
layout, 384
origin, 362
resolution, 357
size, 353, 384

screen, 359, 382
rectangle, 361

script, 114
argument, 213
arguments, 116, 223
diagnostics, 249
machine start, 178
shell, 114, 116, 186, 215

script, rc, 215
scroll mode, 384
sdC0, 208
search

manual, 216
text, 152, 237
word, 127

searching, 242
file, 85

secret, 455
shared, 437

secstore, 456
secure

server, 447
store, 456
system, 433

security, 433
9P, 436

sed, 229, 237



command, compound, 232
flag -e, 230
flag -n, 231

seek, 70, 73'74, 388
seekhello.c, 74
segment

bss, 41, 61
data, 41, 61
memory, 41, 57, 61
stack, 41, 61
text, 41, 61
virtual memory, 181

Sem, 409
semaphore, 306, 399

file system, 399
tickets, 306
value, 306

semfs, 400
send, 321

plumber, 151
sendp, 327
sendul, 327
seq, 136, 221, 257
sequences, 221
sequential

access, 70
server, 175

server, 171, 392
9P, 392
authentication, 455
concurrent, 175
connection, 165
CPU, 206, 452
echo, 145
file, 4, 30, 73, 144, 146, 188, 265, 387
loop, 403
mail, 178
network echo, 174
process, 402, 434
program, file, 193
secure, 447
sequential, 175
threaded, 175
uid, 446

servers
authentication, 439
CPU, 178

service, 162
name, 162, 164, 171
name, 188
TCP echo, 177

service, 179
services

machine, 177
network, 159, 177
providing, 171

set, character, 237
setting up DMA, 387
shared

buffer, 299
counter, 271, 312
memory, 271, 402
offset, 105
resource, 104, 106
secret, 437

sharing, resource, 115, 181, 186
shell, 6, 31

comment, 116
comment character, 26
function, 243
note handler, 252
pid, 53
program, 212
script, 114, 116, 186, 215
variable, 84, 212

sic.c, 47
sig, 12, 65
sigalrm, 252
sighup, 252
sigint, 252
sign on, single, 456
signal, 306
silent grep, 261
simultaneous

channel operation, 339
read, 345

single
sign on, 456
writer, 291

single-user, 434
size

file, 14
message, 394
screen, 353, 384

skip record, 259
slash, 16, 181
sleep, 296
sleep, 70, 113, 141, 147, 151, 226, 274,
314
sleep.c, 70
slider

drawing, 367
graphic, 362

slider.c, 375
smprint, 340
snapshot, file system, 193
Snarf, 10
software interrupt, 30
sort

reverse, 256
text, 242

sort, 242



flag -n, 242
flag -r, 242
flag -u, 245

sorting, 242
source, program, 57
space

disk, 75
name, 181, 187'188, 200
new name, 202
virtual address, 39

spam, 247
speak for, 452
specifier

attach, 193, 379
mount, 193, 200

spin lock, 283
split, string, 227
src, 153
src, 57
/srv, 144, 162, 207, 379
Srv, 401
srv, 162, 189
/srv file system, 144
srv.c, 166
srvecho.c, 145
srvfs, 207
/srv/ram, 393
stack

dump, 282
dump, thread, 321
process, 282, 312
segment, 41, 61
thread, 312

stamp, time, 353
stand-alone

installation, 391
machine, 433

standard
error, 66'67, 124
error redirection, 222
includes, 27
input, 66'67, 120, 122
name space, 205
output, 66'67
output redirection, 124

start
of line, 237
of text, 237
script, machine, 178

starvation, 282, 297, 318
stat processing, 419
stat, 81
stat.c, 81
state

blocked, 274
process, 53'54, 149

stateless, 4
statement, AWK, 253
statistics, system, 149
stats, 149, 380
$status, 47, 51
status

exit, 47, 51, 57, 110, 221
network, 165

$stem, 426
stk acid command, 58
storage

device, 387
device driver, 208
disk, 387
local, 433

store
backing, 366
secure, 456

stream, 353
editor, 229

string, 212
draw, 377
error, 49, 78, 111
match, 222, 224
optional, 238
read, 94
replace, 229
split, 227
substitute, 232

string, 377
stringsize, 378
strip, 37
structure, process, 332
student account, 258
sub-expression match, 239
subshell, 186
substitute string, 232
substitution

command, 136, 221
global, 232

switch
context, 55, 274, 311, 314
thread, 314

switch, 224
symbol, 57

table, 37
text, 350
undefined, 29

symbols, program, 28
synchronization, 271, 293

process, 289
thread, 325

synchronize, 274, 278
synchronous communication, 138
syntax, command invocation, 47
sysfatal, 49



/sys/include, 153
$sysname, 52, 203
sysname, 62
system

call, 29, 31, 55, 97
call error, 48, 78, 108
distributed, 159
dump, file, 193
file, 197, 265
load, 149
mount, file, 189
name, 52, 203
operating, 1
protocol, file, 188
secure, 433
snapshot, file, 193
statistics, 149
time, 89
window, 4, 7, 32, 138, 204, 345, 378

system
/env file, 61
/fd file, 121, 203
/mnt/plumb file, 151
/proc file, 60, 139, 192
rio file, 204

T
t+, 136, 240
t-, 240
Tab, 22
tab wdith, 22
table

file descriptor, 66, 181
mount, 189'190
symbol, 37

tag, 10
message, 394
rendezvous, 294

Tags, 394
take.c, 26
tape, 89

archive, 234
tar, 234
tarfs, 265
TARG, 427
$target, 426
targets, mk, 423
tas instruction, 278
Tattach, 393, 437
Tauth, 438, 447
Tclunk, 397
tcnt.c, 318
TCP echo service, 177
tcp7, 177
Tcreate, 412

telnet protocol, 163
telnet, 163

flag -r, 163
temporary

file, 251
files, 53

terminal, 4, 30, 378, 434
file system, 206

termination
process, 47, 99, 187, 290
program, 305, 329

termination, Biobuf, 92
termrc, 178, 202
test, 225

flag -d, 225
flag -e, 225
flag -older, 227

test-and-set, 278
testing, 429

regression, 429
texec.c, 342
text

address, 230
delete, 230
drawing, 377
editing, 228
end of, 237
files, 211
indent, 240
matching, 237
mode, 357
program, 28
representation, 350
search, 152, 237
segment, 41, 61
sort, 242
start of, 237
symbol, 350
window, 62, 382

the system
entering, 3
leaving, 7

thello.c, 74
things, building, 422
thinking, wishful, 400
Thompson, Ken, 27, 350
thread, 311

argument, 317
debugging, 319
id, 315
identifier, 315
I/O, 328
library, 311
name, 315
stack, 312
stack dump, 321



switch, 314
synchronization, 325
timer, 337

threadcreate, 312, 330
threaded server, 175
threadexits, 313
threadexitsall, 313
threadgetname, 319
threadid, 315
threadmain, 312
threadname, 366
threadnotify, 343
threadpostmountsrv, 403
threads function, acid, 319
threadsetname, 319
threadwaitchan, 341
ticker.c, 289
tickets, 439

semaphore, 306
tid.c, 316
tiling, 361
time, 59

access, 419
CPU, 149
elapsed, 89
file access, 80
file modification, 80
modification, 419
of day, 338
process, 111
round trip, 166
stamp, 353
system, 89
user, 89

time, 60, 89, 338
command, 229

timeout, 142
timer, 144

thread, 337
tincr.c, 312
TLS, 457
to

device, device, 88
type, click, 10
type, point, 10

tools, 211
top window, 383
Topen, 397, 437
touch, 14
toupperrune, 351
tr, 218

flag -d, 218
translation

coordinate, 362
name, 164

transport protocol, 160

trap, 31, 57
tree, file, 16, 181, 187'188
Tremove, 415
trinc.c, 314
troff, 127, 428
truncate, 74, 77, 124
Tstat, 399
Tversion, 393
Twalk, 397
Twrite, 397
Twstat, 399
type, 153

CPU, 203
message, 393

type, Qid, 396
types, abstract data, 2
typesetting, 127
typing a command, 13

U
UDP, 160
u.h, 27
uid, 436

change, 453
client, 446
server, 446

uid, 80
unbuffered channel, 324
undefined symbol, 29
Unicode, 350
unicode code, 351
union, 199, 204

mount, 198
uniq, 245
unique

identifier, 395
lines, 245

unit, drive, 388
UNIX, 4, 21, 26, 130, 159, 178, 211, 340,
422
unlock, 277
unmount, 192
up, 409
up, 306
updates, concurrent, 275
usage

disk, 233, 242
memory, 256

usage, 47
$user, 51, 203
user, 433

data, 413
id, 80
id, modification, 81
I/O, 345



name, 5, 51, 203, 436
new, 437, 455
time, 89

user, 62
users, 433
using files, 13
using rc, 211
UTF-8, 350
UTF8, 20
UTFmax, 351

V
#v device driver, 357
value, semaphore, 306
variable

environment, 59, 61, 84, 108, 181, 186,
212

expansion, 84
global, 38, 271
length, 213
null, 215
shell, 84, 212

variable
cpu, 178
path, 202

variables
AWK, 253
condition, 299
Environment, 181
environment, 50

variables, mk, 424
vector, argument, 107
verbose output, 234
version

file, 396
number, 286

VGA, 356
vga device, 357
vga, 357
vgactl, 357
$vgasize, 358, 384
viewer

document, 152
MS Word, 152
PostScript, 152

virtual
address space, 39
console, 349
machine, 2
memory, 39, 41, 54
memory segment, 181

virus, 101

W
wait for

child process, 134
children, 110

wait, 110, 185, 229, 306, 341
waiting, busy, 55, 147, 283
Waitmsg, 110

channel, 341
waitpid, 113, 134, 136
wakeup, 296
walk, 187'189, 397

processing, 421
wastebasket, 78
wc, 120, 127

flag -w, 127
wdir, 153
wdith, tab, 22
web, 159
werrstr, 50, 111
whale, 162
whatis, 244
when rc script, 226, 228
who last modified, file, 19
width, rectangle, 370
window, 50, 68, 195, 378

acquiring, 363
alternate, 380
bottom, 383
coordinates, 361
creation, 379
current, 383
hide, 383
image, 62
label, 360, 382
name, 363
new, 7, 380
overlap, 383
pid, 381
resize, 362'363, 384
system, 4, 7, 32, 138, 204, 345, 378
text, 62, 382
top, 383

window, 381
command, 204
library, 381

wishful thinking, 400
with holes, file, 75
wlock, 291
wname, 397
word

count, 120, 127
search, 127

working directory, see current directory
working directory, 181
write



boundaries, 130, 162
CD, 233
console, 345
processing, 417

write, 30, 65, 68, 72, 75, 87, 104
atomic, 106

write.c, 65
writer, single, 291
wrkey, 456
WRLock, 291
wstat, 84
$wsys, 379
wunlock, 291

X
xd, 20, 72'73
XML, 212

Y
yield, 315

Z
zipfs, 265
ZP, 362, 377





Post-Script

This book was formatted using the following command:

@{
eval ‘{doctype title.ms}
eval ‘{doctype preface.ms}
mktoc toc | troff -ms
labels $CHAPTERS | bib | pic| tbl | eqn | slant | troff -ms -mpictures
idx/mkindex index | troff -ms
eval ‘{doctype epilog.ms}

} | lp -d stdout > 9intro.ps

Many of the tools involved are shell scripts. Most of the tools come from UNIX and Plan 9.
Other tools were adapted, and a few were written just for this book.


