
6 � Network communication

6.1. Network connections

Plan 9 is a distributed system. But even if it was as its ancestor, UNIX, a centralized system
that was designed just for one machine, it is very important to be able to use the network to pro-
vide services for other machines and to use services from others. All the operating systems that
are in use today provide abstractions similar to the one whose interface is described here, to let
you use the network.

This chapter may be hard to understand if you have not attended a computer networks
course, but we try to do our best to explain how to use the network in any case. All the programs
you have used to browse the Web, exchange electronic mail, etc. are implemented using inter-
faces that are similar to the ones described below (they use to be more complex, though).

In general, things work as for any other service provided by the operating system. First, the
system provides some abstraction for using the network. As we will be seeing, Plan 9 uses also
the file abstraction as its primary interface for using networks. Of course, files used to represent a
network have a special meaning, i.e., behave in a particular way, but they are still used like files.
Other operating systems use a whole bunch of extra system calls instead, to provide the interface
for their network abstraction. Nevertheless, the ideas, and the programatic interface that we will
see, are very similar.

Upon such system-provided abstraction, library functions may provide a more convenient
interface for the application programmer. And of course, in the end, there many programs already
installed in the system that, using these libraries, provide some services for the user.

A network in Plan 9 is a set of devices that provide the ability to talk with other machines
using some physical medium (e.g, some type of wire or the air for radio communication).

A network device in Plan 9 may be an actual piece of hardware, but it can also be a piece of
software used to speak some protocol. For example, most likely, your PC includes an ethernet
card. It uses an RJ45 connector to plug your computer to an Ethernet network (just some type of
cabling and conventions). The interface for the ethernet device in Plan 9 is just a file tree, most
likely found at/net/ether0

; lc /net/ether0
0 1 2 addr clone ifstats stats

Machines attached to the wire have addresses, used by the network hardware to identify dif-
ferent machines attached to the wire. Networks using wireless communication are similar, but use
the air as their�wire�. We can use the file interface provided by Plan 9 for our ethernet device to
find out which one is its address:

; cat /net/ether0/addr
000c292839fc;

As you imagine, this file is just an interface for using your ethernet device, in this case, for asking
for its address.

Once you have the hardware (e.g., the ethernet card) for exchanging messages with other
machines attached to the same medium (wiring or air), your machine and exchange bytes with
them. The problem remains of how to send messages to any machine in the Internet, even if it is
not attached to the same wire your machine is attached at. One protocol very important to the
Internet, IP (Internet Protocol), is provided in Plan 9 by a device driver called IP. This protocol is
called a network protocol because it gives an address to each machine in the Internet, its IP-
address, and it knows how to reach any machine, given its address. The interface for the IP net-
work in Plan 9 is similar to the one we saw for Ethernet:

- 2 -

; lc /net/ipifc
0 1 clone stats

This is not yet enough for communicating with programs across the internet. Using IP, you
may talk to one machine (and IP cares about how to reach that machine through the many differ-
ent wires and machines you need to cross). But you need to be able to talk to oneprocess. This
is achived by using another protocol, built upon the network protocol. This kind of protocol
gives addresses for�mailboxes� within each machine, calledports. Therefore, an address for this
protocol is a combination of a machine address (used to reach that machine through the underly-
ing network protocol) and aport number.

In few words, the network protocol gives addresses for each machine and knows how to
exchange messages between machines. Today, you are going to use IP as your network protocol.
The transport protocol gives port numbers for processes to use, and knows how to deliver mes-
sages to a particular port at a particular machine. Think of the network address as the address for a
building, and the port number as the number for a mailbox in the building.

Some transport protocols provide an abstraction similar to the postal service. They deliver
individual messages that may arrive out of order and may even get lost in the way. Each such
message is called adatagram, which is the abstraction provided by this kind of transport. In the
Internet, the datagram service is usually UDP. The IP device driver in Plan 9 provides an interface
for using UDP, similar to the ones we saw for other protocols and network devices:

; lc /net/udp
0 1 clone stats

Other transports use the ability to send individual messages to build a more convenient
abstraction for maintaining dialogs, similar to a pipe. This abstraction is called aconnection. It
is similar to a pipe, but differs from it in that it can go from one port at one machine to another
port at a different machine in the network. This type of communication is similar to a phone call.
Each end has an address (a phone number), they must establish a connection (dial a number,
pickup the phone), then they can speak to each other, and finally, they hangup. The analogy can-
not be pushed too far, for example, a connection may be established if both ends call each other,
which would not be feasible when making a phone call. But you get the idea. In the Internet, the
most popular protocol that provides connections is TCP, it provides them using IP as the underly-
ing transport protocol (hence the name TCP/IP for this suite of protocols). The IP device driver
in Plan 9 provides the interface for using TCP. It has the now familiar file interface for using a
network in Plan 9:

; lc /net/tcp
0 11 14 17 2 22 stats
1 12 15 18 20 23 26
10 13 16 19 21 24 clone

Each network is represented in Plan 9 as a directory, that has at least oneclone file, and
several other directories, calledline directories. Opening theclone file reserves a new connec-
tion, and creates a directory that represents the interface for the newline used to establish a con-
nection. Line directories are named with a number, and kept within the directory for the network.
For example,/net/tcp/14 is the interface for our TCP connection number 14. It doesn’t need
to be a fully established connection, it may be in the process of getting established. But in any
case, the directory represents what can be a particular, individual, TCP connection. The program
that opensclone may read this file to discover the number assigned to the line directory just
created.

As shown in figure 6.1, for each connection Plan 9 provides at least actl file and adata
file. For example,

; lc /net/tcp/14
ctl data err listen local remote status

- 3 -

/net/tcp

clone 0

ctl data

1

ctl data

2

ctl data

...

n

ctl data

Figure 6.1: The file interface for a network (protocol) in Plan 9.

The file ctl can be used to perform control operations to the connection. For example, to
hangup (break) this connection, we can just

; echo hangup >/net/tcp/14

Thedata file is used to send and receive bytes through the connection. It can be used very
much like one end of a pipe. Writing to the data file delivers bytes through the connection that
are to be received at the other end. Reading from the data file retrieves bytes sent from the pro-
cess writing at the other end. Just like a pipe. Only that, if a transport provides datagrams, each
write to adata file will send a different datagram, and it may arrive out of order or get lost.

There are more differences. An important one is that many transport protocols, including
TCP, do not respect message boundaries. This means that data sent through a connection by sev-
eral writes may be received at the other end by a single read. If your program has to receive mes-
sages from a network connection, it must know how much to read for each message. A single call
to read may return either part of a message or perhaps more than one message.

In the line directory for our TCP connection, thelocal file has the local address (includ-
ing the port number) for the connection. This identifies the local end of thepipe. The remote
file serves the same purpose for the other end of the connection.

A network address in Plan 9 is a string that specifies the network (e.g., the protocol) to use,
the machine address, and the port number. For example,tcp!193.147.81.86!564 is a net-
work address that says: Using the TCP protocol, the machine address is 193.147.81.86, and the
port number is 564. Fortunately, in most cases, we may use names as well. For example, the
addresstcp!whale!9fs is equivalent to the previous one, but uses the machine name,
whale , and the service name,9fs , instead of the raw addresses understood by the network soft-
ware. Often, ports are used by programs to provide services to other programs in the network. As
a result, a port name is also known as aservice name.

From the shell, it is very easy to create connections. Thesrv program dials a network
address and, once it has established a connection to that address, posts a file descriptor for the
connection at/srv . This descriptor comes from opening thedata file in the directory for the
connection, but you may even forget this. Therefore,

; srv tcp!whale!9fs
post...

posts at/srv/tcp!whale!9fs a file descriptor that corresponds to an open network connec-
tion from this machine to the port named9fs at the machine known aswhale , in the network
speaking the protocoltcp .

To connect to the web server for LSUB, we may just

; srv tcp!lsub.org!http
post...

Here,tcp is just a shorthand for/net/tcp , which is the real (file) name for such network

- 4 -

in Plan 9. Now we can see that/srv/tcp!lsub.org!http is indeed a connection to the
web server atlsub.org by writing an HTTP request to this file and reading the server’s reply.

; echo GET /index.html >>/srv/tcp!lsub.org!http Get the main web page
; cat /srv/tcp!lsub.org!http
<html>
<head>
<title> Laboratorio de Sistemas --- ls </title>
<link rev="made" href="mailto:ls@plan9.escet.urjc.es">
</head>
<body BGCOLOR=white>
<h1> ls --- Laboratorio de Sistemas [ubicuos] del GSyC </h1>
...and more output omitted here...
;

If we try to do the same again, it will not work, because the web server hangs up the connection
after attending a request:

; echo GET / >>/srv/tcp!lsub.org!http
; cat /srv/tcp!lsub.org!http
cat: error reading /srv/tcp!lsub.org!http: Hangup
; echo GET / >>/srv/tcp!lsub.org!http
echo: write error: Hangup

And, as you can see, it takes some time for our machine to notice. The first write seemed to
succeed. Our machine was trying to send the stringGET... to the web server, but it couldn’t really
send it. The connection was closed and declared as hung up. Any further attempt to use it will be
futile. What remains is to remove the file from/srv .

; rm /srv/tcp!lsub.org!http

There is a very popular command namedtelnet , that can be used to connect to servers in
the Internet and talk to them. It uses the, so called,telnet protocol. But in few words, it dials an
address, and thereafter it sends text from your console to the remote process at the other end of
the connection, and writes to your console the text received. For example, this command con-
nects to the e-mail server running atlsub.org , and we use our console to ask this server for
help:

; telnet -r tcp!lsub.org!smtp
connected to tcp!lsub.org!smtp on /net/tcp/52
220 lsub.org SMTP
help
250 Read rfc821 and stop wasting my time
Del

We gave the option-r to telnet , to ask it not to printcarriage-returncharacters (its pro-
tocol uses the same convention for new lines used by DOS). When telnet connected to the
address we gave, it printed a diagnostic message to let us know, and entered a loop to send the
text we type, and to print the text it receives from the other end. Our mail server wrote a saluta-
tion through the connection (the line starting220 ...), and then we typedhelp , which put our
mail server into a bad mood. We interrupted this program by hittingDeletein the terminal, and
the connection was terminated whentelnet died. A somewhat abrupt termination.

It is interesting to open serveral windows, and connect from all of them to the same address.
Try it. Do you see howeachtelnet is using its own connection? Or, to put it another way, all
the connections have thesameaddress for the other end of the connection, yet they aredifferent
connections.

To name a connection, it does not suffice to name the address for one of its ends. Youmust
give both addresses (for the two ends) to identify a connection. It is the four identifiers local
address, local port, remote address, and remote port, what makes a connection unique.

- 5 -

It is very important to understand this clearly. For example, in ourtelnet example, you
cannot know which connection are you talking about just by saing�The connection to
tcp!lsub.org!smtp �. There can be a dozen of such connections, all different, that happen to
reach that particular address. They would differ in the addresses for their other extremes.

6.2. Names
Above, we have been using names for machines and services (ports). However, these names

must be translated into addresses that the network software could understand. For example, the
machine namewhale must be translated to an IP address like193.147.81.86 . The network
protocol (IP in Internet) knows nothing about names. It knows about machine addresses. In the
same way, the transport protocol TCP knows nothing about the service with namehttp . But it
does know how to reach the port number80 , which is the one that corresponds to the HTTP ser-
vice.

Translating names into addresses (including machine and service names) is done in a differ-
ent way for each kind of network. For example, the Internet has a name service known as DNS
(domain name service) that knows how to translate from a name likewhale.lsub.org into an
IP address and viceversa. Besides, for some machines and services there may be names that exist
only within a particular organization. Your local system administrator may have assigned names
to machines that work only from within your department or laboratory. In any case, all the infor-
mation about names, addresses, and how to reach the Internet DNS is kept in a (textual) database
known as thenetwork database, or just ndb . For example, this is the entry in our
/lib/ndb/local file for whale :

dom=whale.lsub.org ip=193.147.81.86 sys=whale

When we usedwhale in the examples above, that name was translated into
193.147.81.86 and that was the address used. Also, this is the entry in our
/lib/ndb/common file for the service known as9fs when using the TCP protocol:

tcp=9fs port=564

When we used the service name9fs , this name was translated into the port number564 , that
was the port number used. As a result, the addresstcp!whale!9fs was translated into
tcp!193.147.81.86!564 and this was used instead. Names are for humans, but (sadly) the
actual network software prefers to use addresses.

All this is encapsulated into a program that does the translation by itself, relieving from the
burden to all other programs. This program is known as theconnection server, or cs . We can
query the connection server to know which address will indeed be used when we write a particu-
lar network address. The programcsquery does this. It is collected at/bin/ndb along with
other programs that operate with the network data base.

; ndb/csquery
> tcp!whale!9fs
/net/tcp/clone 193.147.81.86!564
>

The�>� sign is the prompt fromcsquery , it suggests that we can type an address asking for its
translation. As you can see, the connection server replied by giving the path for theclone file
that can be used to create a new TCP connection, and the address as understood by TCP that cor-
responds to the one we typed. No one else has to care about which particular network, address, or
port number corresponds to a network address.

All the information regarding the connections in use at your machine can be obtained by
looking at the files below/net . Nevertheless, the programnetstat provides a convenient
way for obtaining statistics about what is happening with the network. For example, this is what
is happening now at my system:

- 6 -

; netstat
tcp 0 nemo Listen audio 0 ::
tcp 1 Established 5757 9fs whale.lsub.org
tcp 2 nemo Established 5765 ads whale.lsub.org
tcp 3 nemo Established 5759 9fs whale.lsub.org
tcp 4 nemo Listen what 0 ::
tcp 5 nemo Established 5761 ads whale.lsub.org
tcp 6 nemo Established 5766 ads whale.lsub.org
tcp 7 nemo Established 5763 9fs whale.lsub.org
tcp 8 nemo Listen kbd 0 ::
...many other lines of output for tcp...
udp 0 network Closed 0 0 ::
udp 1 network Closed 0 0 ::

Each line of output shows information for a particular line directory. For example, the TCP con-
nection number 1 (i.e., that in/net/tcp/1) is established. Therefore, it is probably being used
to exchange data. The local end for the connection is at port 5757, and the remote end for the con-
nection is the port for service9fs at the machine with namewhale.lsug.org . This is a con-
nection used by the local machine to access the 9P file server atwhale . It is being used to
access our main file server from the terminal where I executednetstat . The states for a con-
nection may depend on the particular protocol, and we do not discuss them here.

In some cases, there may be problems to reach the name service for the Internet (our DNS
server), and it is very useful to callnetstat with the -n flag, which makes the program print
just the addresses, without translating them into (more readable) names. For example,

; netstat -n
tcp 0 nemo Listen 11004 0 ::
tcp 1 Established 5757 564 193.147.71.86
tcp 2 nemo Established 5765 11010 193.147.71.86
tcp 3 nemo Established 5759 564 193.147.71.86
tcp 4 nemo Listen 11003 0 ::
tcp 5 nemo Established 5761 11010 193.147.71.86
...many other lines of output

It is very instructive to compare the time it takes for this program to complete with, and without
using-n .

To add yet another tool to your network survival kit, theip/ping program sends particu-
lar messages that behave like probes to a machine (to an IP address, which is for a network inter-
face found at a machine, indeed), and prints one line for each probe reporting what happen. It is
very useful because it lets you know if a particular machine seems to be alive. If it replies to a
probe, the machine is alive, no doubt. If the machine does not reply to any of the probes, it might
be either dead, or disconnected from the network. Or perhaps, it is your machine the one discon-
nected. If only some probes get replied, you are likely to have bad connectivity (your network is
loosing too many packets). Here comes an example.

; ip/ping lsub.org
sending 32 64 byte messages 1000 ms apart
0: rtt 152 µs, avg rtt 152 µs, ttl = 255
1: rtt 151 µs, avg rtt 151 µs, ttl = 255
2: rtt 149 µs, avg rtt 150 µs, ttl = 255
...

In the output,rtt is for round trip time, the time for getting in touch and receiving the reply.

- 7 -

6.3. Making calls
For using the network from a C program, there is a simple library that provides a more con-

venient interface that the one provided by the file system from the network device. For example,
this is our simplified version forsrv . It dials a given network address to establish a connection
and posts a file descriptor for the open connection at/srv .

srv.c_____
#include <u.h>

#include <libc.h>

void

main(int argc, char* argv[])

{

int fd, srvfd;

char* addr;

char fname[128];

if (argc != 2){

fprint(2, "usage: %s netaddr\n", argv[0]);

exits("usage");

}

addr = netmkaddr(argv[1], "tcp", "9fs");

fd = dial(addr, nil, nil, nil);

if (fd < 0)

sysfatal("dial: %s: %r", addr);

seprint(fname, fname+sizeof(fname), "/srv/%s", argv[1]);

srvfd = create(fname, OWRITE, 0664);

if (srvfd < 0)

sysfatal("can’t post %s: %r", fname);

if (fprint(srvfd, "%d", fd) < 0)

sysfatal("can’t post file descriptor: %r");

close(srvfd);

close(fd);

exits(nil);

}

Using argv[1] verbatim as the network address to dial, would make the program work
only when given a complete address. Including the network name and the service name. Like, for
example,

; 8.srv tcp!whale!9fs

Instead, the program callsnetmkaddr which is a standard Plan 9 function that may take an
address with just the machine name, or perhaps the network name and the machine name. This
function completes the address using default values for the network and the service, and returns a
full address ready to use. We maketcp the default value for the network (protocol) and9fs as
the default value for the service name. Therefore, the program admits any of the following, with
the same effect that the previous invocation:

- 8 -

; 8.srv tcp!whale
; 8.srv whale

The actual work is done bydial . This function dials the given address and returns an
open file descriptor for the connection’s data file. A write to this descriptor sends bytes through
the connection, and a read can be used to receive bytes from it. The function is used in the same
way for both datagram protocols and connection-oriented protocols. The connection will be open
as long as the file descriptor returned remains open.

; sig dial
int dial(char *addr, char *local, char *dir, int *cfdp)

The parameterlocal permits specifying the local address (for network protocols that
allow doing so). In most cases, givennil suffices, and the network will choose a suitable
(unused) local port for the connection. Whendir is not nil, it is used by the function as a buffer
to copy the path for the line directory representing the connection. The buffer must be at least 40
bytes long. We changed the previous program to do print the path for the line directory used for
the connection:

fd = dial(addr, nil, dir, nil);
if (fd < 0)

sysfatal("dial: %s: %r", addr);
print("dial: %s0, dir);

And this is what it said:

; 8.srv tcp!whale!9fs
dial: /net/tcp/24

The last parameter for dial,cfdp points to an integer which, when passing a non-nil value,
can be used to obtain an open file descriptor for the connection. In this case, the caller is responsi-
ble for clossing this descriptor when appropriate. This can be used to write to the control file
requests to tune properties for the connection, but is usually unnecessary.

There is a lot of useful information that we may obtain about a connection by calling
getnetconninfo . This function returns nothing that could not be obtained by reading files
from files in the line directory of the connection, but it is a very nice wrap that makes things more
convenient. In general, this is most useful in servers, to obtain information to try to identify the
other end of the connection, (i.e., the client). However, because it is much easier to make a call
than it is to receive one, we prefer to show this functionality here instead.

Parameters fornetconninfo are the path for a line directory, and one of the descriptors
for either a control or a data file in the directory. When nil is given as a path, the function uses the
file descriptor to locate the directory, and read all the information to be returned to the caller. The
function allocates memory for aNetConnInfo structure, fills it with relevant data, and returns
a pointer to it

typedef struct NetConnInfo NetConnInfo;
struct NetConnInfo
{

char *dir; /* connection directory */
char *root; /* network root */
char *spec; /* binding spec */
char *lsys; /* local system */
char *lserv; /* local service */
char *rsys; /* remote system */
char *rserv; /* remote service */
char *laddr; /* local address */
char *raddr; /* remote address */

};

- 9 -

This structure must be released by a call tofreenetconninfo once it is no longer necessary.
As an example, this program dials the address given as a parameter, and prints all the information
returned bygetnetconninfo . Its output for dialingtcp!whale!9fs follows.

conninfo.c__________
#include <u.h>

#include <libc.h>

void

main(int argc, char* argv[])

{

int fd, srvfd;

char* addr;

NetConnInfo*i;

if (argc != 2){

fprint(2, "usage: %s netaddr\n", argv[0]);

exits("usage");

}

addr = netmkaddr(argv[1], "tcp", "9fs");

fd = dial(addr, nil, nil, nil);

if (fd < 0)

sysfatal("dial: %s: %r", addr);

i = getnetconninfo(nil, fd);

if (i == nil)

sysfatal("cannot get info: %r");

print("dir:\t%s\n", i->dir);

print("root:\t%s\n", i->root);

print("spec:\t%s\n", i->spec);

print("lsys:\t%s\n", i->lsys);

print("lserv:\t%s\n", i->lserv);

print("rsys:\t%s\n", i->rsys);

print("rserv:\t%s\n", i->rserv);

print("laddr:\t%s\n", i->laddr);

print("raddr:\t%s\n", i->raddr);

freenetconninfo(i);

close(fd);

exits(nil);

}

- 10 -

; 8.out tcp!whale!9fs
dir: /net/tcp/46
root: /net
spec: #I0
lsys: 212.128.4.124
lserv: 6672
rsys: 193.147.71.86
rserv: 564
laddr: tcp!212.128.4.124!6672
raddr: tcp!193.147.71.86!564

The line directory for this connection was/net/tcp/46 , which belongs to the network
interface at/net . This connection was using#I0 , which is the first IP interface for the
machine. The remaining output should be easy to understand, given the declaration of the struc-
ture above, and the example output shown.

6.4. Providing services
We know how to connect to processes in the network that may be providing a particular ser-

vice. However, it remains to be seen how to provide a service. In what follows, we are going to
implement an echo server. A client for this program would be another process connecting to this
service to obtain anecho service. This program provides the service (i.e., provides the echo) and
is therefore aserver. The echo service, surprisingly enough, consists on doing echo of what a
client writes. When the echo program reads something, writes it back through the same connec-
tion, like a proper echo.

The first thing needed is toannounce the new service to the system. Think about it. To
allow other processes toconnectto our process, it needs a port for itself. This is like allocating a
�mailbox� in the �building� to be able to receive mail. The functionannounce receives a net-
work address and announces it as an existing place where others may send messages. For exam-
ple,

announce("tcp!alboran!echo", dir);

would allocate the TCP port for the service namedecho and the machine namedalboran .
This makes sense only when executed in that machine, because the port being created is an
abstraction for getting in touch with a local process. To say it in another way, the address given to
announce must be a local address. It is a better idea to use

announce("tcp!*!echo", dir);

instead. The special machine name�* � refers to any local address for our machine. This call
reserves the portecho for any interface used by our machine (not just for the one named
alboran). Besides, this call toannouce now works when used at any machine, no matter its
name.

This function returns an open file descriptor to thectl file of the line directory used to
announce the port. The second parameter is updated with the path for the directory. Note that
this line directory is an artifact which, although has the same interface, isnot a connection. It is
used just to maintain the reservation for the port and to prepare for receiving incomming calls.
When the port obtained by a call toannounce is no longer necessary, we can close the file
descriptor for thectl file that it returns, and the port will be released.

This program announces the port 8899, and sleeps forever to let us inspect what happen.

- 11 -

ann.c______
#include <u.h>

#include <libc.h>

void

main(int argc, char* argv[])

{

int cfd;

char dir[40];

cfd = announce("tcp!*!9988", dir);

if (cfd < 0)

sysfatal("announce: %r");

print("announced in %s\n", dir);

for(;;)

sleep(1000);

}

We may now do this

; 8.ann &
; announced in /net/tcp/52 We typed return here, to let you see
; netstat | grep 9988
tcp 52 nemo Listen 9988 0 ::

According tonetstat , the TCP port number 9988 is listening for incomming calls. Note how
the path printed by our program corresponds to the TCP line number 52.

Now let’s try to run the program again, without killing the previous process.

; 8.out
announce: announce writing /net/tcp: address in use

It fails! Of course, there is another process already using the TCP port number 9988. This new
process cannot announce that port number again. It will be able to do so only when nobody else is
using it:

; kill 8.ann|rc
; 8.ann &
; announced in /net/tcp/52

Our program must now await for an incomming call, and accept it, before it could exchange
data with the process at the other end of the connection. To wait for the next call, you may use
listen . This name is perhaps misleading because, as you could see, afterannounce , the TCP
line is already listening for calls. Listen needs to know the line where it must wait for the call, and
therefore it receives the directory for a previous announce.

Now comes an important point, to leave the line listening while we are attending a call, calls
are attended at adifferentline than the one used to listen for them. This is like an automatic trans-
fer of a call to another phone line, to leave the original line undisturbed and ready for a next call.
So, afterlisten has received a call, it obtains a new line directory for the call and returns it. In
particular, it returns an open file descriptor for itsctl file and its path.

We have modified our program to wait for a single call. This is the result.

- 12 -

listen.c_______
#include <u.h>

#include <libc.h>

void

main(int argc, char* argv[])

{

int cfd, lfd;

char adir[40];

char dir[40];

cfd = announce("tcp!*!9988", adir);

if (cfd < 0)

sysfatal("announce: %r");

print("announced in %s (cfd=%d)\n", adir, cfd);

lfd = listen(adir, dir);

print("attending call in %s (lfd=%d)\n", dir, lfd);

for(;;)

sleep(1000); // let us see

}

When we run it, it waits until a call is received:

; 8.listen
announced in /net/tcp/52 (cfd=10)

At this point, we can open a new window and runtelnet to connect to this address

; telnet tcp!$sysname!9988
connected to tcp!alboran!9988 on /net/tcp/46

which makes our program receive the call:

attending call in /net/tcp/54 (lfd=11)

You can see how there are two lines used. The line number 52 is still listening, and the call
received is placed at line 54, where we might accept it. By the way, the line number 46 is the
other end of the connection.

Now we can do something useful. If we accept the call by callingaccept , this function
will provide an open file descriptor for thedata file for the connection, and we can do our echo
business.

- 13 -

netecho.c_________
#include <u.h>

#include <libc.h>

void

main(int argc, char* argv[])

{

int cfd, lfd, dfd;

long nr;

char adir[40];

char ldir[40];

char buf[1024];

cfd = announce("tcp!*!9988", adir);

if (cfd < 0)

sysfatal("announce: %r");

print("announced tcp!*!9988 in %s\n", adir);

for(;;){

lfd = listen(adir, ldir);

if (lfd < 0)

sysfatal("listen: %r");

dfd = accept(lfd, ldir);

if (dfd < 0)

sysfatal("can’t accept: %r");

close(lfd);

print("accepted call at %s\n", ldir);

for(;;){

nr = read(dfd, buf, sizeof buf);

if (nr <= 0)

break;

write(dfd, buf, nr);

}

print("terminated call at %s\n", ldir);

close(dfd);

}

}

If we do as before, and usetelnet to connect to our server and ask for a nice echo, we get
the echo back. After quittingtelnet , we can connect again to our server and it attends the new
call.

- 14 -

; telnet -r tcp!$sysname!9988
connected to tcp!alboran!9988 on /net/tcp/46
Hi there!
Hi there!
Del
; telnet -r tcp!$sysname!9988
connected to tcp!alboran!9988 on /net/tcp/54
Echo echo...
Echo echo...
Del
;

And this is what our server said in its standard output:

; 8.netecho
announced tcp!*!9988 in /net/tcp/52
accepted call at /net/tcp/54
terminated call at /net/tcp/54
accepted call at /net/tcp/55
terminated call at /net/tcp/55

The program is very simple. To announce our port, wait for call, and accept it, it has to call
just announce , listen , andaccept . At that point, you have an open file descriptor that
may be used as any other one. You just read and write as you please. When the other end of the
connection gets closed, a reader receives an EOF indication in the conventional way. This means
that connections are used like any other file. So, you already know how to use them.

Out program has one problem left to be addressed. When we connected to it usingtelnet ,
there was only one client at a time. For this program, when one client is connected and using the
echo, nobody else is attended. Other processes might connect, but they will be kept on hold wait-
ing for this process to calllisten andaccept. This is what is called asequential server,
because it attends one client after another. You can double check this by connecting from two
different widows. Only the first one will be echoing. The echo for the second to arrive will not be
done until you terminate the first client.

A sensible thing to do would be to fork a new process for each client that connects. The par-
ent process may be kept listening, waiting for a new client. When one arrives, a child may be
spawned to serve it. This is called aconcurrent server, because it attends multiple clients con-
currently. The resulting code is shown below.

There are some things to note. An important one is that, as you know, the child process has
a copy of all the file descriptors open in the parent, by the time of the fork. Also, the parent has
the descriptor open for the new call received after callinglisten , even though it is going to be
used just by the child process. We closelfd in the parent, andcfd in the child.

We might have leftcfd open in the child, because it would be closed when the child termi-
nates by callingexits , after having received an end of file indication for its connection. But in
any case, it should be clear that the descriptor is open in the child too.

Another important detail is that the child now callsexits after attending its connection,
because that was its only purpose in life. Because this process has (initially) all the open file
descriptors that the parent had, it may be a disaster if the child somehow terminates attending a
client and goes back to calllisten . Well, it would be disaster because it isnot what you expect
when you write the program.

- 15 -

cecho.c_______
#include <u.h>

#include <libc.h>

void

main(int argc, char* argv[])

{

int cfd, lfd, dfd;

long nr;

char adir[40];

char ldir[40];

char buf[1024];

cfd = announce("tcp!*!9988", adir);

if (cfd < 0)

sysfatal("announce: %r");

print("announced tcp!*!9988 in %s\n", adir);

for(;;){

lfd = listen(adir, ldir);

if (lfd < 0)

sysfatal("listen: %r");

switch(fork()){

case -1:

sysfatal("fork: %r");

case 0:

close(cfd);

dfd = accept(lfd, ldir);

if (dfd < 0)

sysfatal("can’t accept: %r");

close(lfd);

print("accepted call at %s\n", ldir);

for(;;){

nr = read(dfd, buf, sizeof buf);

if (nr <= 0)

break;

write(dfd, buf, nr);

}

print("terminated call at %s\n", ldir);

exits(nil);

default:

close(lfd);

}

}

}

- 16 -

6.5. System services
How some machines may provide services automatically. Which one is the program for the

tcp echo service? how does this work?

- 17 -

