
8 � Using the Shell

8.1. Programs are tools
In Plan 9, programs are tools that can be combined to perform very complex tasks. In most other
systems, the same applies, although it tends to be a little more complex. The idea is inherited
from UNIX, each program is meant to perform a single task, and perform it well.

But that does not prevent you to combine existing programs to do a wide variety of things.
In general, when there is a new job to be done, these are your options, listed from the easiest one
to the hardest one:

1 Find a program that does the job. It is utterly important to look at the manual before doing
anything. In many cases, there will be a program that does what we want to do. This also
applies when programming in C, there are many functions in the library that may greatly
simplify your programs.

2 Combine some programs to achieve the desired effect. This is where the shell gets rele-
vance. The shell is the programming language you use to combine the programs you have in
a simple way. Knowing how to use it may relieve you from your last resort.

3 The last resort is to write your own program for doing the task you are considering.
Although the libraries may prove invaluable as helpers, this requires much more time, spe-
cially for debugging and testing.

To be able to use shell effectively, it helps to follow conventions that may be useful for automat-
ing certain tasks by using simple shell programs. For example, writting each C function using the
style

void
func(...args...)
{
}

permits using this command line to find where functionfoo is defined:

; grep -n ’^foo\(’ *.c

By convention, we declared functions by writing their names at the beggining of a new line,
immediatelly followed by the argument list. As a result, we can askgrep to search for lines that
have a certain name at the beggining of line, followed by an open parenthesis. And that helps to
quickly locate where a function is defined.

The shell is very good for processing text files, and even more if the data has certain regu-
larities that you may exploit. The shell provides a full programming language where commands
are to be used as elementary statements, and data is handled in most cases as plain text.

In this chapter we will see how to use Rc as a programming language, but no one is going to
help you if you don’t help yourself in the first place. Machines love regular structures, so it is bet-
ter to try to do the same thing in the same way everywhere. If it can be done in a way that can
simplify your job, much better.

Plan 9 is a nice example of this is practice. Because all the resources are accessed using the
same interface (a file interface), all the programs that know how to do particular things to files
can be applied for all the resources in the system. If many different interfaces were used instead,
you would need many different tools for doing the same operation to the many different resources
you find in the computer.

This explains the popularity of XML and other similar data representations, which are
attempts to provide a common interface for operating on many different resources. But the idea is
just the same.

- 2 -

8.2. Lists
The shell includes lists as its primary data structure, as its only data structure, indeed. This data
type is there to make it easier for you to write shell programs. Because shell variables are just
environment variables, lists are stored as strings, the only value a environment variable may have.
This is the famous abc list:

; x=(a b c)
; echo $x
a b c

It is just syntax. It would be the same if we had typed any of the following:

; x=(a (b c))
; echo $x
a b c
; x=(((a) (b)) (c))
; echo $x
a b c

It does not matter how you nest the same values using multiple parenthesis. All of them will be
the same, namely, just(a b c) . What is the actual value of the environment variable forx?
We can see it.

; xd -c /env/x
0000000 a 00 b 00 c 00
0000006

Just the three strings,a, b, andc . Rc follows the C convention for terminating a string, and sepa-
rates all the values in the list with a null byte. This happens even for environment variables that
are a list of a single word.

; x=3
; xd -c /env/x
0000000 3 00
0000002

The implementation for the library functiongetenv replaces the null bytes with spaces, and that
is why agetenv for an Rc list would return the words in the list separated by white space. This
is not harmful for C, as a 0 would be because 0 is used to terminate a string in C. And it is what
you expect after using the variable in the shell.

The variable holding the arguments for the shell interpreting a shell script is also a list. The
only difference is that the shell initializes the environment variable for$* automatically, with the
list for the arguments supplied to it, most likely, by giving the arguments to a shell script.

Given a variable, we can know its length. For any variable, the shell defines another one to
report its length. For example,

; x=hola
; echo $#x
1
; x=(a b c)
; echo $#x
3

The first variable was a list with just one word in it. As a result, this is the way to print the num-
ber of arguments given to a shell script,

echo $#*

because that is the length of$* , which is a list with the arguments (stored as an environment vari-
able).

- 3 -

To access then-th element of a list, you can use$var(n) . However, to access then-th
argument in a shell script you are expected to use$n . An example for our popular abc list fol-
lows:

; echo $x(2)
b
; echo $x(1)
a

Lists permit doing funny things. For example, there is a concatenation operator that is best shown
by example.

; x=(a b c)
; y=(1 2 3)
echo $x^$y
a1 b2 c3

The ^ operator, used in this way, is useful to build expressions by building separate parts (e.g,
prefixes and suffixes), and then conbining them. For example, we could write a script to adjust
permissions that might set a variableops to decide if we should add or remove a permission, and
then a variableperms to list the involved permissions. Of course in this case it would be easier
to write the result by hand. But, if we want to generate each part separately, now we can:

; ops=(+ - +)
; perms=(r w x)
; echo $ops^$perms afile
+r -w +x afile

Note that concatenating two variables of length 1 (i.e., with a single word each) is a particular
case of what we have just seen. Because this is very common, the shell allows you to omit the^ ,
which is how you would do the same thing when using a UNIX shell. In the example below, con-
catenating both variables isexactlythe same than it would have been writinga1 instead.

; x=a
; y=1
; echo $x^$y
a1
; echo xy
a1
;

A powerful use for this operator is concatenating a list with another one that has a single element.
It saves a lot of typing. Several examples follow. We useecho in all of them to let you see the
outcome.

; files=(stack run cp)
; echo $files^.c
stack.c run.c cp.c
; echo $files^.h
stack.h run.h cp.h
; rm $files^.8
; echo (8 5)^.out
8.out 5.out
; rm (8 5)^.out

Another example. These two lines are equivalent:

; cp (/source/dir /dest/dir)^/a/very/long/path
; cp /source/dir/a/very/long/path /dest/dir/a/very/long/path

And of course, we can use variables here:

- 4 -

; src=/source/dir
; dst=/dest/dir
; cp ($src $dst)^/a/very/long/path

Concatenation of lists that do not have the same number of elements and do not distribute,
because none of them has a single element, is illegal in Rc. Contatenation of an empty list is also
forbidden, as a particular case of this rule.

; ops=(+ - +)
; perms=(w x)
; echo $ops^$perms
rc: mismatched list lengths in concatenation
; x=()
; echo (a b c)^$x
rc: null list in concatenation

In some cases it is useful to use the value of a variable as a single string, even if the variable con-
tains a list with several strings. This can be done by using a�" � before the variable name. Note
that this may be used to concatenate a variable that might be an empty list, because we translate
the variable contents to a single word, which happens to be empty.

; x=(a b c)
; echo $x^1
a1 b1 c1
; echo $"x^1
a b c1
; x=()
; echo (a b c)^$"x
a b c
;

There are two slightly different values that can be used to represent a null variable. One is the
empty string, and the other one is the empty list. Here they are, in that order.

; x=’’
; y=()
; echo $x

; echo $y

; xd -c /env/x
0000000 00
0000001
; xd -c /env/y
0000000
0000000
; echo $#x $#y
1 0

Both values yield a null string when used, yet they are different. An empty string is a list with
just the empty string. When expanded bygetenv in a C program, or by using$ in the shell, the
result is the empty string. However, its length is 1 because the list has one (empty) string. For an
empty list, the length is zero. In general, it is common to use the empty list as the nil value for
environment variables.

- 5 -

8.3. Simple things
We are now prepared to start doing useful things. To make a start, we want to write a couple

of shell scripts to convert from decimal to hexadecimal and vice-versa. We should start most
scripts with

rfork e

to avoid modifying the set of environment variables in the calling shell.

The first thing needed is a program to perform arithmetic calculations. The shell knows
nothingabout numbers, not to talk about arithmetic. The shell knows how to combine commands
together to do useful work. Therefore, we need a program to do arithmetic if we want to do arith-
metic with the shell. We may type numbers, but for shell, they would be just strings. Lists of
strings indeed. Let’s search for that program.

; lookman arithmetic expression
man 1 2c # 2c(1)
man 1 awk # awk(1)
man 1 bc # bc(1)
man 1 hoc # hoc(1)
man 1 test # test(1)
man 8 prep # prep(8)

There are several programs shown in this list that we might use to do arithmetic. In general,hoc
is a very powerful interactive floating point calculation language. It is very useful to compute
arbitrary expressions, either by supplying them through its standard input or by using its-e
option, which accepts as an argument an expression to evaluate.

; hoc -e ’2 + 2’
4
; echo 2 + 2 | hoc
4

Hoc can do very complex arithmetic. It is a full language, using a syntax similar to that of C. It
reads expressions, evaluates them, and prints the results. The program includes predefined vari-
ables for famous constants, with namesE, PI , PHI , etc., and you can define your own, using the
assignment. For example,

; hoc
r=3.2
PI * r^2
32.16990877276
control-d
;

defines a value for the radius of a circle, and computes the value for its area.

But to do the task we have at hand, it might be more appropriate another calculation pro-
gram, calledbc . This is program is also a language for doing arithmetic. The syntax is also simi-
lar to C, and it even allows to define functions (like Hoc). Like before, this tool accepts expres-
sions as the input. It evaluates them and prints the results. The nice thing about this program is
that it has a simple way of changing the numeric base used for input and output. Changing the
value for the variableobase changes the base used for output of numeric values. Changing the
value for the variableibase does the same for the input. It seems to be just the tool. Here is a
session converting some decimal numbers to hexadecimal.

- 6 -

; bc
obase=16
10
a
20
14
16
10

To print a decimal value in hexadecimal, we can writeobase=16 and the value as input forbc .
That would print the desired output. There are several ways of doing this. In any case, we must
send several statements as input forbc . One of them changes the output base, the other prints the
desired value. What we can do is to separate bothbc statements with a�; �, and useecho to
send them to the standard input ofbc .

; echo ’obase=16 ; 512’ | bc
200

We had to quote the whole command line forbc because there are at least two characters with
special meaning for Rc, and we want the string to be echoed verbatim. This can be packated in a
shell script as follows, concatenating$1 to the rest of the command forbc .

d2h____
#!/bin/rc

echo ’obase=16; ’$1 | bc

Although we might have inserted âbefore$1 , Rc is kind enough to insert one for free for us.
You will get used to this pretty quickly. We can now use the resulting script, after giving it exe-
cute permission.

; chmod +x d2h
; d2h 32
20

We might like to write each input line forbc using a separate line in the script, to improve read-
ability. The compoundbc statement that we have used may become hard to read if we need to
add more things to it. It would be nice to be able to use a differentecho for each different com-
mand sent tobc , and we can do so. However, because the output forbothechoes must be sent to
the standard input ofbc , we must group them. This is done in Rc by placing both commands
inside brackets. We must still quote the first command forbc , because the equal sign is special
for Rc. The resulting script can be used like the one above, but this one is easier to read.

#!/bin/rc
{ echo ’obase=16’

echo $1
} | bc

Here, the shell executes the twoecho es but handles the two of them as it they were just one
command, regarding the redirection of standard output. This grouping construct permits using
several commands wherever you may type a single command. For example,

; { sleep 3600 ; echo time to leave! } &
;

executesboth sleep andecho in the background. Each command will be executed one after
another, as expected. The result is that in one hour we will see a message in the console remind-
ing that we should be leaving.

How do we implemente a script, calledh2d , to do the opposite conversion? That is, to con-
vert from hexadecimal to decimal. We might do a similar thing.

- 7 -

#!/bin/rc
{ echo ’ibase=16’

echo $1
} | bc

But this has problems!

; h2d abc
syntax error on line 1, teletype
syntax error on line 1, teletype
0

The problem is thatbc expects hexadecimal digits fromA to F to be uppercase letters. Before
sending the input tobc , we would better convert our numbers to uppercase, just in case. There is
a program that may help. The programtr translates characters. It reads its input files (or stan-
dard input), performs its simple translations, and writes the result to the output. The program is
very useful for doing simple character transformations on the input, like replacing certain charac-
ters with other ones, or removing them. Some examples follow.

; echo x10+y20+z30 | tr x y
y10+y20+z30
; echo x10+y20+z30 | tr xy z
z10+z20+z30
; echo x10+y20+z30 | tr a-z A-Z
X10+Y20+Z30
; echo x10+y20+z30 | tr -d a-z
10+20+30

The first argument states which characters are to be translated, the second argument specifies to
which ones they must be translated. As you can see, you can asktr to translate several different
characters into a single one. When many characters are the source or the target for the translation,
and they are contiguous, a range may be specified by separating the initial and final character
with a dash. Under option-d , tr removes the characters from the input read, before copying the
data to the output. So, how would translate a dash to other character? Simple.

; echo a-b-c | tr - X
aXbXc

This may be a problem we need to translate some other character, becausetr would get con-
fussed thinking that the character is an option.

; echo a-b-c | tr -a XA
tr: bad option

But this can be fixed reversing the order for characters in the argument.

; echo a-b-c | tr a- AX
AXbXc

Now we can get back to ourh2d tool, and modify it to supply just uppercase hexadecimal digits
to bc .

h2d____
#!/bin/rc

{ echo ’ibase=16’

echo print $1 | tr a-f A-F

} | bc

The newh2d version works as we could expect, even when we use lower-case hexadecimal dig-
its.

- 8 -

; h2d abc
2748

Does it pay to writeh2d andd2h? Isn’t it a lot more convenient for you to use your desktop cal-
culator? For converting just one or two numbers, it might be. For converting a docen or more, it
is for sure it pays to write the script. The nice thing about having one program to do the work is
that we can now use the shell to automate things, and let the machine work for us.

8.4. Real programs
Our programsh2d andd2h are useful, for a casual use. To use them as building blocks for doing
more complex things, more work is needed. Imagine you need to declare an array in C, and ini-
tialize it, to use the array for translating small integers to their hexadecimal representation.

char* d2h[] = {
"0x00",
"0x11",
...
"0xff"

};

To obtain a printable string for a integeri in the range 0-255 you can use justd2h[i] . Would
you write that declaration by hand? No. The machine can do the work. What we need is a com-
mand that writes the first 256 values in hexadecimal, and adjust the output text a little bit before
copying it to your editor.

We could changed2h to accept more than one argument and do its work forall the num-
bers given as argument. Callingd2h with all the numbers from 0 to 255 would get us close to
obtaining an initializer for the array. But first things first. We need to iterate through all the com-
mand line arguments in our script. Rc includes afor construct that can be used for that. It takes a
variable name and a list, and executes the command in the body once for each word in the list. On
each pass, the variable takes the value of the corresponding word. This is an example, usingx as
the variable and(a b c) as the list.

; for (x in a b c)
;; echo $x
a
b
c

Note how the prompt changed after typing thefor line, Rc wanted more input: The command
for the body. To use more than one command, we may use the brackets as before, to group them.
First attempt:

; for (num in 10 20 30) {
;; echo ’obase=16’
;; echo $num
;; }
obase=16
10
obase=16
20
obase=16
30
;

It is useful to try the commands before using them, to see what really happens. Thefor loop
gave three passes, as expected. Each time,$num kept the value for the corresponding string in the
list: 10 , 20 , and30 . Remember, these are strings! The shell does not know they mean numbers

- 9 -

to you. Settingobase in each pass seems to be a waste. We will do it just once, before iterating
through the numbers. The numbers are taken from the arguments given to the script, which are
kept at$* .

d2h____
#!/bin/rc

rfork e

{

echo ’obase=16’

for (num in $*)

echo $num

} | bc

Now we have a better program. It can be used as follows.

; d2h 10 20 40
a
14
28

We still have the problem of supplying the whole argument list, a total of 256 numbers. It hap-
pens that another program,seq , knows how to write numbers in sequence. It can do much more.
It knows how to print numbers obtained by iterating between two numbers, using a certain step.

; seq 5 from 1 to 5
1
2
3
4
5

; seq 1 2 10 from 1 to 10 step 2
1
3
5
7
9
;

What we need is to be able to use the output ofseq as an argument list ford2h . We can do so!
When Rc finds a command inside‘{ ...} , it executes the command, andsubstitutesthe whole
‘{ ...} text with the output printed by the command. We did something alike in a C program
when reading the output for a command using a pipe. This time, Rc does it for us, and relieves us
from typing something that can be generated using a program. This is an example.

; seq 1 5
1
2
3
4
5
; echo ‘{seq 1 5}
1 2 3 4 5
;

As you can see, the second command was equivalent to this one:

; echo 1 2 3 4 5

- 10 -

The shell executedseq 1 5 , and then did read the text printed by this command in standard
output. Once all the command output was read, Rc replaced the whole‘{ ...} construct with the
text just read. The resulting line was the one executed, intead of the one that we originaly typed.
Because a newline character terminates a command, the shell replaced each\n in the command
output with a space. That is why executingseq directly yields 5 lines of output, but using it with
‘{ ...} produces just one line of output. We can do now what we wanted.

; d2h ‘{seq 1 255}
1
2
...and many other numbers up to...
fd
fe
ff

That was nice. However, most programs that accept arguments, work with their standard input
when no argument is given. If we do the same tod2h , we increase the opportunities to reuse it
for other tasks. The idea is simple, we must check if we have arguments. If there are some, we
proceed as before. Otherwise, we can read the arguments usingcat , and then proceed as before.
We need a way to decide what to do, and we need to be able to compare things. Rc provides both
things.

The constructionif takes a command as an argument (whitin parenthesis). If the
command’s exit status is all right (i.e., the empty string), the body is executed. Otherwise, the
body is not executed. This is the classicalif-them, but using a command as the condition (which
makes sense for a shell), and one command (or a group of them) as a body.

; if (ls -d /tmp) echo /tmp is there!
/tmp
/tmp is there!
;
; if (ls -d /blah) echo blah is there
ls: /blah: ’/blah’ file does not exist

In the first case, Rc executedls -d /tmp . This command printed the first output line, and,
because its exit status was the empty string, it was taken astrue regarding the condition for the
if . Therefore,echo was executed and it printed the second line. In the second case,ls -d
/blah failed, andls complained to its standard error. The body command for theif was not
executed.

It can be a burden to see the output for commands that we use as conditions forif s, and it
may be wise to send the command output to/dev/null , including its standard error.

; if (ls -d /tmp >/dev/null >[2=1]) echo is there
is there
; if (ls -d /blah >/dev/null >[2=1]) echo is there
;

Once we know how to decide, how can we compare strings? The~ operator in Rc compares one
string to other onesq, and yields an exit status meaning true, or success, when the comparation
succeeds, and one meaning false otherwise.

q We will see how~ is comparing a string to expressions, not just to strings.

- 11 -

; ~ 1 1
; echo $status

; ~ 1 2
; echo $status
no match
; if (~ 1 1) echo this works
this works

So, the plan is as follows. If$#* (the number of arguments for our script) is zero, we must do
something else. Otherwise, we must execute our previous commands in the script. Before imple-
menting it, we are going to try just to do different things depending on the number of arguments.
But we need an else! This is done by using the constructif not after anif . If the command
representing the condition for anif fails, the followingif not executes its body.

args_____
#!/bin/rc

if (~ $#* 0)

echo no arguments

if not

echo got some arguments: $*

And we can try it.

; args
no arguments
; args 1 2
got some arguments: 1 2

Now we can combine all the pieces.

d2h____
#!/bin/rc

rfork e

if (~ $#* 0)

args=‘{cat}

if not

args=$*

{

echo ’obase=16’

for (num in $args)

echo $num

} | bc

We try our new script below. When using its standard input to read the numbers, it uses the
‘{ ...} construct to executecat , which reads all the input, and to place the text read in the envi-
ronment variableargs . This means that it will not print a single line of output until we have
typed all the numbers and usedcontrol-dto simulate an end of file.

- 12 -

; d2h3
20
30
control-d
14
1e
;
; d2h3 3 4
3
4
;

Our new command is ready for use, and it can be combined with other commands, like inseq
10|d2h . It would work as expected.

An early exercise in this book asked to useip/ping to probe for all addresses for
machines in a local network. Addresses were of the form212.128.3.X with X going from 1 to
254. You now know how to it fast!

; nums=‘{seq 1 254}
; for (n in $nums) ip/ping 212.128.3.$n

Before this example, you might have been saying: Why should I bother to write several shell
command lines to do what I can do with a single loop in a C program? Now you may reconsider
the question. The answer is that in Rc it is very easy to combine commands. Doing it in C, that
is a different business.

By the way. Use variables! They might save a lot of typing, not to talk about making com-
mands more simple to read. For instance, the next commands may be better than what we just
did. If we have to use212.128.3 again, which is likely if we are playing with that network,
we might just say$net .

; nums=‘{seq 1 254}
; net=212.128.3.
; for (n in $nums) ip/ping $net^$n

8.5. Conditions
Let’s go back to commands used for expressing conditions in our shell programs. The shell opera-
tor ~ uses expressions. They are the same expressions used for globbing. The operator receives at
least two arguments, maybe more. Only the first one is taken as a string. The remaining ones are
considered as expressions to be matched against the string. For example, this iterates over a set of
files and prints a string suggesting what the file might be, according to the file name.

file____
#!/bin/rc

rfork e

for (file in $*) {

if (~ $file *.c *.h)

echo $file: C source code

if (~ $file *.gif)

echo $file: GIF image

if (~ $file *.jpg)

echo $file: JPEG image

}

And here is one usage example.

- 13 -

; file x.c a.h b.gif z
x.c: C source code
a.h: C source code
b.gif: GIF image

Note that before executing the~ command, the shell expanded the variables, and$file was
replaced with the correponding argument on each pass of the loop. Also, because the shell knows
that~ takes expressions, it is not necessary to quote them. Rc does it for you.

There is aswitch construct in Rc that permits doing multiway branches, like the construct
of the same name in C. The one of Rc takes one string as the argument, and executes the branch
with a regular expression that matches the string. Each branch is labeled with the wordcase fol-
lowed by the expressions for the branch. This is an example that improves the previous script.

#!/bin/rc
rfork e
for (file in $*) {

switch($file){
case *.c *.h

echo $file: C source code
case *.gif

echo $file: GIF image
case *.jpg

echo $file: JPEG image
case *

echo $file: who knows
}

}

As you can see, in a singlecase you may use more than one expression, like you can with~. As
a matter of fact, this script is doing poorly what is better done with a standard command that has
the same name,file . This command prints a string after inspecting each file whose name is
given as an argument. It reads each file to search for words or patterns and makes an educated
guess.

; file ch7.ms ch8.ps src/hi.c
ch7.ms: Ascii text
ch8.ps: postscript
src/hi.c: c program

There is another command that was built just to test for things, to be used as a condition forif
expressions in the shell. This program istest . For example, the option-e can be used to check
that a file does exist, and the option-d checks that a file is a directory.

; test -e /LICENSE
; echo $status

; test -e /blah
; echo $status
test 52313: false
; if (test -d /tmp) echo yes
yes
; if (test -d /LICENSE) echo yes
;

- 14 -

8.6. Editing text
Before, we managed to generate a list of numbers for an array initializer that we didnot want to
write by ourselves. But the output we obtained was not yet ready for a cut-and-paste into our edi-
tor. We need to convert something like

1
2
...

into something like

"0x1",
"0x2",
...

that can be used for our purposes. There are many programs that operate on text and know how to
do complex things to it. In this section we are going to explore them.

To achieve our purpose, we might convert each number into hexadecimal, and store the
resulting string in a variable. Later, it is just a matter of usingecho to print what we want, like
follows.

; num=32
; hexnum=‘{{ echo ’obase=16’ ; echo $num } | bc}
; echo "0x^$hexnum^",
"0x20",

We used the‘{ ...} construct executehexnum=..., with the appropriate string on the right hand
side of the equal sign. This string was printed by the command

{ echo ’obase=16’ ; echo $num } | bc

that we now know that prints20 . It is the same command we used in thed2h script.

For you, the�" � character may be special. For the shell, it is just another character. There-
fore, the shell concatenated the�"0x � with the string from$hexnum and the string�", �. That
was the argument given toecho . So, you probably know already how to write a few shell com-
mand lines to generate the text for your array initializer.

; for (num in ‘{seq 0 255}) {
;; number=‘{{ echo ’obase=16’ ; echo $num } | bc}
;; echo "0x^$number^",
;; }
"0x0",
"0x1",
"0x2",
...and many others follow.

Is the problem solved? Maybe. This is a very innefficient way of doing things. For each number,
we are executing a couple of processes to runecho and then another process to runbc . It takes
time for processes to start. You know whatfork andexec do. That must take time. Processes
are cheap, but not free. Wouldn’t it be better to use a singlebc to do all the computation, and
then adjust the output? For example, this command, using our last version ford2h , produces the
same output. The finalsed command inserts some text at the beggining and at the end of each
line, to get the desired output.

; seq 1 255 | d2h | sed -e ’s/^/"0x/’ -e ’s/$/",/’
"0x0",
"0x1",
"0x2",
...and many others follow.

- 15 -

To see the difference betwen this command line, and the directfor loop used above, we can use
time to measure the time it takes to each one to complete. We placed the command above using
a for into a /tmp/for script, and the last command used, usingsed , at a script in
/tmp/sed . This is what happen.

; time /tmp/sed >/dev/null
0.34u 1.63s 5.22r /tmp/sed
; time /tmp/for >/dev/null
3.64u 24.38s 74.30r /tmp/for

The time command uses thewait system call to obtain the time for its child (the command we
want to measure the time for). It reports the time spent by the command while executing user
code, the time it spent while inside the kernel, executing system calls and the like, and the real
(elapsed) time until it completed. Our loop, starting several processes for each number being pro-
cessed, takes 74.3 seconds to generate the output we want! That is admiteddly a lot shorter than
doing it by hand. However, the time needed to do the same usingsed as a final processing step
in the pipeline is just 5.22 seconds. Besides, we had to type less. Do you think it pays?

The programsed is astream editor. It can be used to edit data as it flows through a pipe-
line. Sed reads text from the input, applies the commands you give to edit that text, and writes the
result to the output. In most cases, this command is used to perform simple tasks, like inserting,
deleting, or replacing text. But it can be used for more. As with most other programs, you may
specify the input forsed by giving some file names as arguments, or you may let it work with
the standard input otherwise.

In general, editing commands are given as arguments to the-e option, but if there is just
one command, you may omit the-e . For example, this prints the first 3 lines for a file.

; sed 3q /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,
with the following notable exceptions:
;

All sed commands have either none, one, or twoaddressesand then the command itself. In the
last example there was one addres,3, and one command,q. The editor reads text, usually line by
line. For each text read,sed applies all the editing commands given, and copies the result to
standard output. If addresses are given for a command, the editor applies the command to the text
selected by those addresses.

A number is an address that corresponds to a line number. The commandq, quits. What
happen in the example is that the editor read lines, and printed them to the output, until the
address3 was matched. That was at line number 3. The commandquit was applied, and the rest
of the file was not printed. Therefore, the previous command can be used to print the first few
lines for a file.

If we want to do the opposite, we may justdeletesome lines, from the one with address 1,
to the one with address 3. As you can see below, both addresses are separated with a comma, and
the command to apply follows. Therefore,sed searched for the text matching the address pair
1,3 (i.e., lines 1 to 3), printing each line as it was searching. Then it copied the text selected to
memory, and applied thed command. These lines were deleted. Afterwards,sed continued
copying line by line to its memory, doing nothing to each one, and copying the result to standard
output.

; sed 1,3d /LICENSE

1. No right is granted to create derivative works of or
to redistribute (other than with the Plan 9 Operating System)

...more useful stuff for your lawyer...

Supplying just one command, with no address, applies the command to all lines.

- 16 -

; sed d /LICENSE
;

Was the/LICENSE deleted? Of course not. This editor is astreameditor. It reads, applies com-
mands to the text while in the editor’s memory, and outputs the resulting text.

How can we print the lines 3 to 5 from our input file? One strategy is to use thesed com-
mand to print the text selected,p, selecting lines 3 to 5. And also, we must asksed not to print
lines by default after processing them, by giving the-n flag.

; sed -n 3,5p /LICENSE
with the following notable exceptions:

1. No right is granted to create derivative works of or

The special address$ matches the end of the file. Therefore, this deletes from line 3 to the end of
the file.

; sed ’3,$d’ /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,

What follows deletes lines between the one matching/granted/ , i.e., the first one that con-
tains that word, and the end of the file. This is like using1,3d . There are two addresses and ad
command. It is just that the two addresses are more complicated this time.

; sed ’/granted/,$d’ /LICENSE
The Plan 9 software is provided under the terms of the
Lucent Public License, Version 1.02, reproduced below,
with the following notable exceptions:

;

Another interesting command forsed is r . This one reads the contents of a file, and writes them
to the standard output before proceeding with the rest of the input. For example, given these files,

; cat salutation
Today I feel
FEEL
So be warned
; cat how
Really in bad mood
;

we can usesed to adjust the text insalutation so that the line withFEEL is replaced with
the contents of the filehow. What we have to do is to givesed an address that matches a line
with the textFEEL in it. Then, we must use thed command to delete this line. And later we will
have to insert in place the contents of the other file.

; sed /FEEL/d <salutation
Today I feel
So be warned

The address/FEEL/ matches the stringFEEL, and therefore selects that line. For each match,
the commandd removes its line. If there were more than one line matching the address, all of
such lines would have been deleted. In general,sed goes line by line, doing what you want.

- 17 -

; cat salutation salutation | sed /FEEL/d
Today I feel
So be warned
Today I feel
So be warned

We also wanted to insert the text inhow in place, besides deleting the line withFEEL. There-
fore, we want to executetwo commands when the address/FEEL/ matches in a line in the input.
This can be done by using braces, butsed is picky regarding the format of its program, and we
prefer to use several lines for thesed program. Fortunately, Rc knows how to quote it all.

; sed -e ’/FEEL/{
;; r how
;; d
;; }’<salutation
Today I feel
Really in bad mood
So be warned

In general, it is a good idea to quote complex expressions that are meant not for shell, but for the
command being executed. Otherwise, we might use a character with special meaning for Rc, and
there could be surprises.

This type of editing can be used to prepare templates for certain files, for example, for your
web page, and then automatically adjust this template to generate something else. You can see the
page athttp://lsub.org/who/nemo , which is generated using a similar technique to state
whether Nemo is at his office or not.

The most usefulsed command is yet to be seen. It replaces some text with another. Many
people who do not know how to usesed , knowat least how to usesed just for doing this. The
command iss (for substitute), and is followed by two strings. Both the command and the strings
are delimited using any character you please, usually a/ . For example,s/bad/good/ replaces
the stringbad with good .

; echo Really in bad mood | sed ’s/bad/good/’
Really in good mood

The quoting was unnecessary, but it does not hurt and it is good to get used to quote arguments
that may get special characters inside. There are two things to see here. The command,s , applies
to all lines of input, because no address was given. Also, as it is, it replaces only the first apear-
ance ofbad in the line. Most times you will add a finalg, which is a flag that makess substitute
all occurrences (globally) and not just the first one.

This lists all files terminating in.h , and replaces that termination with.c , to generate a list
of files that may contain the implementation for the things declared in the header files.

; ls *.h
cook.h
gui.h
; ls *.h | sed ’s/.h/.c/g’
cook.c
gui.c

You can now do more things, like renaming all the files terminated in.cc to files terminated in
.c , (in case you thought it twice and decided to use C instead of C++). We make some attempts
before writing the command that does it.

- 18 -

; echo foo.cc | sed ’s/.cc/.c/g’
foo.c
; f=foo.cc
; nf=‘{echo $f | sed ’s/.cc/.c/g’}
; echo $nf
foo.c
; for (f in *.cc) {
;; nf=‘{echo $f | sed ’s/.cc/.c/g’}
;; mv $f $nf
;; }
; all of them renamed!

At this point, it should be easy for you to understand the command we used to generate the array
initializer for hexadecimal numbers

sed -e ’s/^/"0x/’ -e ’s/$/",/’

It had two editing commands, therefore we had to use-e for both ones. The first one replaced the
start of a line with�0x �, thus, it inserted this string at the beggining of line. The second inserted
�", � at the end of line.

8.7. Moving files around
We want to copy all the files in a file tree to a single directory. Perhaps we have one directory per
music album, and some files with songs inside.

; du -a
1 ./alanparsons/irobot.mp3
1 ./alanparsons/whatgoesup.mp3
2 ./alanparsons
1 ./pausini/trateilmare.mp3
1 ./pausini
1 ./supertramp/logical.mp3
1 ./supertramp
4 .

But we may want to burn a CD and we might need to keep the songs in a single directory. This
can be done by usingcp to copy each file of interest into another one at the target directory. But
file names may not include/ , and we want to preserve the album name. We can usesed to sub-
stitute the/ with another character, and then copy the files.

; for (f in */*.mp3) {
;; nf=‘{echo $f | sed s,/,_,g}
;; echo cp $f /destdir/$nf
;; }
cp alanparsons/irobot.mp3 /destdir/alanparsons_irobot.mp3
cp alanparsons/whatgoesup.mp3 /destdir/alanparsons_whatgoesup.mp3
cp pausini/trateilmare.mp3 /destdir/pausini_trateilmare.mp3
cp supertramp/logical.mp3 /destdir/supertramp_logical.mp3
;

Here, we used a comma as the delimiter for thesed command, becase we wanted to use the slash
in the expression to be replaced.

To copy the whole file tree to a different place, we cannot usecp . Even doing the same
thing that we did above, we would have to create the directories to place the songs inside. That is
a burden. A different strategy is to create anarchive for the source tree, and then extract the
archive at the destination. The commandtar , was initially created to make tape archives. We no
longer use tapes for achiving things. Buttar remains a very useful command. A tape archive,
also known as a tar-file, is a single file that contains many other ones (including directories)

- 19 -

bundled inside.

What tar does is to write to the beginning of the archive a table describing the file names
and permissions, and where in the archive their contents start and terminate. Thisheaderis fol-
lowed by the contents of the files themselves. The option-c creates one archive with the named
files.

; tar -c * >/tmp/music.tar

We can see the contents of the archive using the optiont .

; tar -t </tmp/music.tar
alanparsons/
alanparsons/irobot.mp3
alanparsons/whatgoesup.mp3
pausini/
pausini/trateilmare.mp3
supertramp/
supertramp/logical.mp3

Option-v , adds verbosity to the output, like in many other commands.

; tar -tv </tmp/music.tar
d-rwxr-xr-x 0 Jul 21 00:02 2006 alanparsons/
--rw-r--r-- 13 Jul 21 00:01 2006 alanparsons/irobot.mp3
--rw-r--r-- 13 Jul 21 00:02 2006 alanparsons/whatgoesup.mp3
d-rwxr-xr-x 0 Jul 21 00:02 2006 pausini/
--rw-r--r-- 13 Jul 21 00:02 2006 pausini/trateilmare.mp3
d-rwxr-xr-x 0 Jul 21 00:02 2006 supertramp/
--rw-r--r-- 13 Jul 21 00:02 2006 supertramp/logical.mp3

This lists the permissions and other file attributes. To extract the files in the archive, we can use
the option-x . Here we add anv as well just to see what happens.

; cd otherdir
; tar xv </tmp/music.tar
alanparsons
alanparsons/irobot.mp3
alanparsons/whatgoesup.mp3
pausini
pausini/trateilmare.mp3
supertramp
supertramp/logical.mp3
; lc
alanparsons pausini supertramp

The size of the archive is a little bit more than the size of the files placed in it. That is to say that
tar does not compress anything. If you want to compress the contents of an archive, so it occu-
pies less space in the disk, you may usegzip . This is a program that uses a compression algo-
rithm to exploit regularities in the data to use more efficient representation techiques for the same
data.

; gzip music.tar
; ls -l music.*
--rw-r--r-- M 19 nemo nemo 10240 Jul 21 00:17 music.tar
--rw-r--r-- M 19 nemo nemo 304 Jul 21 00:22 music.tgz

The filemusic.tgz was created bygzip . In most cases,gzip adds the extension.gz for the
compressed file name. But tradition says that compressed tar files terminate in.tgz .

Before extracting or inspecting the contents of a compressed archive, we must uncompress
it. Below we also use the option-f for tar , that permits specifying the archive file as an

- 20 -

argument.

; tar -tf music.tgz
/386/bin/tar: partial block read from archive
; gunzip music.tgz
; tar -tf music.tar
alanparsons/
alanparsons/irobot.mp3
...etc...

So, how can we copy an entire file tree from one place to another? You now know how to use
tar . Here is how.

; @{cd /music ; tar -c *} | @{ cd /otherdir ; tar x }

The ouput for the first compound command goes to the input of the second one. The first one
changes its directory to the source, and then creates an archive sent to standard output. In the sec-
ond one, we change to the destination directory, and extract the archive read from standard input.

A new thing we have seen here is the expression@{...} , which is like {...} , but exe-
cutes the command block in a child shell. We need to do this because each block must work at a
different directory.

- 21 -

