shithub: choc

Download patch

ref: 6ebf557c44b11a16ff15e5f560a81753be33bad3
parent: f3d3b03870a6842e104c67ce6fc7edfde89d77ec
author: Simon Howard <fraggle@gmail.com>
date: Fri Aug 13 14:42:52 EDT 2010

Add C-converted version of DOSbox OPL emulator.

Subversion-branch: /trunk/chocolate-doom
Subversion-revision: 1955

--- /dev/null
+++ b/opl/dbopl.c
@@ -1,0 +1,1603 @@
+/*
+ *  Copyright (C) 2002-2010  The DOSBox Team
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+//
+// Chocolate Doom-related discussion:
+//
+// This is the DosBox OPL emulator code (src/hardware/dbopl.cpp) r3635,
+// converted to C.  The bulk of the work was done using the minus-minus
+// script in the Chocolate Doom SVN repository, then the result tweaked
+// by hand until working.
+//
+
+
+/*
+	DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
+	Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
+	Except for the table generation it's all integer math
+	Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
+	The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
+	MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
+
+	//TODO Don't delay first operator 1 sample in opl3 mode
+	//TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
+	//TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
+	//TODO Check if having the same accuracy in all frequency multipliers sounds better or not
+
+	//DUNNO Keyon in 4op, switch to 2op without keyoff.
+*/
+
+/* $Id: dbopl.cpp,v 1.10 2009-06-10 19:54:51 harekiet Exp $ */
+
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+//#include "dosbox.h"
+#include "dbopl.h"
+
+
+#define GCC_UNLIKELY(x) x
+
+#define TRUE 1
+#define FALSE 0
+
+#ifndef PI
+#define PI 3.14159265358979323846
+#endif
+
+#define OPLRATE		((double)(14318180.0 / 288.0))
+#define TREMOLO_TABLE 52
+
+//Try to use most precision for frequencies
+//Else try to keep different waves in synch
+//#define WAVE_PRECISION	1
+#ifndef WAVE_PRECISION
+//Wave bits available in the top of the 32bit range
+//Original adlib uses 10.10, we use 10.22
+#define WAVE_BITS	10
+#else
+//Need some extra bits at the top to have room for octaves and frequency multiplier
+//We support to 8 times lower rate
+//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
+#define WAVE_BITS	14
+#endif
+#define WAVE_SH		( 32 - WAVE_BITS )
+#define WAVE_MASK	( ( 1 << WAVE_SH ) - 1 )
+
+//Use the same accuracy as the waves
+#define LFO_SH ( WAVE_SH - 10 )
+//LFO is controlled by our tremolo 256 sample limit
+#define LFO_MAX ( 256 << ( LFO_SH ) )
+
+
+//Maximum amount of attenuation bits
+//Envelope goes to 511, 9 bits
+#if (DBOPL_WAVE == WAVE_TABLEMUL )
+//Uses the value directly
+#define ENV_BITS	( 9 )
+#else
+//Add 3 bits here for more accuracy and would have to be shifted up either way
+#define ENV_BITS	( 9 )
+#endif
+//Limits of the envelope with those bits and when the envelope goes silent
+#define ENV_MIN		0
+#define ENV_EXTRA	( ENV_BITS - 9 )
+#define ENV_MAX		( 511 << ENV_EXTRA )
+#define ENV_LIMIT	( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
+#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
+
+//Attack/decay/release rate counter shift
+#define RATE_SH		24
+#define RATE_MASK	( ( 1 << RATE_SH ) - 1 )
+//Has to fit within 16bit lookuptable
+#define MUL_SH		16
+
+//Check some ranges
+#if ENV_EXTRA > 3
+#error Too many envelope bits
+#endif
+
+static inline void Operator__SetState(Operator *self, Bit8u s );
+static inline Bit32u Chip__ForwardNoise(Chip *self);
+
+// C++'s template<> sure is useful sometimes.
+
+static Channel* Channel__BlockTemplate(Channel *self, Chip* chip,
+                                Bit32u samples, Bit32s* output,
+                                SynthMode mode );
+#define BLOCK_TEMPLATE(mode) \
+    static Channel* Channel__BlockTemplate_ ## mode(Channel *self, Chip* chip, \
+                                             Bit32u samples, Bit32s* output) \
+    { \
+       return Channel__BlockTemplate(self, chip, samples, output, mode); \
+    }
+
+BLOCK_TEMPLATE(sm2AM)
+BLOCK_TEMPLATE(sm2FM)
+BLOCK_TEMPLATE(sm3AM)
+BLOCK_TEMPLATE(sm3FM)
+BLOCK_TEMPLATE(sm3FMFM)
+BLOCK_TEMPLATE(sm3AMFM)
+BLOCK_TEMPLATE(sm3FMAM)
+BLOCK_TEMPLATE(sm3AMAM)
+BLOCK_TEMPLATE(sm2Percussion)
+BLOCK_TEMPLATE(sm3Percussion)
+
+//How much to substract from the base value for the final attenuation
+static const Bit8u KslCreateTable[16] = {
+	//0 will always be be lower than 7 * 8
+	64, 32, 24, 19, 
+	16, 12, 11, 10, 
+	 8,  6,  5,  4,
+	 3,  2,  1,  0,
+};
+
+#define M(_X_) ((Bit8u)( (_X_) * 2))
+static const Bit8u FreqCreateTable[16] = {
+	M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
+	M(8  ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
+};
+#undef M
+
+//We're not including the highest attack rate, that gets a special value
+static const Bit8u AttackSamplesTable[13] = {
+	69, 55, 46, 40,
+	35, 29, 23, 20,
+	19, 15, 11, 10,
+	9
+};
+//On a real opl these values take 8 samples to reach and are based upon larger tables
+static const Bit8u EnvelopeIncreaseTable[13] = {
+	4,  5,  6,  7,
+	8, 10, 12, 14,
+	16, 20, 24, 28,
+	32, 
+};
+
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+static Bit16u ExpTable[ 256 ];
+#endif
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+//PI table used by WAVEHANDLER
+static Bit16u SinTable[ 512 ];
+#endif
+
+#if ( DBOPL_WAVE > WAVE_HANDLER )
+//Layout of the waveform table in 512 entry intervals
+//With overlapping waves we reduce the table to half it's size
+
+//	|    |//\\|____|WAV7|//__|/\  |____|/\/\|
+//	|\\//|    |    |WAV7|    |  \/|    |    |
+//	|06  |0126|17  |7   |3   |4   |4 5 |5   |
+
+//6 is just 0 shifted and masked
+
+static Bit16s WaveTable[ 8 * 512 ];
+//Distance into WaveTable the wave starts
+static const Bit16u WaveBaseTable[8] = {
+	0x000, 0x200, 0x200, 0x800,
+	0xa00, 0xc00, 0x100, 0x400,
+
+};
+//Mask the counter with this
+static const Bit16u WaveMaskTable[8] = {
+	1023, 1023, 511, 511,
+	1023, 1023, 512, 1023,
+};
+
+//Where to start the counter on at keyon
+static const Bit16u WaveStartTable[8] = {
+	512, 0, 0, 0,
+	0, 512, 512, 256,
+};
+#endif
+
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+static Bit16u MulTable[ 384 ];
+#endif
+
+static Bit8u KslTable[ 8 * 16 ];
+static Bit8u TremoloTable[ TREMOLO_TABLE ];
+//Start of a channel behind the chip struct start
+static Bit16u ChanOffsetTable[32];
+//Start of an operator behind the chip struct start
+static Bit16u OpOffsetTable[64];
+
+//The lower bits are the shift of the operator vibrato value
+//The highest bit is right shifted to generate -1 or 0 for negation
+//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
+static const Bit8s VibratoTable[ 8 ] = {	
+	1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00, 
+	1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80 
+};
+
+//Shift strength for the ksl value determined by ksl strength
+static const Bit8u KslShiftTable[4] = {
+	31,1,2,0
+};
+
+//Generate a table index and table shift value using input value from a selected rate
+static void EnvelopeSelect( Bit8u val, Bit8u *index, Bit8u *shift ) {
+	if ( val < 13 * 4 ) {				//Rate 0 - 12
+		*shift = 12 - ( val >> 2 );
+		*index = val & 3;
+	} else if ( val < 15 * 4 ) {		//rate 13 - 14
+		*shift = 0;
+		*index = val - 12 * 4;
+	} else {							//rate 15 and up
+		*shift = 0;
+		*index = 12;
+	}
+}
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+/*
+	Generate the different waveforms out of the sine/exponetial table using handlers
+*/
+static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
+	Bitu total = wave + volume;
+	Bitu index = total & 0xff;
+	Bitu sig = ExpTable[ index ];
+	Bitu exp = total >> 8;
+#if 0
+	//Check if we overflow the 31 shift limit
+	if ( exp >= 32 ) {
+		LOG_MSG( "WTF %d %d", total, exp );
+	}
+#endif
+	return (sig >> exp);
+};
+
+static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
+	Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+	Bitu wave = SinTable[i & 511];
+	return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
+	Bit32u wave = SinTable[i & 511];
+	wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+	return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
+	Bitu wave = SinTable[i & 511];
+	return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
+	Bitu wave = SinTable[i & 255];
+	wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
+	return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
+	//Twice as fast
+	i <<= 1;
+	Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+	Bitu wave = SinTable[i & 511];
+	wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+	return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
+	//Twice as fast
+	i <<= 1;
+	Bitu wave = SinTable[i & 511];
+	wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+	return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
+	Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+	return (MakeVolume( 0, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
+	//Negative is reversed here
+	Bits neg = (( i >> 9) & 1) - 1;
+	Bitu wave = (i << 3);
+	//When negative the volume also runs backwards
+	wave = ((wave ^ neg) - neg) & 4095;
+	return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+
+static const WaveHandler WaveHandlerTable[8] = {
+	WaveForm0, WaveForm1, WaveForm2, WaveForm3,
+	WaveForm4, WaveForm5, WaveForm6, WaveForm7
+};
+
+#endif
+
+/*
+	Operator
+*/
+
+//We zero out when rate == 0
+inline void Operator__UpdateAttack(Operator *self, const Chip* chip ) {
+	Bit8u rate = self->reg60 >> 4;
+	if ( rate ) {
+		Bit8u val = (rate << 2) + self->ksr;
+		self->attackAdd = chip->attackRates[ val ];
+		self->rateZero &= ~(1 << ATTACK);
+	} else {
+		self->attackAdd = 0;
+		self->rateZero |= (1 << ATTACK);
+	}
+}
+inline void Operator__UpdateDecay(Operator *self, const Chip* chip ) {
+	Bit8u rate = self->reg60 & 0xf;
+	if ( rate ) {
+		Bit8u val = (rate << 2) + self->ksr;
+		self->decayAdd = chip->linearRates[ val ];
+		self->rateZero &= ~(1 << DECAY);
+	} else {
+		self->decayAdd = 0;
+		self->rateZero |= (1 << DECAY);
+	}
+}
+inline void Operator__UpdateRelease(Operator *self, const Chip* chip ) {
+	Bit8u rate = self->reg80 & 0xf;
+	if ( rate ) {
+		Bit8u val = (rate << 2) + self->ksr;
+		self->releaseAdd = chip->linearRates[ val ];
+		self->rateZero &= ~(1 << RELEASE);
+		if ( !(self->reg20 & MASK_SUSTAIN ) ) {
+			self->rateZero &= ~( 1 << SUSTAIN );
+		}	
+	} else {
+		self->rateZero |= (1 << RELEASE);
+		self->releaseAdd = 0;
+		if ( !(self->reg20 & MASK_SUSTAIN ) ) {
+			self->rateZero |= ( 1 << SUSTAIN );
+		}	
+	}
+}
+
+inline void Operator__UpdateAttenuation(Operator *self) {
+	Bit8u kslBase = (Bit8u)((self->chanData >> SHIFT_KSLBASE) & 0xff);
+	Bit32u tl = self->reg40 & 0x3f;
+	Bit8u kslShift = KslShiftTable[ self->reg40 >> 6 ];
+	//Make sure the attenuation goes to the right bits
+	self->totalLevel = tl << ( ENV_BITS - 7 );	//Total level goes 2 bits below max
+	self->totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
+}
+
+void Operator__UpdateFrequency(Operator *self) {
+	Bit32u freq = self->chanData & (( 1 << 10 ) - 1);
+	Bit32u block = (self->chanData >> 10) & 0xff;
+#ifdef WAVE_PRECISION
+	block = 7 - block;
+	self->waveAdd = ( freq * self->freqMul ) >> block;
+#else
+	self->waveAdd = ( freq << block ) * self->freqMul;
+#endif
+	if ( self->reg20 & MASK_VIBRATO ) {
+		self->vibStrength = (Bit8u)(freq >> 7);
+
+#ifdef WAVE_PRECISION
+		self->vibrato = ( self->vibStrength * self->freqMul ) >> block;
+#else
+		self->vibrato = ( self->vibStrength << block ) * self->freqMul;
+#endif
+	} else {
+		self->vibStrength = 0;
+		self->vibrato = 0;
+	}
+}
+
+void Operator__UpdateRates(Operator *self, const Chip* chip ) {
+	//Mame seems to reverse this where enabling ksr actually lowers
+	//the rate, but pdf manuals says otherwise?
+	Bit8u newKsr = (Bit8u)((self->chanData >> SHIFT_KEYCODE) & 0xff);
+	if ( !( self->reg20 & MASK_KSR ) ) {
+		newKsr >>= 2;
+	}
+	if ( self->ksr == newKsr )
+		return;
+	self->ksr = newKsr;
+	Operator__UpdateAttack( self, chip );
+	Operator__UpdateDecay( self, chip );
+	Operator__UpdateRelease( self, chip );
+}
+
+static inline Bit32s Operator__RateForward(Operator *self, Bit32u add ) {
+	self->rateIndex += add;
+	Bit32s ret = self->rateIndex >> RATE_SH;
+	self->rateIndex = self->rateIndex & RATE_MASK;
+	return ret;
+}
+
+static Bits Operator__TemplateVolume(Operator *self, OperatorState yes) {
+	Bit32s vol = self->volume;
+	Bit32s change;
+	switch ( yes ) {
+	case OFF:
+		return ENV_MAX;
+	case ATTACK:
+		change = Operator__RateForward( self, self->attackAdd );
+		if ( !change )
+			return vol;
+		vol += ( (~vol) * change ) >> 3;
+		if ( vol < ENV_MIN ) {
+			self->volume = ENV_MIN;
+			self->rateIndex = 0;
+			Operator__SetState( self, DECAY );
+			return ENV_MIN;
+		}
+		break;
+	case DECAY:
+		vol += Operator__RateForward( self, self->decayAdd );
+		if ( GCC_UNLIKELY(vol >= self->sustainLevel) ) {
+			//Check if we didn't overshoot max attenuation, then just go off
+			if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+				self->volume = ENV_MAX;
+				Operator__SetState( self, OFF );
+				return ENV_MAX;
+			}
+			//Continue as sustain
+			self->rateIndex = 0;
+			Operator__SetState( self, SUSTAIN );
+		}
+		break;
+	case SUSTAIN:
+		if ( self->reg20 & MASK_SUSTAIN ) {
+			return vol;
+		}
+		//In sustain phase, but not sustaining, do regular release
+	case RELEASE: 
+		vol += Operator__RateForward( self, self->releaseAdd );;
+		if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+			self->volume = ENV_MAX;
+			Operator__SetState( self, OFF );
+			return ENV_MAX;
+		}
+		break;
+	}
+	self->volume = vol;
+	return vol;
+}
+
+#define TEMPLATE_VOLUME(mode) \
+    static Bits Operator__TemplateVolume ## mode(Operator *self) \
+    { \
+        return Operator__TemplateVolume(self, mode); \
+    }
+
+TEMPLATE_VOLUME(OFF)
+TEMPLATE_VOLUME(RELEASE)
+TEMPLATE_VOLUME(SUSTAIN)
+TEMPLATE_VOLUME(ATTACK)
+TEMPLATE_VOLUME(DECAY)
+
+static const VolumeHandler VolumeHandlerTable[5] = {
+        &Operator__TemplateVolumeOFF,
+        &Operator__TemplateVolumeRELEASE,
+        &Operator__TemplateVolumeSUSTAIN,
+        &Operator__TemplateVolumeDECAY,
+        &Operator__TemplateVolumeATTACK,
+};
+
+static inline Bitu Operator__ForwardVolume(Operator *self) {
+	return self->currentLevel + (self->volHandler)();
+}
+
+
+static inline Bitu Operator__ForwardWave(Operator *self) {
+	self->waveIndex += self->waveCurrent;	
+	return self->waveIndex >> WAVE_SH;
+}
+
+void Operator__Write20(Operator *self, const Chip* chip, Bit8u val ) {
+	Bit8u change = (self->reg20 ^ val );
+	if ( !change ) 
+		return;
+	self->reg20 = val;
+	//Shift the tremolo bit over the entire register, saved a branch, YES!
+	self->tremoloMask = (Bit8s)(val) >> 7;
+	self->tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
+	//Update specific features based on changes
+	if ( change & MASK_KSR ) {
+		Operator__UpdateRates( self, chip );
+	}
+	//With sustain enable the volume doesn't change
+	if ( self->reg20 & MASK_SUSTAIN || ( !self->releaseAdd ) ) {
+		self->rateZero |= ( 1 << SUSTAIN );
+	} else {
+		self->rateZero &= ~( 1 << SUSTAIN );
+	}
+	//Frequency multiplier or vibrato changed
+	if ( change & (0xf | MASK_VIBRATO) ) {
+		self->freqMul = chip->freqMul[ val & 0xf ];
+		Operator__UpdateFrequency(self);
+	}
+}
+
+void Operator__Write40(Operator *self, const Chip *chip, Bit8u val ) {
+	if (!(self->reg40 ^ val )) 
+		return;
+	self->reg40 = val;
+	Operator__UpdateAttenuation( self );
+}
+
+void Operator__Write60(Operator *self, const Chip* chip, Bit8u val ) {
+	Bit8u change = self->reg60 ^ val;
+	self->reg60 = val;
+	if ( change & 0x0f ) {
+		Operator__UpdateDecay( self, chip );
+	}
+	if ( change & 0xf0 ) {
+		Operator__UpdateAttack( self, chip );
+	}
+}
+
+void Operator__Write80(Operator *self, const Chip* chip, Bit8u val ) {
+	Bit8u change = (self->reg80 ^ val );
+	if ( !change ) 
+		return;
+	self->reg80 = val;
+	Bit8u sustain = val >> 4;
+	//Turn 0xf into 0x1f
+	sustain |= ( sustain + 1) & 0x10;
+	self->sustainLevel = sustain << ( ENV_BITS - 5 );
+	if ( change & 0x0f ) {
+		Operator__UpdateRelease( self, chip );
+	}
+}
+
+void Operator__WriteE0(Operator *self, const Chip* chip, Bit8u val ) {
+	if ( !(self->regE0 ^ val) ) 
+		return;
+	//in opl3 mode you can always selet 7 waveforms regardless of waveformselect
+	Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
+	self->regE0 = val;
+#if( DBOPL_WAVE == WAVE_HANDLER )
+	self->waveHandler = WaveHandlerTable[ waveForm ];
+#else
+	self->waveBase = WaveTable + WaveBaseTable[ waveForm ];
+	self->waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
+	self->waveMask = WaveMaskTable[ waveForm ];
+#endif
+}
+
+static inline void Operator__SetState(Operator *self, Bit8u s ) {
+	self->state = s;
+	self->volHandler = VolumeHandlerTable[ s ];
+}
+
+static inline int Operator__Silent(Operator *self) {
+	if ( !ENV_SILENT( self->totalLevel + self->volume ) )
+		return FALSE;
+	if ( !(self->rateZero & ( 1 << self->state ) ) )
+		return FALSE;
+	return TRUE;
+}
+
+static inline void Operator__Prepare(Operator *self, const Chip* chip )  {
+	self->currentLevel = self->totalLevel + (chip->tremoloValue & self->tremoloMask);
+	self->waveCurrent = self->waveAdd;
+	if ( self->vibStrength >> chip->vibratoShift ) {
+		Bit32s add = self->vibrato >> chip->vibratoShift;
+		//Sign extend over the shift value
+		Bit32s neg = chip->vibratoSign;
+		//Negate the add with -1 or 0
+		add = ( add ^ neg ) - neg; 
+		self->waveCurrent += add;
+	}
+}
+
+void Operator__KeyOn(Operator *self, Bit8u mask ) {
+	if ( !self->keyOn ) {
+		//Restart the frequency generator
+#if( DBOPL_WAVE > WAVE_HANDLER )
+		self->waveIndex = self->waveStart;
+#else
+		self->waveIndex = 0;
+#endif
+		self->rateIndex = 0;
+		Operator__SetState( self, ATTACK );
+	}
+	self->keyOn |= mask;
+}
+
+void Operator__KeyOff(Operator *self, Bit8u mask ) {
+	self->keyOn &= ~mask;
+	if ( !self->keyOn ) {
+		if ( self->state != OFF ) {
+			Operator__SetState( self, RELEASE );
+		}
+	}
+}
+
+static inline Bits Operator__GetWave(Operator *self, Bitu index, Bitu vol ) {
+#if( DBOPL_WAVE == WAVE_HANDLER )
+	return self->waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
+#elif( DBOPL_WAVE == WAVE_TABLEMUL )
+	return(self->waveBase[ index & self->waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
+#elif( DBOPL_WAVE == WAVE_TABLELOG )
+	Bit32s wave = self->waveBase[ index & self->waveMask ];
+	Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA );
+	Bit32s sig = ExpTable[ total & 0xff ];
+	Bit32u exp = total >> 8;
+	Bit32s neg = wave >> 16;
+	return((sig ^ neg) - neg) >> exp;
+#else
+#error "No valid wave routine"
+#endif
+}
+
+static inline Bits Operator__GetSample(Operator *self, Bits modulation ) {
+	Bitu vol = Operator__ForwardVolume(self);
+	if ( ENV_SILENT( vol ) ) {
+		//Simply forward the wave
+		self->waveIndex += self->waveCurrent;
+		return 0;
+	} else {
+		Bitu index = Operator__ForwardWave(self);
+		index += modulation;
+		return Operator__GetWave( self, index, vol );
+	}
+}
+
+void Operator__Operator(Operator *self) {
+	self->chanData = 0;
+	self->freqMul = 0;
+	self->waveIndex = 0;
+	self->waveAdd = 0;
+	self->waveCurrent = 0;
+	self->keyOn = 0;
+	self->ksr = 0;
+	self->reg20 = 0;
+	self->reg40 = 0;
+	self->reg60 = 0;
+	self->reg80 = 0;
+	self->regE0 = 0;
+	Operator__SetState( self, OFF );
+	self->rateZero = (1 << OFF);
+	self->sustainLevel = ENV_MAX;
+	self->currentLevel = ENV_MAX;
+	self->totalLevel = ENV_MAX;
+	self->volume = ENV_MAX;
+	self->releaseAdd = 0;
+}
+
+/*
+	Channel
+*/
+
+void Channel__Channel(Channel *self) {
+        Operator__Operator(&self->op[0]);
+        Operator__Operator(&self->op[1]);
+	self->old[0] = self->old[1] = 0;
+	self->chanData = 0;
+	self->regB0 = 0;
+	self->regC0 = 0;
+	self->maskLeft = -1;
+	self->maskRight = -1;
+	self->feedback = 31;
+	self->fourMask = 0;
+	self->synthHandler = Channel__BlockTemplate_sm2FM;
+};
+
+static inline Operator* Channel__Op( Channel *self, Bitu index ) {
+        return &( ( self + (index >> 1) )->op[ index & 1 ]);
+}
+
+void Channel__SetChanData(Channel *self, const Chip* chip, Bit32u data ) {
+	Bit32u change = self->chanData ^ data;
+	self->chanData = data;
+	Channel__Op( self, 0 )->chanData = data;
+	Channel__Op( self, 1 )->chanData = data;
+	//Since a frequency update triggered this, always update frequency
+        Operator__UpdateFrequency(Channel__Op( self, 0 ));
+        Operator__UpdateFrequency(Channel__Op( self, 1 ));
+	if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
+                Operator__UpdateAttenuation(Channel__Op( self, 0 ));
+                Operator__UpdateAttenuation(Channel__Op( self, 1 ));
+	}
+	if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
+                Operator__UpdateRates(Channel__Op( self, 0 ), chip);
+                Operator__UpdateRates(Channel__Op( self, 1 ), chip);
+	}
+}
+
+void Channel__UpdateFrequency(Channel *self, const Chip* chip, Bit8u fourOp ) {
+	//Extrace the frequency bits
+	Bit32u data = self->chanData & 0xffff;
+	Bit32u kslBase = KslTable[ data >> 6 ];
+	Bit32u keyCode = ( data & 0x1c00) >> 9;
+	if ( chip->reg08 & 0x40 ) {
+		keyCode |= ( data & 0x100)>>8;	/* notesel == 1 */
+	} else {
+		keyCode |= ( data & 0x200)>>9;	/* notesel == 0 */
+	}
+	//Add the keycode and ksl into the highest bits of chanData
+	data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
+        Channel__SetChanData( self + 0, chip, data );
+	if ( fourOp & 0x3f ) {
+                Channel__SetChanData( self + 1, chip, data );
+	}
+}
+
+void Channel__WriteA0(Channel *self, const Chip* chip, Bit8u val ) {
+	Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
+	//Don't handle writes to silent fourop channels
+	if ( fourOp > 0x80 )
+		return;
+	Bit32u change = (self->chanData ^ val ) & 0xff;
+	if ( change ) {
+		self->chanData ^= change;
+		Channel__UpdateFrequency( self, chip, fourOp );
+	}
+}
+
+void Channel__WriteB0(Channel *self, const Chip* chip, Bit8u val ) {
+	Bit8u fourOp = chip->reg104 & chip->opl3Active & self->fourMask;
+	//Don't handle writes to silent fourop channels
+	if ( fourOp > 0x80 )
+		return;
+	Bitu change = (self->chanData ^ ( val << 8 ) ) & 0x1f00;
+	if ( change ) {
+		self->chanData ^= change;
+		Channel__UpdateFrequency( self, chip, fourOp );
+	}
+	//Check for a change in the keyon/off state
+	if ( !(( val ^ self->regB0) & 0x20))
+		return;
+	self->regB0 = val;
+	if ( val & 0x20 ) {
+                Operator__KeyOn( Channel__Op(self, 0), 0x1 );
+                Operator__KeyOn( Channel__Op(self, 1), 0x1 );
+		if ( fourOp & 0x3f ) {
+                        Operator__KeyOn( Channel__Op(self + 1, 0), 1 );
+                        Operator__KeyOn( Channel__Op(self + 1, 1), 1 );
+		}
+	} else {
+                Operator__KeyOff( Channel__Op(self, 0), 0x1 );
+                Operator__KeyOff( Channel__Op(self, 1), 0x1 );
+		if ( fourOp & 0x3f ) {
+                        Operator__KeyOff( Channel__Op(self + 1, 0), 1 );
+                        Operator__KeyOff( Channel__Op(self + 1, 1), 1 );
+		}
+	}
+}
+
+void Channel__WriteC0(Channel *self, const Chip* chip, Bit8u val ) {
+	Bit8u change = val ^ self->regC0;
+	if ( !change )
+		return;
+	self->regC0 = val;
+	self->feedback = ( val >> 1 ) & 7;
+	if ( self->feedback ) {
+		//We shift the input to the right 10 bit wave index value
+		self->feedback = 9 - self->feedback;
+	} else {
+		self->feedback = 31;
+	}
+	//Select the new synth mode
+	if ( chip->opl3Active ) {
+		//4-op mode enabled for this channel
+		if ( (chip->reg104 & self->fourMask) & 0x3f ) {
+			Channel* chan0, *chan1;
+			//Check if it's the 2nd channel in a 4-op
+			if ( !(self->fourMask & 0x80 ) ) {
+				chan0 = self;
+				chan1 = self + 1;
+			} else {
+				chan0 = self - 1;
+				chan1 = self;
+			}
+
+			Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
+			switch ( synth ) {
+			case 0:
+				chan0->synthHandler = Channel__BlockTemplate_sm3FMFM;
+				break;
+			case 1:
+				chan0->synthHandler = Channel__BlockTemplate_sm3AMFM;
+				break;
+			case 2:
+				chan0->synthHandler = Channel__BlockTemplate_sm3FMAM ;
+				break;
+			case 3:
+				chan0->synthHandler = Channel__BlockTemplate_sm3AMAM ;
+				break;
+			}
+		//Disable updating percussion channels
+		} else if ((self->fourMask & 0x40) && ( chip->regBD & 0x20) ) {
+
+		//Regular dual op, am or fm
+		} else if ( val & 1 ) {
+			self->synthHandler = Channel__BlockTemplate_sm3AM;
+		} else {
+			self->synthHandler = Channel__BlockTemplate_sm3FM;
+		}
+		self->maskLeft = ( val & 0x10 ) ? -1 : 0;
+		self->maskRight = ( val & 0x20 ) ? -1 : 0;
+	//opl2 active
+	} else { 
+		//Disable updating percussion channels
+		if ( (self->fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
+
+		//Regular dual op, am or fm
+		} else if ( val & 1 ) {
+			self->synthHandler = Channel__BlockTemplate_sm2AM;
+		} else {
+			self->synthHandler = Channel__BlockTemplate_sm2FM;
+		}
+	}
+}
+
+void Channel__ResetC0(Channel *self, const Chip* chip ) {
+	Bit8u val = self->regC0;
+	self->regC0 ^= 0xff;
+	Channel__WriteC0( self, chip, val );
+};
+
+static inline void Channel__GeneratePercussion(Channel *self, Chip* chip,
+                                               Bit32s* output, int opl3Mode ) {
+	Channel* chan = self;
+
+	//BassDrum
+	Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback;
+	self->old[0] = self->old[1];
+	self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod ); 
+
+	//When bassdrum is in AM mode first operator is ignoed
+	if ( chan->regC0 & 1 ) {
+		mod = 0;
+	} else {
+		mod = self->old[0];
+	}
+	Bit32s sample = Operator__GetSample( Channel__Op(self, 1), mod ); 
+
+	//Precalculate stuff used by other outputs
+	Bit32u noiseBit = Chip__ForwardNoise(chip) & 0x1;
+	Bit32u c2 = Operator__ForwardWave(Channel__Op(self, 2));
+	Bit32u c5 = Operator__ForwardWave(Channel__Op(self, 5));
+	Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
+
+	//Hi-Hat
+	Bit32u hhVol = Operator__ForwardVolume(Channel__Op(self, 2));
+	if ( !ENV_SILENT( hhVol ) ) {
+		Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
+		sample += Operator__GetWave( Channel__Op(self, 2), hhIndex, hhVol );
+	}
+	//Snare Drum
+	Bit32u sdVol = Operator__ForwardVolume( Channel__Op(self, 3) );
+	if ( !ENV_SILENT( sdVol ) ) {
+		Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
+		sample += Operator__GetWave( Channel__Op(self, 3), sdIndex, sdVol );
+	}
+	//Tom-tom
+	sample += Operator__GetSample( Channel__Op(self, 4), 0 );
+
+	//Top-Cymbal
+	Bit32u tcVol = Operator__ForwardVolume(Channel__Op(self, 5));
+	if ( !ENV_SILENT( tcVol ) ) {
+		Bit32u tcIndex = (1 + phaseBit) << 8;
+		sample += Operator__GetWave( Channel__Op(self, 5), tcIndex, tcVol );
+	}
+	sample <<= 1;
+	if ( opl3Mode ) {
+		output[0] += sample;
+		output[1] += sample;
+	} else {
+		output[0] += sample;
+	}
+}
+
+Channel* Channel__BlockTemplate(Channel *self, Chip* chip,
+                                Bit32u samples, Bit32s* output,
+                                SynthMode mode ) {
+        Bitu i;
+
+	switch( mode ) {
+	case sm2AM:
+	case sm3AM:
+		if ( Operator__Silent(Channel__Op(self, 0))
+                 && Operator__Silent(Channel__Op(self, 1))) {
+			self->old[0] = self->old[1] = 0;
+			return(self + 1);
+		}
+		break;
+	case sm2FM:
+	case sm3FM:
+		if ( Operator__Silent(Channel__Op(self, 1))) {
+			self->old[0] = self->old[1] = 0;
+			return (self + 1);
+		}
+		break;
+	case sm3FMFM:
+		if ( Operator__Silent(Channel__Op(self, 3))) {
+			self->old[0] = self->old[1] = 0;
+			return (self + 2);
+		}
+		break;
+	case sm3AMFM:
+		if ( Operator__Silent( Channel__Op(self, 0) )
+                 && Operator__Silent( Channel__Op(self, 3) )) {
+			self->old[0] = self->old[1] = 0;
+			return (self + 2);
+		}
+		break;
+	case sm3FMAM:
+		if ( Operator__Silent( Channel__Op(self, 1))
+                 && Operator__Silent( Channel__Op(self, 3))) {
+			self->old[0] = self->old[1] = 0;
+			return (self + 2);
+		}
+		break;
+	case sm3AMAM:
+		if ( Operator__Silent( Channel__Op(self, 0) )
+                 && Operator__Silent( Channel__Op(self, 2) )
+                 && Operator__Silent( Channel__Op(self, 3) )) {
+			self->old[0] = self->old[1] = 0;
+			return (self + 2);
+		}
+		break;
+
+        default:
+                abort();
+	}
+	//Init the operators with the the current vibrato and tremolo values
+        Operator__Prepare( Channel__Op( self, 0 ), chip );
+        Operator__Prepare( Channel__Op( self, 1 ), chip );
+	if ( mode > sm4Start ) {
+                Operator__Prepare( Channel__Op( self, 2 ), chip );
+                Operator__Prepare( Channel__Op( self, 3 ), chip );
+	}
+	if ( mode > sm6Start ) {
+                Operator__Prepare( Channel__Op( self, 4 ), chip );
+                Operator__Prepare( Channel__Op( self, 5 ), chip );
+	}
+	for ( i = 0; i < samples; i++ ) {
+		//Early out for percussion handlers
+		if ( mode == sm2Percussion ) {
+			Channel__GeneratePercussion( self, chip, output + i, FALSE );
+			continue;	//Prevent some unitialized value bitching
+		} else if ( mode == sm3Percussion ) {
+			Channel__GeneratePercussion( self, chip, output + i * 2, TRUE );
+			continue;	//Prevent some unitialized value bitching
+		}
+
+		//Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
+		Bit32s mod = (Bit32u)((self->old[0] + self->old[1])) >> self->feedback;
+		self->old[0] = self->old[1];
+		self->old[1] = Operator__GetSample( Channel__Op(self, 0), mod );
+		Bit32s sample;
+		Bit32s out0 = self->old[0];
+		if ( mode == sm2AM || mode == sm3AM ) {
+			sample = out0 + Operator__GetSample( Channel__Op(self, 1), 0 );
+		} else if ( mode == sm2FM || mode == sm3FM ) {
+			sample = Operator__GetSample( Channel__Op(self, 1), out0 );
+		} else if ( mode == sm3FMFM ) {
+			Bits next = Operator__GetSample( Channel__Op(self, 1), out0 );
+			next = Operator__GetSample( Channel__Op(self, 2), next );
+			sample = Operator__GetSample( Channel__Op(self, 3), next );
+		} else if ( mode == sm3AMFM ) {
+			sample = out0;
+			Bits next = Operator__GetSample( Channel__Op(self, 1), 0 );
+			next = Operator__GetSample( Channel__Op(self, 2), next );
+			sample += Operator__GetSample( Channel__Op(self, 3), next );
+		} else if ( mode == sm3FMAM ) {
+			sample = Operator__GetSample( Channel__Op(self, 1), out0 );
+			Bits next = Operator__GetSample( Channel__Op(self, 2), 0 );
+			sample += Operator__GetSample( Channel__Op(self, 3), next );
+		} else if ( mode == sm3AMAM ) {
+			sample = out0;
+			Bits next = Operator__GetSample( Channel__Op(self, 1), 0 );
+			sample += Operator__GetSample( Channel__Op(self, 2), next );
+			sample += Operator__GetSample( Channel__Op(self, 3), 0 );
+		}
+		switch( mode ) {
+		case sm2AM:
+		case sm2FM:
+			output[ i ] += sample;
+			break;
+		case sm3AM:
+		case sm3FM:
+		case sm3FMFM:
+		case sm3AMFM:
+		case sm3FMAM:
+		case sm3AMAM:
+			output[ i * 2 + 0 ] += sample & self->maskLeft;
+			output[ i * 2 + 1 ] += sample & self->maskRight;
+			break;
+                default:
+                        abort();
+		}
+	}
+	switch( mode ) {
+	case sm2AM:
+	case sm2FM:
+	case sm3AM:
+	case sm3FM:
+		return ( self + 1 );
+	case sm3FMFM:
+	case sm3AMFM:
+	case sm3FMAM:
+	case sm3AMAM:
+		return ( self + 2 );
+	case sm2Percussion:
+	case sm3Percussion:
+		return( self + 3 );
+        default:
+                abort();
+	}
+	return 0;
+}
+
+/*
+	Chip
+*/
+
+void Chip__Chip(Chip *self) {
+        int i;
+
+        for (i=0; i<18; ++i) {
+                Channel__Channel(&self->chan[i]);
+        }
+
+	self->reg08 = 0;
+	self->reg04 = 0;
+	self->regBD = 0;
+	self->reg104 = 0;
+	self->opl3Active = 0;
+}
+
+static inline Bit32u Chip__ForwardNoise(Chip *self) {
+	self->noiseCounter += self->noiseAdd;
+	Bitu count = self->noiseCounter >> LFO_SH;
+	self->noiseCounter &= WAVE_MASK;
+	for ( ; count > 0; --count ) {
+		//Noise calculation from mame
+		self->noiseValue ^= ( 0x800302 ) & ( 0 - (self->noiseValue & 1 ) );
+		self->noiseValue >>= 1;
+	}
+	return self->noiseValue;
+}
+
+static inline Bit32u Chip__ForwardLFO(Chip *self, Bit32u samples ) {
+	//Current vibrato value, runs 4x slower than tremolo
+	self->vibratoSign = ( VibratoTable[ self->vibratoIndex >> 2] ) >> 7;
+	self->vibratoShift = ( VibratoTable[ self->vibratoIndex >> 2] & 7) + self->vibratoStrength; 
+	self->tremoloValue = TremoloTable[ self->tremoloIndex ] >> self->tremoloStrength;
+
+	//Check hom many samples there can be done before the value changes
+	Bit32u todo = LFO_MAX - self->lfoCounter;
+	Bit32u count = (todo + self->lfoAdd - 1) / self->lfoAdd;
+	if ( count > samples ) {
+		count = samples;
+		self->lfoCounter += count * self->lfoAdd;
+	} else {
+		self->lfoCounter += count * self->lfoAdd;
+		self->lfoCounter &= (LFO_MAX - 1);
+		//Maximum of 7 vibrato value * 4
+		self->vibratoIndex = ( self->vibratoIndex + 1 ) & 31;
+		//Clip tremolo to the the table size
+		if ( self->tremoloIndex + 1 < TREMOLO_TABLE  )
+			++self->tremoloIndex;
+		else
+			self->tremoloIndex = 0;
+	}
+	return count;
+}
+
+
+void Chip__WriteBD(Chip *self, Bit8u val ) {
+	Bit8u change = self->regBD ^ val;
+	if ( !change )
+		return;
+	self->regBD = val;
+	//TODO could do this with shift and xor?
+	self->vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
+	self->tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
+	if ( val & 0x20 ) {
+		//Drum was just enabled, make sure channel 6 has the right synth
+		if ( change & 0x20 ) {
+			if ( self->opl3Active ) {
+				self->chan[6].synthHandler
+                                    = Channel__BlockTemplate_sm3Percussion; 
+			} else {
+				self->chan[6].synthHandler
+                                    = Channel__BlockTemplate_sm2Percussion;
+			}
+		}
+		//Bass Drum
+		if ( val & 0x10 ) {
+                        Operator__KeyOn( &self->chan[6].op[0], 0x2 );
+                        Operator__KeyOn( &self->chan[6].op[1], 0x2 );
+		} else {
+                        Operator__KeyOff( &self->chan[6].op[0], 0x2 );
+                        Operator__KeyOff( &self->chan[6].op[1], 0x2 );
+		}
+		//Hi-Hat
+		if ( val & 0x1 ) {
+                        Operator__KeyOn( &self->chan[7].op[0], 0x2 );
+		} else {
+                        Operator__KeyOff( &self->chan[7].op[0], 0x2 );
+		}
+		//Snare
+		if ( val & 0x8 ) {
+                        Operator__KeyOn( &self->chan[7].op[1], 0x2 );
+		} else {
+                        Operator__KeyOff( &self->chan[7].op[1], 0x2 );
+		}
+		//Tom-Tom
+		if ( val & 0x4 ) {
+                        Operator__KeyOn( &self->chan[8].op[0], 0x2 );
+		} else {
+                        Operator__KeyOff( &self->chan[8].op[0], 0x2 );
+		}
+		//Top Cymbal
+		if ( val & 0x2 ) {
+                        Operator__KeyOn( &self->chan[8].op[1], 0x2 );
+		} else {
+                        Operator__KeyOff( &self->chan[8].op[1], 0x2 );
+		}
+	//Toggle keyoffs when we turn off the percussion
+	} else if ( change & 0x20 ) {
+		//Trigger a reset to setup the original synth handler
+                Channel__ResetC0( &self->chan[6], self );
+                Operator__KeyOff( &self->chan[6].op[0], 0x2 );
+                Operator__KeyOff( &self->chan[6].op[1], 0x2 );
+                Operator__KeyOff( &self->chan[7].op[0], 0x2 );
+                Operator__KeyOff( &self->chan[7].op[1], 0x2 );
+                Operator__KeyOff( &self->chan[8].op[0], 0x2 );
+                Operator__KeyOff( &self->chan[8].op[1], 0x2 );
+	}
+}
+
+
+#define REGOP( _FUNC_ )															\
+	index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f );								\
+	if ( OpOffsetTable[ index ] ) {													\
+		Operator* regOp = (Operator*)( ((char *)self ) + OpOffsetTable[ index ] );	\
+                Operator__ ## _FUNC_ (regOp, self, val); \
+	}
+
+#define REGCHAN( _FUNC_ )																\
+	index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf );										\
+	if ( ChanOffsetTable[ index ] ) {													\
+		Channel* regChan = (Channel*)( ((char *)self ) + ChanOffsetTable[ index ] );	\
+                Channel__ ## _FUNC_ (regChan, self, val); \
+	}
+
+void Chip__WriteReg(Chip *self, Bit32u reg, Bit8u val ) {
+	Bitu index;
+	switch ( (reg & 0xf0) >> 4 ) {
+	case 0x00 >> 4:
+		if ( reg == 0x01 ) {
+			self->waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0; 
+		} else if ( reg == 0x104 ) {
+			//Only detect changes in lowest 6 bits
+			if ( !((self->reg104 ^ val) & 0x3f) )
+				return;
+			//Always keep the highest bit enabled, for checking > 0x80
+			self->reg104 = 0x80 | ( val & 0x3f );
+		} else if ( reg == 0x105 ) {
+                        int i;
+
+			//MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
+			if ( !((self->opl3Active ^ val) & 1 ) )
+				return;
+			self->opl3Active = ( val & 1 ) ? 0xff : 0;
+			//Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
+			for ( i = 0; i < 18;i++ ) {
+                                Channel__ResetC0( &self->chan[i], self );
+			}
+		} else if ( reg == 0x08 ) {
+			self->reg08 = val;
+		}
+	case 0x10 >> 4:
+		break;
+	case 0x20 >> 4:
+	case 0x30 >> 4:
+		REGOP( Write20 );
+		break;
+	case 0x40 >> 4:
+	case 0x50 >> 4:
+		REGOP( Write40 );
+		break;
+	case 0x60 >> 4:
+	case 0x70 >> 4:
+		REGOP( Write60 );
+		break;
+	case 0x80 >> 4:
+	case 0x90 >> 4:
+		REGOP( Write80 );
+		break;
+	case 0xa0 >> 4:
+		REGCHAN( WriteA0 );
+		break;
+	case 0xb0 >> 4:
+		if ( reg == 0xbd ) {
+			Chip__WriteBD( self, val );
+		} else {
+			REGCHAN( WriteB0 );
+		}
+		break;
+	case 0xc0 >> 4:
+		REGCHAN( WriteC0 );
+	case 0xd0 >> 4:
+		break;
+	case 0xe0 >> 4:
+	case 0xf0 >> 4:
+		REGOP( WriteE0 );
+		break;
+	}
+}
+
+
+Bit32u Chip__WriteAddr(Chip *self, Bit32u port, Bit8u val ) {
+	switch ( port & 3 ) {
+	case 0:
+		return val;
+	case 2:
+		if ( self->opl3Active || (val == 0x05) )
+			return 0x100 | val;
+		else 
+			return val;
+	}
+	return 0;
+}
+
+void Chip__GenerateBlock2(Chip *self, Bitu total, Bit32s* output ) {
+	while ( total > 0 ) {
+                Channel *ch;
+		int count;
+
+		Bit32u samples = Chip__ForwardLFO( self, total );
+		memset(output, 0, sizeof(Bit32s) * samples);
+		count = 0;
+		for ( ch = self->chan; ch < self->chan + 9; ) {
+			count++;
+			ch = (ch->synthHandler)( ch, self, samples, output );
+		}
+		total -= samples;
+		output += samples;
+	}
+}
+
+void Chip__GenerateBlock3(Chip *self, Bitu total, Bit32s* output  ) {
+	while ( total > 0 ) {
+                int count;
+                Channel *ch;
+
+		Bit32u samples = Chip__ForwardLFO( self, total );
+		memset(output, 0, sizeof(Bit32s) * samples *2);
+		count = 0;
+		for ( ch = self->chan; ch < self->chan + 18; ) {
+			count++;
+			ch = (ch->synthHandler)( ch, self, samples, output );
+		}
+		total -= samples;
+		output += samples * 2;
+	}
+}
+
+void Chip__Setup(Chip *self, Bit32u rate ) {
+	double original = OPLRATE;
+        Bit32u i;
+//	double original = rate;
+	double scale = original / (double)rate;
+
+	//Noise counter is run at the same precision as general waves
+	self->noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+	self->noiseCounter = 0;
+	self->noiseValue = 1;	//Make sure it triggers the noise xor the first time
+	//The low frequency oscillation counter
+	//Every time his overflows vibrato and tremoloindex are increased
+	self->lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+	self->lfoCounter = 0;
+	self->vibratoIndex = 0;
+	self->tremoloIndex = 0;
+
+	//With higher octave this gets shifted up
+	//-1 since the freqCreateTable = *2
+#ifdef WAVE_PRECISION
+	double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
+	for ( i = 0; i < 16; i++ ) {
+		self->freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
+	}
+#else
+	Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
+	for ( i = 0; i < 16; i++ ) {
+		self->freqMul[i] = freqScale * FreqCreateTable[ i ];
+	}
+#endif
+
+	//-3 since the real envelope takes 8 steps to reach the single value we supply
+	for ( i = 0; i < 76; i++ ) {
+		Bit8u index, shift;
+		EnvelopeSelect( i, &index, &shift );
+		self->linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
+	}
+	//Generate the best matching attack rate
+	for ( i = 0; i < 62; i++ ) {
+		Bit8u index, shift;
+		EnvelopeSelect( i, &index, &shift );
+		//Original amount of samples the attack would take
+		Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
+		 
+		Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
+		Bit32s bestAdd = guessAdd;
+		Bit32u bestDiff = 1 << 30;
+                Bit32u passes;
+
+		for ( passes = 0; passes < 16; passes ++ ) {
+			Bit32s volume = ENV_MAX;
+			Bit32s samples = 0;
+			Bit32u count = 0;
+			while ( volume > 0 && samples < original * 2 ) {
+				count += guessAdd;
+				Bit32s change = count >> RATE_SH;
+				count &= RATE_MASK;
+				if ( GCC_UNLIKELY(change) ) { // less than 1 % 
+					volume += ( ~volume * change ) >> 3;
+				}
+				samples++;
+
+			}
+			Bit32s diff = original - samples;
+			Bit32u lDiff = labs( diff );
+			//Init last on first pass
+			if ( lDiff < bestDiff ) {
+				bestDiff = lDiff;
+				bestAdd = guessAdd;
+				if ( !bestDiff )
+					break;
+			}
+			//Below our target
+			if ( diff < 0 ) {
+				//Better than the last time
+				Bit32s mul = ((original - diff) << 12) / original;
+				guessAdd = ((guessAdd * mul) >> 12);
+				guessAdd++;
+			} else if ( diff > 0 ) {
+				Bit32s mul = ((original - diff) << 12) / original;
+				guessAdd = (guessAdd * mul) >> 12;
+				guessAdd--;
+			}
+		}
+		self->attackRates[i] = bestAdd;
+	}
+	for ( i = 62; i < 76; i++ ) {
+		//This should provide instant volume maximizing
+		self->attackRates[i] = 8 << RATE_SH;
+	}
+	//Setup the channels with the correct four op flags
+	//Channels are accessed through a table so they appear linear here
+	self->chan[ 0].fourMask = 0x00 | ( 1 << 0 );
+	self->chan[ 1].fourMask = 0x80 | ( 1 << 0 );
+	self->chan[ 2].fourMask = 0x00 | ( 1 << 1 );
+	self->chan[ 3].fourMask = 0x80 | ( 1 << 1 );
+	self->chan[ 4].fourMask = 0x00 | ( 1 << 2 );
+	self->chan[ 5].fourMask = 0x80 | ( 1 << 2 );
+
+	self->chan[ 9].fourMask = 0x00 | ( 1 << 3 );
+	self->chan[10].fourMask = 0x80 | ( 1 << 3 );
+	self->chan[11].fourMask = 0x00 | ( 1 << 4 );
+	self->chan[12].fourMask = 0x80 | ( 1 << 4 );
+	self->chan[13].fourMask = 0x00 | ( 1 << 5 );
+	self->chan[14].fourMask = 0x80 | ( 1 << 5 );
+
+	//mark the percussion channels
+	self->chan[ 6].fourMask = 0x40;
+	self->chan[ 7].fourMask = 0x40;
+	self->chan[ 8].fourMask = 0x40;
+
+	//Clear Everything in opl3 mode
+	Chip__WriteReg( self, 0x105, 0x1 );
+	for ( i = 0; i < 512; i++ ) {
+		if ( i == 0x105 )
+			continue;
+		Chip__WriteReg( self, i, 0xff );
+		Chip__WriteReg( self, i, 0x0 );
+	}
+	Chip__WriteReg( self, 0x105, 0x0 );
+	//Clear everything in opl2 mode
+	for ( i = 0; i < 255; i++ ) {
+		Chip__WriteReg( self, i, 0xff );
+		Chip__WriteReg( self, i, 0x0 );
+	}
+}
+
+static int doneTables = FALSE;
+void InitTables( void ) {
+        int i, oct;
+
+	if ( doneTables )
+		return;
+	doneTables = TRUE;
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+	//Exponential volume table, same as the real adlib
+	for ( i = 0; i < 256; i++ ) {
+		//Save them in reverse
+		ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
+		ExpTable[i] += 1024; //or remove the -1 oh well :)
+		//Preshift to the left once so the final volume can shift to the right
+		ExpTable[i] *= 2;
+	}
+#endif
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+	//Add 0.5 for the trunc rounding of the integer cast
+	//Do a PI sinetable instead of the original 0.5 PI
+	for ( i = 0; i < 512; i++ ) {
+		SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+	}
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+	//Multiplication based tables
+	for ( i = 0; i < 384; i++ ) {
+		int s = i * 8;
+		//TODO maybe keep some of the precision errors of the original table?
+		double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
+		MulTable[i] = (Bit16u)(val);
+	}
+
+	//Sine Wave Base
+	for ( i = 0; i < 512; i++ ) {
+		WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
+		WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
+	}
+	//Exponential wave
+	for ( i = 0; i < 256; i++ ) {
+		WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
+		WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
+	}
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLELOG )
+	//Sine Wave Base
+	for ( i = 0; i < 512; i++ ) {
+		WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+		WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
+	}
+	//Exponential wave
+	for ( i = 0; i < 256; i++ ) {
+		WaveTable[ 0x700 + i ] = i * 8;
+		WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
+	} 
+#endif
+
+	//	|    |//\\|____|WAV7|//__|/\  |____|/\/\|
+	//	|\\//|    |    |WAV7|    |  \/|    |    |
+	//	|06  |0126|27  |7   |3   |4   |4 5 |5   |
+
+#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
+	for ( i = 0; i < 256; i++ ) {
+		//Fill silence gaps
+		WaveTable[ 0x400 + i ] = WaveTable[0];
+		WaveTable[ 0x500 + i ] = WaveTable[0];
+		WaveTable[ 0x900 + i ] = WaveTable[0];
+		WaveTable[ 0xc00 + i ] = WaveTable[0];
+		WaveTable[ 0xd00 + i ] = WaveTable[0];
+		//Replicate sines in other pieces
+		WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
+		//double speed sines
+		WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
+		WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
+		WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
+		WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
+	} 
+#endif
+
+	//Create the ksl table
+	for ( oct = 0; oct < 8; oct++ ) {
+		int base = oct * 8;
+		for ( i = 0; i < 16; i++ ) {
+			int val = base - KslCreateTable[i];
+			if ( val < 0 )
+				val = 0;
+			//*4 for the final range to match attenuation range
+			KslTable[ oct * 16 + i ] = val * 4;
+		}
+	}
+	//Create the Tremolo table, just increase and decrease a triangle wave
+	for ( i = 0; i < TREMOLO_TABLE / 2; i++ ) {
+		Bit8u val = i << ENV_EXTRA;
+		TremoloTable[i] = val;
+		TremoloTable[TREMOLO_TABLE - 1 - i] = val;
+	}
+	//Create a table with offsets of the channels from the start of the chip
+        Chip *chip = NULL;
+	for ( i = 0; i < 32; i++ ) {
+		Bitu index = i & 0xf;
+		if ( index >= 9 ) {
+			ChanOffsetTable[i] = 0;
+			continue;
+		}
+		//Make sure the four op channels follow eachother
+		if ( index < 6 ) {
+			index = (index % 3) * 2 + ( index / 3 );
+		}
+		//Add back the bits for highest ones
+		if ( i >= 16 )
+			index += 9;
+		Bitu blah = (Bitu) ( &(chip->chan[ index ]) );
+		ChanOffsetTable[i] = blah;
+	}
+	//Same for operators
+	for ( i = 0; i < 64; i++ ) {
+		if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) {
+			OpOffsetTable[i] = 0;
+			continue;
+		}
+		Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
+		//Make sure we use 16 and up for the 2nd range to match the chanoffset gap
+		if ( chNum >= 12 )
+			chNum += 16 - 12;
+		Bitu opNum = ( i % 8 ) / 3;
+		Channel* chan = NULL;
+		Bitu blah = (Bitu) ( &(chan->op[opNum]) );
+		OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
+	}
+#if 0
+	//Stupid checks if table's are correct
+	for ( Bitu i = 0; i < 18; i++ ) {
+		Bit32u find = (Bit16u)( &(chip->chan[ i ]) );
+		for ( Bitu c = 0; c < 32; c++ ) {
+			if ( ChanOffsetTable[c] == find ) {
+				find = 0;
+				break;
+			}
+		}
+		if ( find ) {
+			find = find;
+		}
+	}
+	for ( Bitu i = 0; i < 36; i++ ) {
+		Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) );
+		for ( Bitu c = 0; c < 64; c++ ) {
+			if ( OpOffsetTable[c] == find ) {
+				find = 0;
+				break;
+			}
+		}
+		if ( find ) {
+			find = find;
+		}
+	}
+#endif
+}
+
+/*
+
+Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) {
+	return chip.WriteAddr( port, val );
+
+}
+void Handler::WriteReg( Bit32u addr, Bit8u val ) {
+	chip.WriteReg( addr, val );
+}
+
+void Handler::Generate( MixerChannel* chan, Bitu samples ) {
+	Bit32s buffer[ 512 * 2 ];
+	if ( GCC_UNLIKELY(samples > 512) )
+		samples = 512;
+	if ( !chip.opl3Active ) {
+		chip.GenerateBlock2( samples, buffer );
+		chan->AddSamples_m32( samples, buffer );
+	} else {
+		chip.GenerateBlock3( samples, buffer );
+		chan->AddSamples_s32( samples, buffer );
+	}
+}
+
+void Handler::Init( Bitu rate ) {
+	InitTables();
+	chip.Setup( rate );
+}
+*/
+
--- /dev/null
+++ b/opl/dbopl.h
@@ -1,0 +1,196 @@
+/*
+ *  Copyright (C) 2002-2010  The DOSBox Team
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+#include <inttypes.h>
+
+//Use 8 handlers based on a small logatirmic wavetabe and an exponential table for volume
+#define WAVE_HANDLER	10
+//Use a logarithmic wavetable with an exponential table for volume
+#define WAVE_TABLELOG	11
+//Use a linear wavetable with a multiply table for volume
+#define WAVE_TABLEMUL	12
+
+//Select the type of wave generator routine
+#define DBOPL_WAVE WAVE_TABLEMUL
+
+typedef struct _Chip Chip;
+typedef struct _Operator Operator;
+typedef struct _Channel Channel;
+
+typedef uintptr_t       Bitu;
+typedef intptr_t        Bits;
+typedef uint32_t        Bit32u;
+typedef int32_t         Bit32s;
+typedef uint16_t        Bit16u;
+typedef int16_t         Bit16s;
+typedef uint8_t         Bit8u;
+typedef int8_t          Bit8s;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+typedef Bits ( DB_FASTCALL *WaveHandler) ( Bitu i, Bitu volume );
+#endif
+
+#define DB_FASTCALL
+
+typedef Bits (*VolumeHandler)();
+typedef Channel* (*SynthHandler)(Channel *self, Chip* chip, Bit32u samples, Bit32s* output );
+
+//Different synth modes that can generate blocks of data
+typedef enum {
+	sm2AM,
+	sm2FM,
+	sm3AM,
+	sm3FM,
+	sm4Start,
+	sm3FMFM,
+	sm3AMFM,
+	sm3FMAM,
+	sm3AMAM,
+	sm6Start,
+	sm2Percussion,
+	sm3Percussion,
+} SynthMode;
+
+//Shifts for the values contained in chandata variable
+enum {
+	SHIFT_KSLBASE = 16,
+	SHIFT_KEYCODE = 24,
+};
+
+//Masks for operator 20 values
+enum {
+        MASK_KSR = 0x10,
+        MASK_SUSTAIN = 0x20,
+        MASK_VIBRATO = 0x40,
+        MASK_TREMOLO = 0x80,
+};
+
+typedef enum {
+        OFF,
+        RELEASE,
+        SUSTAIN,
+        DECAY,
+        ATTACK,
+} OperatorState;
+
+struct _Operator {
+	VolumeHandler volHandler;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+	WaveHandler waveHandler;	//Routine that generate a wave 
+#else
+	Bit16s* waveBase;
+	Bit32u waveMask;
+	Bit32u waveStart;
+#endif
+	Bit32u waveIndex;			//WAVE_BITS shifted counter of the frequency index
+	Bit32u waveAdd;				//The base frequency without vibrato
+	Bit32u waveCurrent;			//waveAdd + vibratao
+
+	Bit32u chanData;			//Frequency/octave and derived data coming from whatever channel controls this
+	Bit32u freqMul;				//Scale channel frequency with this, TODO maybe remove?
+	Bit32u vibrato;				//Scaled up vibrato strength
+	Bit32s sustainLevel;		//When stopping at sustain level stop here
+	Bit32s totalLevel;			//totalLevel is added to every generated volume
+	Bit32u currentLevel;		//totalLevel + tremolo
+	Bit32s volume;				//The currently active volume
+	
+	Bit32u attackAdd;			//Timers for the different states of the envelope
+	Bit32u decayAdd;
+	Bit32u releaseAdd;
+	Bit32u rateIndex;			//Current position of the evenlope
+
+	Bit8u rateZero;				//Bits for the different states of the envelope having no changes
+	Bit8u keyOn;				//Bitmask of different values that can generate keyon
+	//Registers, also used to check for changes
+	Bit8u reg20, reg40, reg60, reg80, regE0;
+	//Active part of the envelope we're in
+	Bit8u state;
+	//0xff when tremolo is enabled
+	Bit8u tremoloMask;
+	//Strength of the vibrato
+	Bit8u vibStrength;
+	//Keep track of the calculated KSR so we can check for changes
+	Bit8u ksr;
+};
+
+struct _Channel {
+	Operator op[2];
+	SynthHandler synthHandler;
+	Bit32u chanData;		//Frequency/octave and derived values
+	Bit32s old[2];			//Old data for feedback
+
+	Bit8u feedback;			//Feedback shift
+	Bit8u regB0;			//Register values to check for changes
+	Bit8u regC0;
+	//This should correspond with reg104, bit 6 indicates a Percussion channel, bit 7 indicates a silent channel
+	Bit8u fourMask;
+	Bit8s maskLeft;		//Sign extended values for both channel's panning
+	Bit8s maskRight;
+
+};
+
+struct _Chip {
+	//This is used as the base counter for vibrato and tremolo
+	Bit32u lfoCounter;
+	Bit32u lfoAdd;
+	
+
+	Bit32u noiseCounter;
+	Bit32u noiseAdd;
+	Bit32u noiseValue;
+
+	//Frequency scales for the different multiplications
+	Bit32u freqMul[16];
+	//Rates for decay and release for rate of this chip
+	Bit32u linearRates[76];
+	//Best match attack rates for the rate of this chip
+	Bit32u attackRates[76];
+
+	//18 channels with 2 operators each
+	Channel chan[18];
+
+	Bit8u reg104;
+	Bit8u reg08;
+	Bit8u reg04;
+	Bit8u regBD;
+	Bit8u vibratoIndex;
+	Bit8u tremoloIndex;
+	Bit8s vibratoSign;
+	Bit8u vibratoShift;
+	Bit8u tremoloValue;
+	Bit8u vibratoStrength;
+	Bit8u tremoloStrength;
+	//Mask for allowed wave forms
+	Bit8u waveFormMask;
+	//0 or -1 when enabled
+	Bit8s opl3Active;
+
+};
+
+/*
+struct Handler : public Adlib::Handler {
+	DBOPL::Chip chip;
+	virtual Bit32u WriteAddr( Bit32u port, Bit8u val );
+	virtual void WriteReg( Bit32u addr, Bit8u val );
+	virtual void Generate( MixerChannel* chan, Bitu samples );
+	virtual void Init( Bitu rate );
+};
+*/
+
+