shithub: cstory

ref: cf6a3d9a4822ba3207a599f3803c8e465348fbc6
dir: /external/glfw/examples/particles.c/

View raw version
//========================================================================
// A simple particle engine with threaded physics
// Copyright (c) Marcus Geelnard
// Copyright (c) Camilla Löwy <elmindreda@glfw.org>
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would
//    be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
//    be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
//    distribution.
//
//========================================================================

#if defined(_MSC_VER)
 // Make MS math.h define M_PI
 #define _USE_MATH_DEFINES
#endif

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>

#include <tinycthread.h>
#include <getopt.h>
#include <linmath.h>

#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>

// Define tokens for GL_EXT_separate_specular_color if not already defined
#ifndef GL_EXT_separate_specular_color
#define GL_LIGHT_MODEL_COLOR_CONTROL_EXT  0x81F8
#define GL_SINGLE_COLOR_EXT               0x81F9
#define GL_SEPARATE_SPECULAR_COLOR_EXT    0x81FA
#endif // GL_EXT_separate_specular_color


//========================================================================
// Type definitions
//========================================================================

typedef struct
{
    float x, y, z;
} Vec3;

// This structure is used for interleaved vertex arrays (see the
// draw_particles function)
//
// NOTE: This structure SHOULD be packed on most systems. It uses 32-bit fields
// on 32-bit boundaries, and is a multiple of 64 bits in total (6x32=3x64). If
// it does not work, try using pragmas or whatever to force the structure to be
// packed.
typedef struct
{
    GLfloat s, t;         // Texture coordinates
    GLuint  rgba;         // Color (four ubytes packed into an uint)
    GLfloat x, y, z;      // Vertex coordinates
} Vertex;


//========================================================================
// Program control global variables
//========================================================================

// Window dimensions
float aspect_ratio;

// "wireframe" flag (true if we use wireframe view)
int wireframe;

// Thread synchronization
struct {
    double    t;         // Time (s)
    float     dt;        // Time since last frame (s)
    int       p_frame;   // Particle physics frame number
    int       d_frame;   // Particle draw frame number
    cnd_t     p_done;    // Condition: particle physics done
    cnd_t     d_done;    // Condition: particle draw done
    mtx_t     particles_lock; // Particles data sharing mutex
} thread_sync;


//========================================================================
// Texture declarations (we hard-code them into the source code, since
// they are so simple)
//========================================================================

#define P_TEX_WIDTH  8    // Particle texture dimensions
#define P_TEX_HEIGHT 8
#define F_TEX_WIDTH  16   // Floor texture dimensions
#define F_TEX_HEIGHT 16

// Texture object IDs
GLuint particle_tex_id, floor_tex_id;

// Particle texture (a simple spot)
const unsigned char particle_texture[ P_TEX_WIDTH * P_TEX_HEIGHT ] = {
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x11, 0x22, 0x22, 0x11, 0x00, 0x00,
    0x00, 0x11, 0x33, 0x88, 0x77, 0x33, 0x11, 0x00,
    0x00, 0x22, 0x88, 0xff, 0xee, 0x77, 0x22, 0x00,
    0x00, 0x22, 0x77, 0xee, 0xff, 0x88, 0x22, 0x00,
    0x00, 0x11, 0x33, 0x77, 0x88, 0x33, 0x11, 0x00,
    0x00, 0x00, 0x11, 0x33, 0x22, 0x11, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

// Floor texture (your basic checkered floor)
const unsigned char floor_texture[ F_TEX_WIDTH * F_TEX_HEIGHT ] = {
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xff, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xf0, 0xcc, 0xee, 0xff, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x66, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xee, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x55, 0x30, 0x30, 0x44, 0x30, 0x30,
    0xf0, 0xdd, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x60, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x33, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30, 0xf0, 0xff, 0xf0, 0xf0, 0xdd, 0xf0, 0xf0, 0xff,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x55, 0x33, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0,
    0x30, 0x44, 0x66, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xaa, 0xf0, 0xf0, 0xcc, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xff, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xdd, 0xf0,
    0x30, 0x30, 0x30, 0x77, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
};


//========================================================================
// These are fixed constants that control the particle engine. In a
// modular world, these values should be variables...
//========================================================================

// Maximum number of particles
#define MAX_PARTICLES   3000

// Life span of a particle (in seconds)
#define LIFE_SPAN       8.f

// A new particle is born every [BIRTH_INTERVAL] second
#define BIRTH_INTERVAL (LIFE_SPAN/(float)MAX_PARTICLES)

// Particle size (meters)
#define PARTICLE_SIZE   0.7f

// Gravitational constant (m/s^2)
#define GRAVITY         9.8f

// Base initial velocity (m/s)
#define VELOCITY        8.f

// Bounce friction (1.0 = no friction, 0.0 = maximum friction)
#define FRICTION        0.75f

// "Fountain" height (m)
#define FOUNTAIN_HEIGHT 3.f

// Fountain radius (m)
#define FOUNTAIN_RADIUS 1.6f

// Minimum delta-time for particle phisics (s)
#define MIN_DELTA_T     (BIRTH_INTERVAL * 0.5f)


//========================================================================
// Particle system global variables
//========================================================================

// This structure holds all state for a single particle
typedef struct {
    float x,y,z;     // Position in space
    float vx,vy,vz;  // Velocity vector
    float r,g,b;     // Color of particle
    float life;      // Life of particle (1.0 = newborn, < 0.0 = dead)
    int   active;    // Tells if this particle is active
} PARTICLE;

// Global vectors holding all particles. We use two vectors for double
// buffering.
static PARTICLE particles[MAX_PARTICLES];

// Global variable holding the age of the youngest particle
static float min_age;

// Color of latest born particle (used for fountain lighting)
static float glow_color[4];

// Position of latest born particle (used for fountain lighting)
static float glow_pos[4];


//========================================================================
// Object material and fog configuration constants
//========================================================================

const GLfloat fountain_diffuse[4]  = { 0.7f, 1.f,  1.f,  1.f };
const GLfloat fountain_specular[4] = {  1.f, 1.f,  1.f,  1.f };
const GLfloat fountain_shininess   = 12.f;
const GLfloat floor_diffuse[4]     = { 1.f,  0.6f, 0.6f, 1.f };
const GLfloat floor_specular[4]    = { 0.6f, 0.6f, 0.6f, 1.f };
const GLfloat floor_shininess      = 18.f;
const GLfloat fog_color[4]         = { 0.1f, 0.1f, 0.1f, 1.f };


//========================================================================
// Print usage information
//========================================================================

static void usage(void)
{
    printf("Usage: particles [-bfhs]\n");
    printf("Options:\n");
    printf(" -f   Run in full screen\n");
    printf(" -h   Display this help\n");
    printf(" -s   Run program as single thread (default is to use two threads)\n");
    printf("\n");
    printf("Program runtime controls:\n");
    printf(" W    Toggle wireframe mode\n");
    printf(" Esc  Exit program\n");
}


//========================================================================
// Initialize a new particle
//========================================================================

static void init_particle(PARTICLE *p, double t)
{
    float xy_angle, velocity;

    // Start position of particle is at the fountain blow-out
    p->x = 0.f;
    p->y = 0.f;
    p->z = FOUNTAIN_HEIGHT;

    // Start velocity is up (Z)...
    p->vz = 0.7f + (0.3f / 4096.f) * (float) (rand() & 4095);

    // ...and a randomly chosen X/Y direction
    xy_angle = (2.f * (float) M_PI / 4096.f) * (float) (rand() & 4095);
    p->vx = 0.4f * (float) cos(xy_angle);
    p->vy = 0.4f * (float) sin(xy_angle);

    // Scale velocity vector according to a time-varying velocity
    velocity = VELOCITY * (0.8f + 0.1f * (float) (sin(0.5 * t) + sin(1.31 * t)));
    p->vx *= velocity;
    p->vy *= velocity;
    p->vz *= velocity;

    // Color is time-varying
    p->r = 0.7f + 0.3f * (float) sin(0.34 * t + 0.1);
    p->g = 0.6f + 0.4f * (float) sin(0.63 * t + 1.1);
    p->b = 0.6f + 0.4f * (float) sin(0.91 * t + 2.1);

    // Store settings for fountain glow lighting
    glow_pos[0] = 0.4f * (float) sin(1.34 * t);
    glow_pos[1] = 0.4f * (float) sin(3.11 * t);
    glow_pos[2] = FOUNTAIN_HEIGHT + 1.f;
    glow_pos[3] = 1.f;
    glow_color[0] = p->r;
    glow_color[1] = p->g;
    glow_color[2] = p->b;
    glow_color[3] = 1.f;

    // The particle is new-born and active
    p->life = 1.f;
    p->active = 1;
}


//========================================================================
// Update a particle
//========================================================================

#define FOUNTAIN_R2 (FOUNTAIN_RADIUS+PARTICLE_SIZE/2)*(FOUNTAIN_RADIUS+PARTICLE_SIZE/2)

static void update_particle(PARTICLE *p, float dt)
{
    // If the particle is not active, we need not do anything
    if (!p->active)
        return;

    // The particle is getting older...
    p->life -= dt * (1.f / LIFE_SPAN);

    // Did the particle die?
    if (p->life <= 0.f)
    {
        p->active = 0;
        return;
    }

    // Apply gravity
    p->vz = p->vz - GRAVITY * dt;

    // Update particle position
    p->x = p->x + p->vx * dt;
    p->y = p->y + p->vy * dt;
    p->z = p->z + p->vz * dt;

    // Simple collision detection + response
    if (p->vz < 0.f)
    {
        // Particles should bounce on the fountain (with friction)
        if ((p->x * p->x + p->y * p->y) < FOUNTAIN_R2 &&
            p->z < (FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2))
        {
            p->vz = -FRICTION * p->vz;
            p->z  = FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2 +
                    FRICTION * (FOUNTAIN_HEIGHT +
                    PARTICLE_SIZE / 2 - p->z);
        }

        // Particles should bounce on the floor (with friction)
        else if (p->z < PARTICLE_SIZE / 2)
        {
            p->vz = -FRICTION * p->vz;
            p->z  = PARTICLE_SIZE / 2 +
                    FRICTION * (PARTICLE_SIZE / 2 - p->z);
        }
    }
}


//========================================================================
// The main frame for the particle engine. Called once per frame.
//========================================================================

static void particle_engine(double t, float dt)
{
    int i;
    float dt2;

    // Update particles (iterated several times per frame if dt is too large)
    while (dt > 0.f)
    {
        // Calculate delta time for this iteration
        dt2 = dt < MIN_DELTA_T ? dt : MIN_DELTA_T;

        for (i = 0;  i < MAX_PARTICLES;  i++)
            update_particle(&particles[i], dt2);

        min_age += dt2;

        // Should we create any new particle(s)?
        while (min_age >= BIRTH_INTERVAL)
        {
            min_age -= BIRTH_INTERVAL;

            // Find a dead particle to replace with a new one
            for (i = 0;  i < MAX_PARTICLES;  i++)
            {
                if (!particles[i].active)
                {
                    init_particle(&particles[i], t + min_age);
                    update_particle(&particles[i], min_age);
                    break;
                }
            }
        }

        dt -= dt2;
    }
}


//========================================================================
// Draw all active particles. We use OpenGL 1.1 vertex
// arrays for this in order to accelerate the drawing.
//========================================================================

#define BATCH_PARTICLES 70  // Number of particles to draw in each batch
                            // (70 corresponds to 7.5 KB = will not blow
                            // the L1 data cache on most CPUs)
#define PARTICLE_VERTS  4   // Number of vertices per particle

static void draw_particles(GLFWwindow* window, double t, float dt)
{
    int i, particle_count;
    Vertex vertex_array[BATCH_PARTICLES * PARTICLE_VERTS];
    Vertex* vptr;
    float alpha;
    GLuint rgba;
    Vec3 quad_lower_left, quad_lower_right;
    GLfloat mat[16];
    PARTICLE* pptr;

    // Here comes the real trick with flat single primitive objects (s.c.
    // "billboards"): We must rotate the textured primitive so that it
    // always faces the viewer (is coplanar with the view-plane).
    // We:
    //   1) Create the primitive around origo (0,0,0)
    //   2) Rotate it so that it is coplanar with the view plane
    //   3) Translate it according to the particle position
    // Note that 1) and 2) is the same for all particles (done only once).

    // Get modelview matrix. We will only use the upper left 3x3 part of
    // the matrix, which represents the rotation.
    glGetFloatv(GL_MODELVIEW_MATRIX, mat);

    // 1) & 2) We do it in one swift step:
    // Although not obvious, the following six lines represent two matrix/
    // vector multiplications. The matrix is the inverse 3x3 rotation
    // matrix (i.e. the transpose of the same matrix), and the two vectors
    // represent the lower left corner of the quad, PARTICLE_SIZE/2 *
    // (-1,-1,0), and the lower right corner, PARTICLE_SIZE/2 * (1,-1,0).
    // The upper left/right corners of the quad is always the negative of
    // the opposite corners (regardless of rotation).
    quad_lower_left.x = (-PARTICLE_SIZE / 2) * (mat[0] + mat[1]);
    quad_lower_left.y = (-PARTICLE_SIZE / 2) * (mat[4] + mat[5]);
    quad_lower_left.z = (-PARTICLE_SIZE / 2) * (mat[8] + mat[9]);
    quad_lower_right.x = (PARTICLE_SIZE / 2) * (mat[0] - mat[1]);
    quad_lower_right.y = (PARTICLE_SIZE / 2) * (mat[4] - mat[5]);
    quad_lower_right.z = (PARTICLE_SIZE / 2) * (mat[8] - mat[9]);

    // Don't update z-buffer, since all particles are transparent!
    glDepthMask(GL_FALSE);

    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE);

    // Select particle texture
    if (!wireframe)
    {
        glEnable(GL_TEXTURE_2D);
        glBindTexture(GL_TEXTURE_2D, particle_tex_id);
    }

    // Set up vertex arrays. We use interleaved arrays, which is easier to
    // handle (in most situations) and it gives a linear memory access
    // access pattern (which may give better performance in some
    // situations). GL_T2F_C4UB_V3F means: 2 floats for texture coords,
    // 4 ubytes for color and 3 floats for vertex coord (in that order).
    // Most OpenGL cards / drivers are optimized for this format.
    glInterleavedArrays(GL_T2F_C4UB_V3F, 0, vertex_array);

    // Wait for particle physics thread to be done
    mtx_lock(&thread_sync.particles_lock);
    while (!glfwWindowShouldClose(window) &&
            thread_sync.p_frame <= thread_sync.d_frame)
    {
        struct timespec ts;
        clock_gettime(CLOCK_REALTIME, &ts);
        ts.tv_nsec += 100 * 1000 * 1000;
        ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000);
        ts.tv_nsec %= 1000 * 1000 * 1000;
        cnd_timedwait(&thread_sync.p_done, &thread_sync.particles_lock, &ts);
    }

    // Store the frame time and delta time for the physics thread
    thread_sync.t = t;
    thread_sync.dt = dt;

    // Update frame counter
    thread_sync.d_frame++;

    // Loop through all particles and build vertex arrays.
    particle_count = 0;
    vptr = vertex_array;
    pptr = particles;

    for (i = 0;  i < MAX_PARTICLES;  i++)
    {
        if (pptr->active)
        {
            // Calculate particle intensity (we set it to max during 75%
            // of its life, then it fades out)
            alpha =  4.f * pptr->life;
            if (alpha > 1.f)
                alpha = 1.f;

            // Convert color from float to 8-bit (store it in a 32-bit
            // integer using endian independent type casting)
            ((GLubyte*) &rgba)[0] = (GLubyte)(pptr->r * 255.f);
            ((GLubyte*) &rgba)[1] = (GLubyte)(pptr->g * 255.f);
            ((GLubyte*) &rgba)[2] = (GLubyte)(pptr->b * 255.f);
            ((GLubyte*) &rgba)[3] = (GLubyte)(alpha * 255.f);

            // 3) Translate the quad to the correct position in modelview
            // space and store its parameters in vertex arrays (we also
            // store texture coord and color information for each vertex).

            // Lower left corner
            vptr->s    = 0.f;
            vptr->t    = 0.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x + quad_lower_left.x;
            vptr->y    = pptr->y + quad_lower_left.y;
            vptr->z    = pptr->z + quad_lower_left.z;
            vptr ++;

            // Lower right corner
            vptr->s    = 1.f;
            vptr->t    = 0.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x + quad_lower_right.x;
            vptr->y    = pptr->y + quad_lower_right.y;
            vptr->z    = pptr->z + quad_lower_right.z;
            vptr ++;

            // Upper right corner
            vptr->s    = 1.f;
            vptr->t    = 1.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x - quad_lower_left.x;
            vptr->y    = pptr->y - quad_lower_left.y;
            vptr->z    = pptr->z - quad_lower_left.z;
            vptr ++;

            // Upper left corner
            vptr->s    = 0.f;
            vptr->t    = 1.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x - quad_lower_right.x;
            vptr->y    = pptr->y - quad_lower_right.y;
            vptr->z    = pptr->z - quad_lower_right.z;
            vptr ++;

            // Increase count of drawable particles
            particle_count ++;
        }

        // If we have filled up one batch of particles, draw it as a set
        // of quads using glDrawArrays.
        if (particle_count >= BATCH_PARTICLES)
        {
            // The first argument tells which primitive type we use (QUAD)
            // The second argument tells the index of the first vertex (0)
            // The last argument is the vertex count
            glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count);
            particle_count = 0;
            vptr = vertex_array;
        }

        // Next particle
        pptr++;
    }

    // We are done with the particle data
    mtx_unlock(&thread_sync.particles_lock);
    cnd_signal(&thread_sync.d_done);

    // Draw final batch of particles (if any)
    glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count);

    // Disable vertex arrays (Note: glInterleavedArrays implicitly called
    // glEnableClientState for vertex, texture coord and color arrays)
    glDisableClientState(GL_VERTEX_ARRAY);
    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
    glDisableClientState(GL_COLOR_ARRAY);

    glDisable(GL_TEXTURE_2D);
    glDisable(GL_BLEND);

    glDepthMask(GL_TRUE);
}


//========================================================================
// Fountain geometry specification
//========================================================================

#define FOUNTAIN_SIDE_POINTS 14
#define FOUNTAIN_SWEEP_STEPS 32

static const float fountain_side[FOUNTAIN_SIDE_POINTS * 2] =
{
    1.2f, 0.f,  1.f, 0.2f,  0.41f, 0.3f, 0.4f, 0.35f,
    0.4f, 1.95f, 0.41f, 2.f, 0.8f, 2.2f,  1.2f, 2.4f,
    1.5f, 2.7f,  1.55f,2.95f, 1.6f, 3.f,  1.f, 3.f,
    0.5f, 3.f,  0.f, 3.f
};

static const float fountain_normal[FOUNTAIN_SIDE_POINTS * 2] =
{
    1.0000f, 0.0000f,  0.6428f, 0.7660f,  0.3420f, 0.9397f,  1.0000f, 0.0000f,
    1.0000f, 0.0000f,  0.3420f,-0.9397f,  0.4226f,-0.9063f,  0.5000f,-0.8660f,
    0.7660f,-0.6428f,  0.9063f,-0.4226f,  0.0000f,1.00000f,  0.0000f,1.00000f,
    0.0000f,1.00000f,  0.0000f,1.00000f
};


//========================================================================
// Draw a fountain
//========================================================================

static void draw_fountain(void)
{
    static GLuint fountain_list = 0;
    double angle;
    float  x, y;
    int m, n;

    // The first time, we build the fountain display list
    if (!fountain_list)
    {
        fountain_list = glGenLists(1);
        glNewList(fountain_list, GL_COMPILE_AND_EXECUTE);

        glMaterialfv(GL_FRONT, GL_DIFFUSE, fountain_diffuse);
        glMaterialfv(GL_FRONT, GL_SPECULAR, fountain_specular);
        glMaterialf(GL_FRONT, GL_SHININESS, fountain_shininess);

        // Build fountain using triangle strips
        for (n = 0;  n < FOUNTAIN_SIDE_POINTS - 1;  n++)
        {
            glBegin(GL_TRIANGLE_STRIP);
            for (m = 0;  m <= FOUNTAIN_SWEEP_STEPS;  m++)
            {
                angle = (double) m * (2.0 * M_PI / (double) FOUNTAIN_SWEEP_STEPS);
                x = (float) cos(angle);
                y = (float) sin(angle);

                // Draw triangle strip
                glNormal3f(x * fountain_normal[n * 2 + 2],
                           y * fountain_normal[n * 2 + 2],
                           fountain_normal[n * 2 + 3]);
                glVertex3f(x * fountain_side[n * 2 + 2],
                           y * fountain_side[n * 2 + 2],
                           fountain_side[n * 2 +3 ]);
                glNormal3f(x * fountain_normal[n * 2],
                           y * fountain_normal[n * 2],
                           fountain_normal[n * 2 + 1]);
                glVertex3f(x * fountain_side[n * 2],
                           y * fountain_side[n * 2],
                           fountain_side[n * 2 + 1]);
            }

            glEnd();
        }

        glEndList();
    }
    else
        glCallList(fountain_list);
}


//========================================================================
// Recursive function for building variable tessellated floor
//========================================================================

static void tessellate_floor(float x1, float y1, float x2, float y2, int depth)
{
    float delta, x, y;

    // Last recursion?
    if (depth >= 5)
        delta = 999999.f;
    else
    {
        x = (float) (fabs(x1) < fabs(x2) ? fabs(x1) : fabs(x2));
        y = (float) (fabs(y1) < fabs(y2) ? fabs(y1) : fabs(y2));
        delta = x*x + y*y;
    }

    // Recurse further?
    if (delta < 0.1f)
    {
        x = (x1 + x2) * 0.5f;
        y = (y1 + y2) * 0.5f;
        tessellate_floor(x1, y1,  x,  y, depth + 1);
        tessellate_floor(x, y1, x2,  y, depth + 1);
        tessellate_floor(x1,  y,  x, y2, depth + 1);
        tessellate_floor(x,  y, x2, y2, depth + 1);
    }
    else
    {
        glTexCoord2f(x1 * 30.f, y1 * 30.f);
        glVertex3f(  x1 * 80.f, y1 * 80.f, 0.f);
        glTexCoord2f(x2 * 30.f, y1 * 30.f);
        glVertex3f(  x2 * 80.f, y1 * 80.f, 0.f);
        glTexCoord2f(x2 * 30.f, y2 * 30.f);
        glVertex3f(  x2 * 80.f, y2 * 80.f, 0.f);
        glTexCoord2f(x1 * 30.f, y2 * 30.f);
        glVertex3f(  x1 * 80.f, y2 * 80.f, 0.f);
    }
}


//========================================================================
// Draw floor. We build the floor recursively and let the tessellation in the
// center (near x,y=0,0) be high, while the tessellation around the edges be
// low.
//========================================================================

static void draw_floor(void)
{
    static GLuint floor_list = 0;

    if (!wireframe)
    {
        glEnable(GL_TEXTURE_2D);
        glBindTexture(GL_TEXTURE_2D, floor_tex_id);
    }

    // The first time, we build the floor display list
    if (!floor_list)
    {
        floor_list = glGenLists(1);
        glNewList(floor_list, GL_COMPILE_AND_EXECUTE);

        glMaterialfv(GL_FRONT, GL_DIFFUSE, floor_diffuse);
        glMaterialfv(GL_FRONT, GL_SPECULAR, floor_specular);
        glMaterialf(GL_FRONT, GL_SHININESS, floor_shininess);

        // Draw floor as a bunch of triangle strips (high tessellation
        // improves lighting)
        glNormal3f(0.f, 0.f, 1.f);
        glBegin(GL_QUADS);
        tessellate_floor(-1.f, -1.f, 0.f, 0.f, 0);
        tessellate_floor( 0.f, -1.f, 1.f, 0.f, 0);
        tessellate_floor( 0.f,  0.f, 1.f, 1.f, 0);
        tessellate_floor(-1.f,  0.f, 0.f, 1.f, 0);
        glEnd();

        glEndList();
    }
    else
        glCallList(floor_list);

    glDisable(GL_TEXTURE_2D);

}


//========================================================================
// Position and configure light sources
//========================================================================

static void setup_lights(void)
{
    float l1pos[4], l1amb[4], l1dif[4], l1spec[4];
    float l2pos[4], l2amb[4], l2dif[4], l2spec[4];

    // Set light source 1 parameters
    l1pos[0] =  0.f;  l1pos[1] = -9.f; l1pos[2] =   8.f;  l1pos[3] = 1.f;
    l1amb[0] = 0.2f;  l1amb[1] = 0.2f;  l1amb[2] = 0.2f;  l1amb[3] = 1.f;
    l1dif[0] = 0.8f;  l1dif[1] = 0.4f;  l1dif[2] = 0.2f;  l1dif[3] = 1.f;
    l1spec[0] = 1.f; l1spec[1] = 0.6f; l1spec[2] = 0.2f; l1spec[3] = 0.f;

    // Set light source 2 parameters
    l2pos[0] =  -15.f; l2pos[1] =  12.f; l2pos[2] = 1.5f; l2pos[3] =  1.f;
    l2amb[0] =    0.f; l2amb[1] =   0.f; l2amb[2] =  0.f; l2amb[3] =  1.f;
    l2dif[0] =   0.2f; l2dif[1] =  0.4f; l2dif[2] = 0.8f; l2dif[3] =  1.f;
    l2spec[0] =  0.2f; l2spec[1] = 0.6f; l2spec[2] = 1.f; l2spec[3] = 0.f;

    glLightfv(GL_LIGHT1, GL_POSITION, l1pos);
    glLightfv(GL_LIGHT1, GL_AMBIENT, l1amb);
    glLightfv(GL_LIGHT1, GL_DIFFUSE, l1dif);
    glLightfv(GL_LIGHT1, GL_SPECULAR, l1spec);
    glLightfv(GL_LIGHT2, GL_POSITION, l2pos);
    glLightfv(GL_LIGHT2, GL_AMBIENT, l2amb);
    glLightfv(GL_LIGHT2, GL_DIFFUSE, l2dif);
    glLightfv(GL_LIGHT2, GL_SPECULAR, l2spec);
    glLightfv(GL_LIGHT3, GL_POSITION, glow_pos);
    glLightfv(GL_LIGHT3, GL_DIFFUSE, glow_color);
    glLightfv(GL_LIGHT3, GL_SPECULAR, glow_color);

    glEnable(GL_LIGHT1);
    glEnable(GL_LIGHT2);
    glEnable(GL_LIGHT3);
}


//========================================================================
// Main rendering function
//========================================================================

static void draw_scene(GLFWwindow* window, double t)
{
    double xpos, ypos, zpos, angle_x, angle_y, angle_z;
    static double t_old = 0.0;
    float dt;
    mat4x4 projection;

    // Calculate frame-to-frame delta time
    dt = (float) (t - t_old);
    t_old = t;

    mat4x4_perspective(projection,
                       65.f * (float) M_PI / 180.f,
                       aspect_ratio,
                       1.0, 60.0);

    glClearColor(0.1f, 0.1f, 0.1f, 1.f);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glMatrixMode(GL_PROJECTION);
    glLoadMatrixf((const GLfloat*) projection);

    // Setup camera
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();

    // Rotate camera
    angle_x = 90.0 - 10.0;
    angle_y = 10.0 * sin(0.3 * t);
    angle_z = 10.0 * t;
    glRotated(-angle_x, 1.0, 0.0, 0.0);
    glRotated(-angle_y, 0.0, 1.0, 0.0);
    glRotated(-angle_z, 0.0, 0.0, 1.0);

    // Translate camera
    xpos =  15.0 * sin((M_PI / 180.0) * angle_z) +
             2.0 * sin((M_PI / 180.0) * 3.1 * t);
    ypos = -15.0 * cos((M_PI / 180.0) * angle_z) +
             2.0 * cos((M_PI / 180.0) * 2.9 * t);
    zpos = 4.0 + 2.0 * cos((M_PI / 180.0) * 4.9 * t);
    glTranslated(-xpos, -ypos, -zpos);

    glFrontFace(GL_CCW);
    glCullFace(GL_BACK);
    glEnable(GL_CULL_FACE);

    setup_lights();
    glEnable(GL_LIGHTING);

    glEnable(GL_FOG);
    glFogi(GL_FOG_MODE, GL_EXP);
    glFogf(GL_FOG_DENSITY, 0.05f);
    glFogfv(GL_FOG_COLOR, fog_color);

    draw_floor();

    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LEQUAL);
    glDepthMask(GL_TRUE);

    draw_fountain();

    glDisable(GL_LIGHTING);
    glDisable(GL_FOG);

    // Particles must be drawn after all solid objects have been drawn
    draw_particles(window, t, dt);

    // Z-buffer not needed anymore
    glDisable(GL_DEPTH_TEST);
}


//========================================================================
// Window resize callback function
//========================================================================

static void resize_callback(GLFWwindow* window, int width, int height)
{
    glViewport(0, 0, width, height);
    aspect_ratio = height ? width / (float) height : 1.f;
}


//========================================================================
// Key callback functions
//========================================================================

static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
    if (action == GLFW_PRESS)
    {
        switch (key)
        {
            case GLFW_KEY_ESCAPE:
                glfwSetWindowShouldClose(window, GLFW_TRUE);
                break;
            case GLFW_KEY_W:
                wireframe = !wireframe;
                glPolygonMode(GL_FRONT_AND_BACK,
                              wireframe ? GL_LINE : GL_FILL);
                break;
            default:
                break;
        }
    }
}


//========================================================================
// Thread for updating particle physics
//========================================================================

static int physics_thread_main(void* arg)
{
    GLFWwindow* window = arg;

    for (;;)
    {
        mtx_lock(&thread_sync.particles_lock);

        // Wait for particle drawing to be done
        while (!glfwWindowShouldClose(window) &&
               thread_sync.p_frame > thread_sync.d_frame)
        {
            struct timespec ts;
            clock_gettime(CLOCK_REALTIME, &ts);
            ts.tv_nsec += 100 * 1000 * 1000;
            ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000);
            ts.tv_nsec %= 1000 * 1000 * 1000;
            cnd_timedwait(&thread_sync.d_done, &thread_sync.particles_lock, &ts);
        }

        if (glfwWindowShouldClose(window))
            break;

        // Update particles
        particle_engine(thread_sync.t, thread_sync.dt);

        // Update frame counter
        thread_sync.p_frame++;

        // Unlock mutex and signal drawing thread
        mtx_unlock(&thread_sync.particles_lock);
        cnd_signal(&thread_sync.p_done);
    }

    return 0;
}


//========================================================================
// main
//========================================================================

int main(int argc, char** argv)
{
    int ch, width, height;
    thrd_t physics_thread = 0;
    GLFWwindow* window;
    GLFWmonitor* monitor = NULL;

    if (!glfwInit())
    {
        fprintf(stderr, "Failed to initialize GLFW\n");
        exit(EXIT_FAILURE);
    }

    while ((ch = getopt(argc, argv, "fh")) != -1)
    {
        switch (ch)
        {
            case 'f':
                monitor = glfwGetPrimaryMonitor();
                break;
            case 'h':
                usage();
                exit(EXIT_SUCCESS);
        }
    }

    if (monitor)
    {
        const GLFWvidmode* mode = glfwGetVideoMode(monitor);

        glfwWindowHint(GLFW_RED_BITS, mode->redBits);
        glfwWindowHint(GLFW_GREEN_BITS, mode->greenBits);
        glfwWindowHint(GLFW_BLUE_BITS, mode->blueBits);
        glfwWindowHint(GLFW_REFRESH_RATE, mode->refreshRate);

        width  = mode->width;
        height = mode->height;
    }
    else
    {
        width  = 640;
        height = 480;
    }

    window = glfwCreateWindow(width, height, "Particle Engine", monitor, NULL);
    if (!window)
    {
        fprintf(stderr, "Failed to create GLFW window\n");
        glfwTerminate();
        exit(EXIT_FAILURE);
    }

    if (monitor)
        glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    glfwMakeContextCurrent(window);
    gladLoadGL(glfwGetProcAddress);
    glfwSwapInterval(1);

    glfwSetFramebufferSizeCallback(window, resize_callback);
    glfwSetKeyCallback(window, key_callback);

    // Set initial aspect ratio
    glfwGetFramebufferSize(window, &width, &height);
    resize_callback(window, width, height);

    // Upload particle texture
    glGenTextures(1, &particle_tex_id);
    glBindTexture(GL_TEXTURE_2D, particle_tex_id);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, P_TEX_WIDTH, P_TEX_HEIGHT,
                 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, particle_texture);

    // Upload floor texture
    glGenTextures(1, &floor_tex_id);
    glBindTexture(GL_TEXTURE_2D, floor_tex_id);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, F_TEX_WIDTH, F_TEX_HEIGHT,
                 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, floor_texture);

    if (glfwExtensionSupported("GL_EXT_separate_specular_color"))
    {
        glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL_EXT,
                      GL_SEPARATE_SPECULAR_COLOR_EXT);
    }

    // Set filled polygon mode as default (not wireframe)
    glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
    wireframe = 0;

    // Set initial times
    thread_sync.t  = 0.0;
    thread_sync.dt = 0.001f;
    thread_sync.p_frame = 0;
    thread_sync.d_frame = 0;

    mtx_init(&thread_sync.particles_lock, mtx_timed);
    cnd_init(&thread_sync.p_done);
    cnd_init(&thread_sync.d_done);

    if (thrd_create(&physics_thread, physics_thread_main, window) != thrd_success)
    {
        glfwTerminate();
        exit(EXIT_FAILURE);
    }

    glfwSetTime(0.0);

    while (!glfwWindowShouldClose(window))
    {
        draw_scene(window, glfwGetTime());

        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    thrd_join(physics_thread, NULL);

    glfwDestroyWindow(window);
    glfwTerminate();

    exit(EXIT_SUCCESS);
}