ref: f0ac2d01765f938a4f3656efef440cf2c1bca69d
dir: /sys/src/cmd/audio/libFLAC/bitwriter.c/
/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000-2009 Josh Coalson * Copyright (C) 2011-2022 Xiph.Org Foundation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H # include <config.h> #endif #include <stdlib.h> #include <string.h> #include "private/bitwriter.h" #include "private/crc.h" #include "private/format.h" #include "private/macros.h" #include "private/stream_encoder.h" #include "FLAC/assert.h" #include "share/alloc.h" #include "share/compat.h" #include "share/endswap.h" /* Things should be fastest when this matches the machine word size */ /* WATCHOUT: if you change this you must also change the following #defines down to SWAP_BE_WORD_TO_HOST below to match */ /* WATCHOUT: there are a few places where the code will not work unless bwword is >= 32 bits wide */ #if (ENABLE_64_BIT_WORDS == 0) typedef FLAC__uint32 bwword; #define FLAC__BYTES_PER_WORD 4 /* sizeof bwword */ #define FLAC__BITS_PER_WORD 32 /* SWAP_BE_WORD_TO_HOST swaps bytes in a bwword (which is always big-endian) if necessary to match host byte order */ #if WORDS_BIGENDIAN #define SWAP_BE_WORD_TO_HOST(x) (x) #else #define SWAP_BE_WORD_TO_HOST(x) ENDSWAP_32(x) #endif #else typedef FLAC__uint64 bwword; #define FLAC__BYTES_PER_WORD 8 /* sizeof bwword */ #define FLAC__BITS_PER_WORD 64 /* SWAP_BE_WORD_TO_HOST swaps bytes in a bwword (which is always big-endian) if necessary to match host byte order */ #if WORDS_BIGENDIAN #define SWAP_BE_WORD_TO_HOST(x) (x) #else #define SWAP_BE_WORD_TO_HOST(x) ENDSWAP_64(x) #endif #endif /* * The default capacity here doesn't matter too much. The buffer always grows * to hold whatever is written to it. Usually the encoder will stop adding at * a frame or metadata block, then write that out and clear the buffer for the * next one. */ static const uint32_t FLAC__BITWRITER_DEFAULT_CAPACITY = 32768u / sizeof(bwword); /* size in words */ /* When growing, increment 4K at a time */ static const uint32_t FLAC__BITWRITER_DEFAULT_INCREMENT = 4096u / sizeof(bwword); /* size in words */ #define FLAC__WORDS_TO_BITS(words) ((words) * FLAC__BITS_PER_WORD) #define FLAC__TOTAL_BITS(bw) (FLAC__WORDS_TO_BITS((bw)->words) + (bw)->bits) struct FLAC__BitWriter { bwword *buffer; bwword accum; /* accumulator; bits are right-justified; when full, accum is appended to buffer */ uint32_t capacity; /* capacity of buffer in words */ uint32_t words; /* # of complete words in buffer */ uint32_t bits; /* # of used bits in accum */ }; /* * WATCHOUT: The current implementation only grows the buffer. */ #ifndef __SUNPRO_C static #endif FLAC__bool bitwriter_grow_(FLAC__BitWriter *bw, uint32_t bits_to_add) { uint32_t new_capacity; bwword *new_buffer; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); /* calculate total words needed to store 'bits_to_add' additional bits */ new_capacity = bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD); /* it's possible (due to pessimism in the growth estimation that * leads to this call) that we don't actually need to grow */ if(bw->capacity >= new_capacity) return true; if(new_capacity * sizeof(bwword) > (1u << FLAC__STREAM_METADATA_LENGTH_LEN)) /* Requested new capacity is larger than the largest possible metadata block, * which is also larger than the largest sane framesize. That means something * went very wrong somewhere and previous checks failed. * To prevent chrashing, give up */ return false; /* round up capacity increase to the nearest FLAC__BITWRITER_DEFAULT_INCREMENT */ if((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT) new_capacity += FLAC__BITWRITER_DEFAULT_INCREMENT - ((new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT); /* make sure we got everything right */ FLAC__ASSERT(0 == (new_capacity - bw->capacity) % FLAC__BITWRITER_DEFAULT_INCREMENT); FLAC__ASSERT(new_capacity > bw->capacity); FLAC__ASSERT(new_capacity >= bw->words + ((bw->bits + bits_to_add + FLAC__BITS_PER_WORD - 1) / FLAC__BITS_PER_WORD)); new_buffer = safe_realloc_nofree_mul_2op_(bw->buffer, sizeof(bwword), /*times*/new_capacity); if(new_buffer == 0) return false; bw->buffer = new_buffer; bw->capacity = new_capacity; return true; } /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ FLAC__BitWriter *FLAC__bitwriter_new(void) { FLAC__BitWriter *bw = calloc(1, sizeof(FLAC__BitWriter)); /* note that calloc() sets all members to 0 for us */ return bw; } void FLAC__bitwriter_delete(FLAC__BitWriter *bw) { FLAC__ASSERT(0 != bw); FLAC__bitwriter_free(bw); free(bw); } /*********************************************************************** * * Public class methods * ***********************************************************************/ FLAC__bool FLAC__bitwriter_init(FLAC__BitWriter *bw) { FLAC__ASSERT(0 != bw); bw->words = bw->bits = 0; bw->capacity = FLAC__BITWRITER_DEFAULT_CAPACITY; bw->buffer = malloc(sizeof(bwword) * bw->capacity); if(bw->buffer == 0) return false; return true; } void FLAC__bitwriter_free(FLAC__BitWriter *bw) { FLAC__ASSERT(0 != bw); if(0 != bw->buffer) free(bw->buffer); bw->buffer = 0; bw->capacity = 0; bw->words = bw->bits = 0; } void FLAC__bitwriter_clear(FLAC__BitWriter *bw) { bw->words = bw->bits = 0; } void FLAC__bitwriter_dump(const FLAC__BitWriter *bw, FILE *out) { uint32_t i, j; if(bw == 0) { fprintf(out, "bitwriter is NULL\n"); } else { fprintf(out, "bitwriter: capacity=%u words=%u bits=%u total_bits=%u\n", bw->capacity, bw->words, bw->bits, FLAC__TOTAL_BITS(bw)); for(i = 0; i < bw->words; i++) { fprintf(out, "%08X: ", i); for(j = 0; j < FLAC__BITS_PER_WORD; j++) fprintf(out, "%01d", bw->buffer[i] & ((bwword)1 << (FLAC__BITS_PER_WORD-j-1)) ? 1:0); fprintf(out, "\n"); } if(bw->bits > 0) { fprintf(out, "%08X: ", i); for(j = 0; j < bw->bits; j++) fprintf(out, "%01d", bw->accum & ((bwword)1 << (bw->bits-j-1)) ? 1:0); fprintf(out, "\n"); } } } FLAC__bool FLAC__bitwriter_get_write_crc16(FLAC__BitWriter *bw, FLAC__uint16 *crc) { const FLAC__byte *buffer; size_t bytes; FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */ if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes)) return false; *crc = (FLAC__uint16)FLAC__crc16(buffer, bytes); FLAC__bitwriter_release_buffer(bw); return true; } FLAC__bool FLAC__bitwriter_get_write_crc8(FLAC__BitWriter *bw, FLAC__byte *crc) { const FLAC__byte *buffer; size_t bytes; FLAC__ASSERT((bw->bits & 7) == 0); /* assert that we're byte-aligned */ if(!FLAC__bitwriter_get_buffer(bw, &buffer, &bytes)) return false; *crc = FLAC__crc8(buffer, bytes); FLAC__bitwriter_release_buffer(bw); return true; } FLAC__bool FLAC__bitwriter_is_byte_aligned(const FLAC__BitWriter *bw) { return ((bw->bits & 7) == 0); } uint32_t FLAC__bitwriter_get_input_bits_unconsumed(const FLAC__BitWriter *bw) { return FLAC__TOTAL_BITS(bw); } FLAC__bool FLAC__bitwriter_get_buffer(FLAC__BitWriter *bw, const FLAC__byte **buffer, size_t *bytes) { FLAC__ASSERT((bw->bits & 7) == 0); /* double protection */ if(bw->bits & 7) return false; /* if we have bits in the accumulator we have to flush those to the buffer first */ if(bw->bits) { FLAC__ASSERT(bw->words <= bw->capacity); if(bw->words == bw->capacity && !bitwriter_grow_(bw, FLAC__BITS_PER_WORD)) return false; /* append bits as complete word to buffer, but don't change bw->accum or bw->bits */ bw->buffer[bw->words] = SWAP_BE_WORD_TO_HOST(bw->accum << (FLAC__BITS_PER_WORD-bw->bits)); } /* now we can just return what we have */ *buffer = (FLAC__byte*)bw->buffer; *bytes = (FLAC__BYTES_PER_WORD * bw->words) + (bw->bits >> 3); return true; } void FLAC__bitwriter_release_buffer(FLAC__BitWriter *bw) { /* nothing to do. in the future, strict checking of a 'writer-is-in- * get-mode' flag could be added everywhere and then cleared here */ (void)bw; } inline FLAC__bool FLAC__bitwriter_write_zeroes(FLAC__BitWriter *bw, uint32_t bits) { uint32_t n; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); if(bits == 0) return true; /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits)) return false; /* first part gets to word alignment */ if(bw->bits) { n = flac_min(FLAC__BITS_PER_WORD - bw->bits, bits); bw->accum <<= n; bits -= n; bw->bits += n; if(bw->bits == FLAC__BITS_PER_WORD) { bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->bits = 0; } else return true; } /* do whole words */ while(bits >= FLAC__BITS_PER_WORD) { bw->buffer[bw->words++] = 0; bits -= FLAC__BITS_PER_WORD; } /* do any leftovers */ if(bits > 0) { bw->accum = 0; bw->bits = bits; } return true; } static inline FLAC__bool FLAC__bitwriter_write_raw_uint32_nocheck(FLAC__BitWriter *bw, FLAC__uint32 val, uint32_t bits) { register uint32_t left; /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); if(bw == 0 || bw->buffer == 0) return false; if (bits > 32) return false; if(bits == 0) return true; FLAC__ASSERT((bits == 32) || (val>>bits == 0)); /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+bits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ if(bw->capacity <= bw->words + bits && !bitwriter_grow_(bw, bits)) return false; left = FLAC__BITS_PER_WORD - bw->bits; if(bits < left) { bw->accum <<= bits; bw->accum |= val; bw->bits += bits; } else if(bw->bits) { /* WATCHOUT: if bw->bits == 0, left==FLAC__BITS_PER_WORD and bw->accum<<=left is a NOP instead of setting to 0 */ bw->accum <<= left; bw->accum |= val >> (bw->bits = bits - left); bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->accum = val; /* unused top bits can contain garbage */ } else { /* at this point bits == FLAC__BITS_PER_WORD == 32 and bw->bits == 0 */ bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST((bwword)val); } return true; } inline FLAC__bool FLAC__bitwriter_write_raw_uint32(FLAC__BitWriter *bw, FLAC__uint32 val, uint32_t bits) { /* check that unused bits are unset */ if((bits < 32) && (val>>bits != 0)) return false; return FLAC__bitwriter_write_raw_uint32_nocheck(bw, val, bits); } inline FLAC__bool FLAC__bitwriter_write_raw_int32(FLAC__BitWriter *bw, FLAC__int32 val, uint32_t bits) { /* zero-out unused bits */ if(bits < 32) val &= (~(0xffffffff << bits)); return FLAC__bitwriter_write_raw_uint32_nocheck(bw, (FLAC__uint32)val, bits); } inline FLAC__bool FLAC__bitwriter_write_raw_uint64(FLAC__BitWriter *bw, FLAC__uint64 val, uint32_t bits) { /* this could be a little faster but it's not used for much */ if(bits > 32) { return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)(val>>32), bits-32) && FLAC__bitwriter_write_raw_uint32_nocheck(bw, (FLAC__uint32)val, 32); } else return FLAC__bitwriter_write_raw_uint32(bw, (FLAC__uint32)val, bits); } inline FLAC__bool FLAC__bitwriter_write_raw_int64(FLAC__BitWriter *bw, FLAC__int64 val, uint32_t bits) { FLAC__uint64 uval = val; /* zero-out unused bits */ if(bits < 64) uval &= (~(UINT64_MAX << bits)); return FLAC__bitwriter_write_raw_uint64(bw, uval, bits); } inline FLAC__bool FLAC__bitwriter_write_raw_uint32_little_endian(FLAC__BitWriter *bw, FLAC__uint32 val) { /* this doesn't need to be that fast as currently it is only used for vorbis comments */ if(!FLAC__bitwriter_write_raw_uint32_nocheck(bw, val & 0xff, 8)) return false; if(!FLAC__bitwriter_write_raw_uint32_nocheck(bw, (val>>8) & 0xff, 8)) return false; if(!FLAC__bitwriter_write_raw_uint32_nocheck(bw, (val>>16) & 0xff, 8)) return false; if(!FLAC__bitwriter_write_raw_uint32_nocheck(bw, val>>24, 8)) return false; return true; } inline FLAC__bool FLAC__bitwriter_write_byte_block(FLAC__BitWriter *bw, const FLAC__byte vals[], uint32_t nvals) { uint32_t i; /* grow capacity upfront to prevent constant reallocation during writes */ if(bw->capacity <= bw->words + nvals / (FLAC__BITS_PER_WORD / 8) + 1 && !bitwriter_grow_(bw, nvals * 8)) return false; /* this could be faster but currently we don't need it to be since it's only used for writing metadata */ for(i = 0; i < nvals; i++) { if(!FLAC__bitwriter_write_raw_uint32_nocheck(bw, (FLAC__uint32)(vals[i]), 8)) return false; } return true; } FLAC__bool FLAC__bitwriter_write_unary_unsigned(FLAC__BitWriter *bw, uint32_t val) { if(val < 32) return FLAC__bitwriter_write_raw_uint32_nocheck(bw, 1, ++val); else return FLAC__bitwriter_write_zeroes(bw, val) && FLAC__bitwriter_write_raw_uint32_nocheck(bw, 1, 1); } uint32_t FLAC__bitwriter_rice_bits(FLAC__int32 val, uint32_t parameter) { FLAC__uint32 uval; FLAC__ASSERT(parameter < 32); /* fold signed to uint32_t; actual formula is: negative(v)? -2v-1 : 2v */ uval = val; uval <<= 1; uval ^= (val>>31); return 1 + parameter + (uval >> parameter); } #if 0 /* UNUSED */ uint32_t FLAC__bitwriter_golomb_bits_signed(int val, uint32_t parameter) { uint32_t bits, msbs, uval; uint32_t k; FLAC__ASSERT(parameter > 0); /* fold signed to uint32_t */ if(val < 0) uval = (uint32_t)(((-(++val)) << 1) + 1); else uval = (uint32_t)(val << 1); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { FLAC__ASSERT(k <= 30); msbs = uval >> k; bits = 1 + k + msbs; } else { uint32_t q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); bits = 1 + q + k; if(r >= d) bits++; } return bits; } uint32_t FLAC__bitwriter_golomb_bits_unsigned(uint32_t uval, uint32_t parameter) { uint32_t bits, msbs; uint32_t k; FLAC__ASSERT(parameter > 0); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { FLAC__ASSERT(k <= 30); msbs = uval >> k; bits = 1 + k + msbs; } else { uint32_t q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); bits = 1 + q + k; if(r >= d) bits++; } return bits; } #endif /* UNUSED */ FLAC__bool FLAC__bitwriter_write_rice_signed(FLAC__BitWriter *bw, FLAC__int32 val, uint32_t parameter) { uint32_t total_bits, interesting_bits, msbs; FLAC__uint32 uval, pattern; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter < 32); /* fold signed to uint32_t; actual formula is: negative(v)? -2v-1 : 2v */ uval = val; uval <<= 1; uval ^= (val>>31); msbs = uval >> parameter; interesting_bits = 1 + parameter; total_bits = interesting_bits + msbs; pattern = 1 << parameter; /* the unary end bit */ pattern |= (uval & ((1<<parameter)-1)); /* the binary LSBs */ if(total_bits <= 32) return FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits); else return FLAC__bitwriter_write_zeroes(bw, msbs) && /* write the unary MSBs */ FLAC__bitwriter_write_raw_uint32(bw, pattern, interesting_bits); /* write the unary end bit and binary LSBs */ } FLAC__bool FLAC__bitwriter_write_rice_signed_block(FLAC__BitWriter *bw, const FLAC__int32 *vals, uint32_t nvals, uint32_t parameter) { const FLAC__uint32 mask1 = (FLAC__uint32)0xffffffff << parameter; /* we val|=mask1 to set the stop bit above it... */ const FLAC__uint32 mask2 = (FLAC__uint32)0xffffffff >> (31-parameter); /* ...then mask off the bits above the stop bit with val&=mask2 */ FLAC__uint32 uval; uint32_t left; const uint32_t lsbits = 1 + parameter; uint32_t msbits, total_bits; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter < 31); /* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */ FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32); while(nvals) { /* fold signed to uint32_t; actual formula is: negative(v)? -2v-1 : 2v */ uval = *vals; uval <<= 1; uval ^= (*vals>>31); msbits = uval >> parameter; total_bits = lsbits + msbits; if(bw->bits && bw->bits + total_bits < FLAC__BITS_PER_WORD) { /* i.e. if the whole thing fits in the current bwword */ /* ^^^ if bw->bits is 0 then we may have filled the buffer and have no free bwword to work in */ bw->bits += total_bits; uval |= mask1; /* set stop bit */ uval &= mask2; /* mask off unused top bits */ bw->accum <<= total_bits; bw->accum |= uval; } else { /* slightly pessimistic size check but faster than "<= bw->words + (bw->bits+msbits+lsbits+FLAC__BITS_PER_WORD-1)/FLAC__BITS_PER_WORD" */ /* OPT: pessimism may cause flurry of false calls to grow_ which eat up all savings before it */ if(bw->capacity <= bw->words + bw->bits + msbits + 1 /* lsbits always fit in 1 bwword */ && !bitwriter_grow_(bw, total_bits)) return false; if(msbits) { /* first part gets to word alignment */ if(bw->bits) { left = FLAC__BITS_PER_WORD - bw->bits; if(msbits < left) { bw->accum <<= msbits; bw->bits += msbits; goto break1; } else { bw->accum <<= left; msbits -= left; bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->bits = 0; } } /* do whole words */ while(msbits >= FLAC__BITS_PER_WORD) { bw->buffer[bw->words++] = 0; msbits -= FLAC__BITS_PER_WORD; } /* do any leftovers */ if(msbits > 0) { bw->accum = 0; bw->bits = msbits; } } break1: uval |= mask1; /* set stop bit */ uval &= mask2; /* mask off unused top bits */ left = FLAC__BITS_PER_WORD - bw->bits; if(lsbits < left) { bw->accum <<= lsbits; bw->accum |= uval; bw->bits += lsbits; } else { /* if bw->bits == 0, left==FLAC__BITS_PER_WORD which will always * be > lsbits (because of previous assertions) so it would have * triggered the (lsbits<left) case above. */ FLAC__ASSERT(bw->bits); FLAC__ASSERT(left < FLAC__BITS_PER_WORD); bw->accum <<= left; bw->accum |= uval >> (bw->bits = lsbits - left); bw->buffer[bw->words++] = SWAP_BE_WORD_TO_HOST(bw->accum); bw->accum = uval; /* unused top bits can contain garbage */ } } vals++; nvals--; } return true; } #if 0 /* UNUSED */ FLAC__bool FLAC__bitwriter_write_golomb_signed(FLAC__BitWriter *bw, int val, uint32_t parameter) { uint32_t total_bits, msbs, uval; uint32_t k; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter > 0); /* fold signed to uint32_t */ if(val < 0) uval = (uint32_t)(((-(++val)) << 1) + 1); else uval = (uint32_t)(val << 1); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { uint32_t pattern; FLAC__ASSERT(k <= 30); msbs = uval >> k; total_bits = 1 + k + msbs; pattern = 1 << k; /* the unary end bit */ pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits)) return false; } else { /* write the unary MSBs */ if(!FLAC__bitwriter_write_zeroes(bw, msbs)) return false; /* write the unary end bit and binary LSBs */ if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, k+1)) return false; } } else { uint32_t q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); /* write the unary MSBs */ if(!FLAC__bitwriter_write_zeroes(bw, q)) return false; /* write the unary end bit */ if(!FLAC__bitwriter_write_raw_uint32(bw, 1, 1)) return false; /* write the binary LSBs */ if(r >= d) { if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1)) return false; } else { if(!FLAC__bitwriter_write_raw_uint32(bw, r, k)) return false; } } return true; } FLAC__bool FLAC__bitwriter_write_golomb_unsigned(FLAC__BitWriter *bw, uint32_t uval, uint32_t parameter) { uint32_t total_bits, msbs; uint32_t k; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); FLAC__ASSERT(parameter > 0); k = FLAC__bitmath_ilog2(parameter); if(parameter == 1u<<k) { uint32_t pattern; FLAC__ASSERT(k <= 30); msbs = uval >> k; total_bits = 1 + k + msbs; pattern = 1 << k; /* the unary end bit */ pattern |= (uval & ((1u<<k)-1)); /* the binary LSBs */ if(total_bits <= 32) { if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, total_bits)) return false; } else { /* write the unary MSBs */ if(!FLAC__bitwriter_write_zeroes(bw, msbs)) return false; /* write the unary end bit and binary LSBs */ if(!FLAC__bitwriter_write_raw_uint32(bw, pattern, k+1)) return false; } } else { uint32_t q, r, d; d = (1 << (k+1)) - parameter; q = uval / parameter; r = uval - (q * parameter); /* write the unary MSBs */ if(!FLAC__bitwriter_write_zeroes(bw, q)) return false; /* write the unary end bit */ if(!FLAC__bitwriter_write_raw_uint32(bw, 1, 1)) return false; /* write the binary LSBs */ if(r >= d) { if(!FLAC__bitwriter_write_raw_uint32(bw, r+d, k+1)) return false; } else { if(!FLAC__bitwriter_write_raw_uint32(bw, r, k)) return false; } } return true; } #endif /* UNUSED */ FLAC__bool FLAC__bitwriter_write_utf8_uint32(FLAC__BitWriter *bw, FLAC__uint32 val) { FLAC__bool ok = 1; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); if((val & 0x80000000) != 0) /* this version only handles 31 bits */ return false; if(val < 0x80) { return FLAC__bitwriter_write_raw_uint32_nocheck(bw, val, 8); } else if(val < 0x800) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xC0 | (val>>6), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (val&0x3F), 8); } else if(val < 0x10000) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xE0 | (val>>12), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (val&0x3F), 8); } else if(val < 0x200000) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xF0 | (val>>18), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (val&0x3F), 8); } else if(val < 0x4000000) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xF8 | (val>>24), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (val&0x3F), 8); } else { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xFC | (val>>30), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>24)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | ((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (val&0x3F), 8); } return ok; } FLAC__bool FLAC__bitwriter_write_utf8_uint64(FLAC__BitWriter *bw, FLAC__uint64 val) { FLAC__bool ok = 1; FLAC__ASSERT(0 != bw); FLAC__ASSERT(0 != bw->buffer); if((val & FLAC__U64L(0xFFFFFFF000000000)) != 0) /* this version only handles 36 bits */ return false; if(val < 0x80) { return FLAC__bitwriter_write_raw_uint32_nocheck(bw, (FLAC__uint32)val, 8); } else if(val < 0x800) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xC0 | (FLAC__uint32)(val>>6), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x10000) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xE0 | (FLAC__uint32)(val>>12), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x200000) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xF0 | (FLAC__uint32)(val>>18), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x4000000) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xF8 | (FLAC__uint32)(val>>24), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else if(val < 0x80000000) { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xFC | (FLAC__uint32)(val>>30), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } else { ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0xFE, 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>30)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>24)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>18)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>12)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)((val>>6)&0x3F), 8); ok &= FLAC__bitwriter_write_raw_uint32_nocheck(bw, 0x80 | (FLAC__uint32)(val&0x3F), 8); } return ok; } FLAC__bool FLAC__bitwriter_zero_pad_to_byte_boundary(FLAC__BitWriter *bw) { /* 0-pad to byte boundary */ if(bw->bits & 7u) return FLAC__bitwriter_write_zeroes(bw, 8 - (bw->bits & 7u)); else return true; } /* These functions are declared inline in this file but are also callable as * externs from elsewhere. * According to the C99 spec, section 6.7.4, simply providing a function * prototype in a header file without 'inline' and making the function inline * in this file should be sufficient. * Unfortunately, the Microsoft VS compiler doesn't pick them up externally. To * fix that we add extern declarations here. */ extern FLAC__bool FLAC__bitwriter_write_zeroes(FLAC__BitWriter *bw, uint32_t bits); extern FLAC__bool FLAC__bitwriter_write_raw_uint32(FLAC__BitWriter *bw, FLAC__uint32 val, uint32_t bits); extern FLAC__bool FLAC__bitwriter_write_raw_int32(FLAC__BitWriter *bw, FLAC__int32 val, uint32_t bits); extern FLAC__bool FLAC__bitwriter_write_raw_uint64(FLAC__BitWriter *bw, FLAC__uint64 val, uint32_t bits); extern FLAC__bool FLAC__bitwriter_write_raw_int64(FLAC__BitWriter *bw, FLAC__int64 val, uint32_t bits); extern FLAC__bool FLAC__bitwriter_write_raw_uint32_little_endian(FLAC__BitWriter *bw, FLAC__uint32 val); extern FLAC__bool FLAC__bitwriter_write_byte_block(FLAC__BitWriter *bw, const FLAC__byte vals[], uint32_t nvals);