shithub: mc

Download patch

ref: 66a472dc689c3a7b2b8f077fdf01c0dc2fdc1f7d
parent: 3853fa79b7d297f4bd3aaf318a147a95dd088bc9
author: S. Gilles <sgilles@math.umd.edu>
date: Thu May 10 06:42:25 EDT 2018

Use x as input variable instead of f.

Some algorithm descriptions use f as an auxiliary variable. Since
we attempt to match variable naming to the relevant algorithm
description, this becomes a problem. For uniformity, change everywhere.

--- a/lib/math/exp-impl.myr
+++ b/lib/math/exp-impl.myr
@@ -10,15 +10,15 @@
     enough to be in the same function.
  */
 pkg math =
-	pkglocal const exp32 : (f : flt32 -> flt32)
-	pkglocal const exp64 : (f : flt64 -> flt64)
+	pkglocal const exp32 : (x : flt32 -> flt32)
+	pkglocal const exp64 : (x : flt64 -> flt64)
 
-	pkglocal const expm132 : (f : flt32 -> flt32)
-	pkglocal const expm164 : (f : flt64 -> flt64)
+	pkglocal const expm132 : (x : flt32 -> flt32)
+	pkglocal const expm164 : (x : flt64 -> flt64)
 ;;
 
-extern const horner_polyu32 : (f : flt32, a : uint32[:] -> flt32)
-extern const horner_polyu64 : (f : flt64, a : uint64[:] -> flt64)
+extern const horner_polyu32 : (x : flt32, a : uint32[:] -> flt32)
+extern const horner_polyu64 : (x : flt64, a : uint64[:] -> flt64)
 
 type fltdesc(@f, @u, @i) = struct
 	explode : (f : @f -> (bool, @i, @u))
@@ -50,7 +50,6 @@
 	L1 : @u
 	L2 : @u
 	S : (@u, @u)[32]
-
 ;;
 
 const desc32 : fltdesc(flt32, uint32, int32) = [
@@ -194,18 +193,18 @@
 	.precision = 53,
 ]
 
-const exp32 = {f : flt32
-	-> expgen(f, desc32)
+const exp32 = {x : flt32
+	-> expgen(x, desc32)
 }
 
-const exp64 = {f : flt64
-	-> expgen(f, desc64)
+const exp64 = {x : flt64
+	-> expgen(x, desc64)
 }
 
-generic expgen = {f : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i, roundable @f -> @i
-	var b = d.tobits(f)
+generic expgen = {x : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i, roundable @f -> @i
+	var b = d.tobits(x)
 	var n, e, s
-	(n, e, s) = d.explode(f)
+	(n, e, s) = d.explode(x)
 
 	/*
 	   Detect if exp(f) would round to outside representability.
@@ -226,7 +225,7 @@
 	/* Argument reduction to [ -ln(2)/64, ln(2)/64 ] */
 	var inv_L = d.frombits(d.inv_L)
 
-	var N = rn(f * inv_L)
+	var N = rn(x * inv_L)
 	var N2  = N % (32 : @i)
 	if N2 < 0
 		N2 += (32 : @i)
@@ -242,9 +241,9 @@
 	   (very well) f reduced into [ -ln(2)/64, ln(2)/64 ]
 	 */
 	if std.abs(N) >= (1 << d.nabs)
-		R1 = (f - (N1 : @f) * d.frombits(d.L1)) - ((N2 : @f) * d.frombits(d.L1))
+		R1 = (x - (N1 : @f) * d.frombits(d.L1)) - ((N2 : @f) * d.frombits(d.L1))
 	else
-		R1 = f - (N : @f) * d.frombits(d.L1)
+		R1 = x - (N : @f) * d.frombits(d.L1)
 	;;
 	R2 = -1.0 * (N : @f) * d.frombits(d.L2)
 
@@ -275,33 +274,33 @@
 	-> exp
 }
 
-const expm132 = {f : flt32
-	-> expm1gen(f, desc32)
+const expm132 = {x : flt32
+	-> expm1gen(x, desc32)
 }
 
-const expm164 = {f : flt64
-	-> expm1gen(f, desc64)
+const expm164 = {x : flt64
+	-> expm1gen(x, desc64)
 }
 
-generic expm1gen = {f : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i, roundable @f -> @i
-	var b = d.tobits(f)
+generic expm1gen = {x : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i, roundable @f -> @i
+	var b = d.tobits(x)
 	var n, e, s
-	(n, e, s) = d.explode(f)
+	(n, e, s) = d.explode(x)
 
 	/* Special cases: +/- 0, inf, NaN, tiny, and huge */
 	if (b & ~d.sgnmask == 0)
-		-> f
+		-> x
 	elif n && (b & ~d.sgnmask == d.inf)
 		-> (-1.0 : @f)
 	elif (b & ~d.sgnmask == d.inf)
-		-> f
-	elif std.isnan(f)
+		-> x
+	elif std.isnan(x)
 		-> d.frombits(d.nan)
 	elif (b & ~d.sgnmask) <= d.thresh_tiny
 		var two_to_large = d.assem(false, 100, 0)
 		var two_to_small = d.assem(false, -100, 0)
-		var abs_f = d.assem(false, e, s)
-		-> (two_to_large * f + abs_f) * two_to_small
+		var abs_x = d.assem(false, e, s)
+		-> (two_to_large * x + abs_x) * two_to_small
 	elif !n && b >= d.thresh_1_max /* exp(x) = oo <=> expm1(x) = oo, as it turns out */
 		-> d.frombits(d.inf)
 	elif n && b >= d.thresh_huge_neg
@@ -312,11 +311,11 @@
 		/* Procedure 2 */
 
 		/* compute x^2  / 2 with extra precision */
-		var u = round(f, d)
-		var v = f - u
+		var u = round(x, d)
+		var v = x - u
 		var y = u * u * (0.5 : @f)
-		var z = v * (f + u) * (0.5 : @f)
-		var q = f * f * f * d.horner(f, d.Bi)
+		var z = v * (x + u) * (0.5 : @f)
+		var q = x * x * x * d.horner(x, d.Bi)
 
 		var yn, ye, ys
 		(yn, ye, ys) = d.explode(y)
@@ -323,7 +322,7 @@
 		if (ye >= -7)
 			-> (u + y) + (q + (v  + z))
 		else
-			-> f + (y + (q + z))
+			-> x + (y + (q + z))
 		;;
 	;;
 
@@ -330,7 +329,7 @@
 	/* Procedure 1 */
 	var inv_L = d.frombits(d.inv_L)
 
-	var N = rn(f * inv_L)
+	var N = rn(x * inv_L)
 	var N2 = N % (32 : @i)
 	if N2 < 0
 		N2 += (32 : @i)
@@ -344,9 +343,9 @@
 	   reduced into [ -ln(2)/64, ln(2)/64 ]
 	 */
 	if std.abs(N) >= (1 << d.nabs)
-		R1 = (f - (N1 : @f) * d.frombits(d.L1)) - ((N2 : @f) * d.frombits(d.L1))
+		R1 = (x - (N1 : @f) * d.frombits(d.L1)) - ((N2 : @f) * d.frombits(d.L1))
 	else
-		R1 = f - (N : @f) * d.frombits(d.L1)
+		R1 = x - (N : @f) * d.frombits(d.L1)
 	;;
 	R2 = -1.0 * (N : @f) * d.frombits(d.L2)
 
--- a/lib/math/fpmath.myr
+++ b/lib/math/fpmath.myr
@@ -4,8 +4,8 @@
 	trait fpmath @f =
 
 		/* exp-impl */
-		exp : (f : @f -> @f)
-		expm1 : (f : @f -> @f)
+		exp : (x : @f -> @f)
+		expm1 : (x : @f -> @f)
 
 		/* fma-impl */
 		fma : (x : @f, y : @f, z : @f -> @f)
@@ -15,10 +15,10 @@
 		horner_polyu : (x : @f, a : @u[:] -> @f)
 
 		/* scale2-impl */
-		scale2 : (f : @f, m : @i -> @f)
+		scale2 : (x : @f, m : @i -> @f)
 
 		/* sqrt-impl */
-		sqrt : (f : @f -> @f)
+		sqrt : (x : @f -> @f)
 
 		/* sum-impl */
 		kahan_sum : (a : @f[:] -> @f)
@@ -25,14 +25,14 @@
 		priest_sum : (a : @f[:] -> @f)
 
 		/* trunc-impl */
-		trunc : (f : @f -> @f)
-		ceil  : (f : @f -> @f)
-		floor : (f : @f -> @f)
+		trunc : (x : @f -> @f)
+		ceil  : (x : @f -> @f)
+		floor : (x : @f -> @f)
 	;;
 
 	trait roundable @f -> @i =
 		/* round-impl */
-		rn : (f : @f -> @i)
+		rn : (x : @f -> @i)
 	;;
 
 	impl std.equatable flt32
@@ -60,32 +60,35 @@
 ;;
 
 impl roundable flt32 -> int32 =
-	rn = {f : flt32; -> rn32(f) }
+	rn = {x : flt32; -> rn32(x) }
 ;;
 
 impl roundable flt64 -> int64 =
-	rn = {f : flt64; -> rn64(f) }
+	rn = {x : flt64; -> rn64(x) }
 ;;
 
 impl fpmath flt32 =
 	fma = {x, y, z; -> fma32(x, y, z)}
 
-	exp = {f; -> exp32(f)}
-	expm1 = {f; -> expm132(f)}
+	exp = {x; -> exp32(x)}
+	expm1 = {x; -> expm132(x)}
 
-	horner_poly = {f, a; -> horner_poly32(f, a)}
-	horner_polyu = {f, a; -> horner_polyu32(f, a)}
+	log = {x; -> log32(x)}
+	log1p = {x; -> log1p32(x)}
 
-	scale2 = {f, m; -> scale232(f, m)}
+	horner_poly = {x, a; -> horner_poly32(x, a)}
+	horner_polyu = {x, a; -> horner_polyu32(x, a)}
 
-	sqrt = {f; -> sqrt32(f)}
+	scale2 = {x, m; -> scale232(x, m)}
 
+	sqrt = {x; -> sqrt32(x)}
+
 	kahan_sum = {l; -> kahan_sum32(l) }
 	priest_sum = {l; -> priest_sum32(l) }
 
-	trunc = {f; -> trunc32(f)}
-	floor = {f; -> floor32(f)}
-	ceil  = {f; -> ceil32(f)}
+	trunc = {x; -> trunc32(x)}
+	floor = {x; -> floor32(x)}
+	ceil  = {x; -> ceil32(x)}
 
 ;;
 
@@ -92,27 +95,33 @@
 impl fpmath flt64 =
 	fma = {x, y, z; -> fma64(x, y, z)}
 
-	exp = {f; -> exp64(f)}
-	expm1 = {f; -> expm164(f)}
+	exp = {x; -> exp64(x)}
+	expm1 = {x; -> expm164(x)}
 
-	horner_poly = {f, a; -> horner_poly64(f, a)}
-	horner_polyu = {f, a; -> horner_polyu64(f, a)}
+	log = {x; -> log64(x)}
+	log1p = {x; -> log1p64(x)}
 
-	scale2 = {f, m; -> scale264(f, m)}
+	horner_poly = {x, a; -> horner_poly64(x, a)}
+	horner_polyu = {x, a; -> horner_polyu64(x, a)}
 
-	sqrt = {f; -> sqrt64(f)}
+	scale2 = {x, m; -> scale264(x, m)}
 
+	sqrt = {x; -> sqrt64(x)}
+
 	kahan_sum = {l; -> kahan_sum64(l) }
 	priest_sum = {l; -> priest_sum64(l) }
 
-	trunc = {f; -> trunc64(f)}
-	floor = {f; -> floor64(f)}
-	ceil  = {f; -> ceil64(f)}
+	trunc = {x; -> trunc64(x)}
+	floor = {x; -> floor64(x)}
+	ceil  = {x; -> ceil64(x)}
 ;;
 
-extern const rn32 : (f : flt32 -> int32)
-extern const rn64 : (f : flt64 -> int64)
+extern const rn32 : (x : flt32 -> int32)
+extern const rn64 : (x : flt64 -> int64)
 
+extern const fma32 : (x : flt32, y : flt32, z : flt32 -> flt32)
+extern const fma64 : (x : flt64, y : flt64, z : flt64 -> flt64)
+
 extern const exp32 : (x : flt32 -> flt32)
 extern const exp64 : (x : flt64 -> flt64)
 
@@ -119,17 +128,17 @@
 extern const expm132 : (x : flt32 -> flt32)
 extern const expm164 : (x : flt64 -> flt64)
 
-extern const fma32 : (x : flt32, y : flt32, z : flt32 -> flt32)
-extern const fma64 : (x : flt64, y : flt64, z : flt64 -> flt64)
+extern const log32 : (x : flt32 -> flt32)
+extern const log64 : (x : flt64 -> flt64)
 
-extern const horner_poly32 : (f : flt32, a : flt32[:] -> flt32)
-extern const horner_poly64 : (f : flt64, a : flt64[:] -> flt64)
+extern const horner_poly32 : (x : flt32, a : flt32[:] -> flt32)
+extern const horner_poly64 : (x : flt64, a : flt64[:] -> flt64)
 
-extern const horner_polyu32 : (f : flt32, a : uint32[:] -> flt32)
-extern const horner_polyu64 : (f : flt64, a : uint64[:] -> flt64)
+extern const horner_polyu32 : (x : flt32, a : uint32[:] -> flt32)
+extern const horner_polyu64 : (x : flt64, a : uint64[:] -> flt64)
 
-extern const scale232 : (f : flt32, m : int32 -> flt32)
-extern const scale264 : (f : flt64, m : int64 -> flt64)
+extern const scale232 : (x : flt32, m : int32 -> flt32)
+extern const scale264 : (x : flt64, m : int64 -> flt64)
 
 extern const sqrt32 : (x : flt32 -> flt32)
 extern const sqrt64 : (x : flt64 -> flt64)
@@ -140,11 +149,11 @@
 extern const priest_sum32 : (l : flt32[:] -> flt32)
 extern const priest_sum64 : (l : flt64[:] -> flt64)
 
-extern const trunc32 : (f : flt32 -> flt32)
-extern const trunc64 : (f : flt64 -> flt64)
+extern const trunc32 : (x : flt32 -> flt32)
+extern const trunc64 : (x : flt64 -> flt64)
 
-extern const floor32 : (f : flt32 -> flt32)
-extern const floor64 : (f : flt64 -> flt64)
+extern const floor32 : (x : flt32 -> flt32)
+extern const floor64 : (x : flt64 -> flt64)
 
-extern const ceil32  : (f : flt32 -> flt32)
-extern const ceil64  : (f : flt64 -> flt64)
+extern const ceil32  : (x : flt32 -> flt32)
+extern const ceil64  : (x : flt64 -> flt64)
--- a/lib/math/poly-impl.myr
+++ b/lib/math/poly-impl.myr
@@ -2,44 +2,44 @@
 
 /* See [Mul16], section 5.1 */
 pkg math =
-        pkglocal const horner_poly32 : (f : flt32, a : flt32[:] -> flt32)
-        pkglocal const horner_poly64 : (f : flt64, a : flt64[:] -> flt64)
+        pkglocal const horner_poly32 : (x : flt32, a : flt32[:] -> flt32)
+        pkglocal const horner_poly64 : (x : flt64, a : flt64[:] -> flt64)
 
-        pkglocal const horner_polyu32 : (f : flt32, a : uint32[:] -> flt32)
-        pkglocal const horner_polyu64 : (f : flt64, a : uint64[:] -> flt64)
+        pkglocal const horner_polyu32 : (x : flt32, a : uint32[:] -> flt32)
+        pkglocal const horner_polyu64 : (x : flt64, a : uint64[:] -> flt64)
 ;;
 
 extern const fma32 : (x : flt32, y : flt32, z : flt32 -> flt32)
 extern const fma64 : (x : flt64, y : flt64, z : flt64 -> flt64)
 
-const horner_poly32 = {f : flt32, a : flt32[:]
+const horner_poly32 = {x : flt32, a : flt32[:]
         var r : flt32 = 0.0
         for var j = a.len - 1; j >= 0; j--
-                r = fma32(r, f, a[j])
+                r = fma32(r, x, a[j])
         ;;
         -> r
 }
 
-const horner_poly64 = {f : flt64, a : flt64[:]
+const horner_poly64 = {x : flt64, a : flt64[:]
         var r : flt64 = 0.0
         for var j = a.len - 1; j >= 0; j--
-                r = fma64(r, f, a[j])
+                r = fma64(r, x, a[j])
         ;;
         -> r
 }
 
-const horner_polyu32 = {f : flt32, a : uint32[:]
+const horner_polyu32 = {x : flt32, a : uint32[:]
         var r : flt32 = 0.0
         for var j = a.len - 1; j >= 0; j--
-                r = fma32(r, f, std.flt32frombits(a[j]))
+                r = fma32(r, x, std.flt32frombits(a[j]))
         ;;
         -> r
 }
 
-const horner_polyu64 = {f : flt64, a : uint64[:]
+const horner_polyu64 = {x : flt64, a : uint64[:]
         var r : flt64 = 0.0
         for var j = a.len - 1; j >= 0; j--
-                r = fma64(r, f, std.flt64frombits(a[j]))
+                r = fma64(r, x, std.flt64frombits(a[j]))
         ;;
         -> r
 }
--- a/lib/math/round-impl.myr
+++ b/lib/math/round-impl.myr
@@ -3,14 +3,14 @@
 use "util"
 
 pkg math =
-	const rn64 : (f : flt64 -> int64)
-	const rn32 : (f : flt32 -> int32)
+	const rn64 : (x : flt64 -> int64)
+	const rn32 : (x : flt32 -> int32)
 ;;
 
-const rn64 = {f : flt64
+const rn64 = {x : flt64
 	var n : bool, e : int64, s : uint64
 
-	(n, e, s) = std.flt64explode(f)
+	(n, e, s) = std.flt64explode(x)
 
 	if e >= 63
 		-> -9223372036854775808
@@ -38,10 +38,10 @@
 	;;
 }
 
-const rn32 = {f : flt32
+const rn32 = {x : flt32
 	var n : bool, e : int32, s : uint32
 
-	(n, e, s) = std.flt32explode(f)
+	(n, e, s) = std.flt32explode(x)
 
 	if e >= 31
 		-> -2147483648
--- a/lib/math/scale2-impl.myr
+++ b/lib/math/scale2-impl.myr
@@ -9,20 +9,20 @@
    approach works quite well.
  */
 pkg math =
-	const scale232 : (f : flt32, m : int32 -> flt32)
-	const scale264 : (f : flt64, m : int64 -> flt64)
+	const scale232 : (x : flt32, m : int32 -> flt32)
+	const scale264 : (x : flt64, m : int64 -> flt64)
 ;;
 
-const scale232 = {f : flt32, m : int32
+const scale232 = {x : flt32, m : int32
 	var n, e, s
-	(n, e, s) = std.flt32explode(f)
+	(n, e, s) = std.flt32explode(x)
 	(n, e, s) = scale2gen(n, e, s, -126, 127, 24, m)
 	-> std.flt32assem(n, e, s)
 }
 
-const scale264 = {f : flt64, m : int64
+const scale264 = {x : flt64, m : int64
 	var n, e, s
-	(n, e, s) = std.flt64explode(f)
+	(n, e, s) = std.flt64explode(x)
 	(n, e, s) = scale2gen(n, e, s, -1022, 1023, 53, m)
 	-> std.flt64assem(n, e, s)
 }
--- a/lib/math/sqrt-impl.myr
+++ b/lib/math/sqrt-impl.myr
@@ -4,8 +4,8 @@
 
 /* See [Mul+10], sections 5.4 and 8.7 */
 pkg math =
-	pkglocal const sqrt32 : (f : flt32 -> flt32)
-	pkglocal const sqrt64 : (f : flt64 -> flt64)
+	pkglocal const sqrt32 : (x : flt32 -> flt32)
+	pkglocal const sqrt64 : (x : flt64 -> flt64)
 ;;
 
 extern const fma32 : (x : flt32, y : flt32, z : flt32 -> flt32)
@@ -59,54 +59,56 @@
 	(0x4010000000000000, 0x3fe0a5989f2dc59a), /* [3.4,  4.0)  -> 0.520214377304159869552790951275 */
 ][:]
 
-const sqrt32 = {f : flt32
-	const d : fltdesc(flt32, uint32, int32) =  [
-		.explode = std.flt32explode,
-		.assem = std.flt32assem,
-		.fma = fma32,
-		.tobits = std.flt32bits,
-		.frombits = std.flt32frombits,
-		.nan = 0x7fc00000,
-		.emin = -127,
-		.emax = 128,
-		.normmask = 1 << 23,
-		.sgnmask = 1 << 31,
-		.ab = ab32,
-		.iterlim = 3,
-	]
-	-> sqrtgen(f, d)
+const desc32 : fltdesc(flt32, uint32, int32) =  [
+	.explode = std.flt32explode,
+	.assem = std.flt32assem,
+	.fma = fma32,
+	.tobits = std.flt32bits,
+	.frombits = std.flt32frombits,
+	.nan = 0x7fc00000,
+	.emin = -127,
+	.emax = 128,
+	.normmask = 1 << 23,
+	.sgnmask = 1 << 31,
+	.ab = ab32,
+	.iterlim = 3,
+]
+
+const desc64 : fltdesc(flt64, uint64, int64) =  [
+	.explode = std.flt64explode,
+	.assem = std.flt64assem,
+	.fma = fma64,
+	.tobits = std.flt64bits,
+	.frombits = std.flt64frombits,
+	.nan = 0x7ff8000000000000,
+	.emin = -1023,
+	.emax = 1024,
+	.normmask = 1 << 52,
+	.sgnmask = 1 << 63,
+	.ab = ab64,
+	.iterlim = 4,
+]
+
+const sqrt32 = {x : flt32
+	-> sqrtgen(x, desc32)
 }
 
-const sqrt64 = {f : flt64
-	const d : fltdesc(flt64, uint64, int64) =  [
-		.explode = std.flt64explode,
-		.assem = std.flt64assem,
-		.fma = fma64,
-		.tobits = std.flt64bits,
-		.frombits = std.flt64frombits,
-		.nan = 0x7ff8000000000000,
-		.emin = -1023,
-		.emax = 1024,
-		.normmask = 1 << 52,
-		.sgnmask = 1 << 63,
-		.ab = ab64,
-		.iterlim = 4,
-	]
-	-> sqrtgen(f, d)
+const sqrt64 = {x : flt64
+	-> sqrtgen(x, desc64)
 }
 
-generic sqrtgen = {f : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i
+generic sqrtgen = {x : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i
 	var n : bool, e : @i, s : @u, e2 : @i
-	(n, e, s) = d.explode(f)
+	(n, e, s) = d.explode(x)
 
 	/* Special cases: +/- 0.0, negative, NaN, and +inf */
 	if e == d.emin && s == 0
-		-> f
-	elif n || std.isnan(f)
+		-> x
+	elif n || std.isnan(x)
 		/* Make sure to return a quiet NaN */
 		-> d.frombits(d.nan)
 	elif e == d.emax
-		-> f
+		-> x
 	;;
 
 	/*
--- a/lib/math/trunc-impl.myr
+++ b/lib/math/trunc-impl.myr
@@ -1,12 +1,12 @@
 use std
 
 pkg math =
-	pkglocal const trunc32 : (f : flt32 -> flt32)
-	pkglocal const floor32 : (f : flt32 -> flt32)
-	pkglocal const ceil32  : (f : flt32 -> flt32)
-	pkglocal const trunc64 : (f : flt64 -> flt64)
-	pkglocal const floor64 : (f : flt64 -> flt64)
-	pkglocal const ceil64  : (f : flt64 -> flt64)
+	pkglocal const trunc32 : (x : flt32 -> flt32)
+	pkglocal const floor32 : (x : flt32 -> flt32)
+	pkglocal const ceil32  : (x : flt32 -> flt32)
+	pkglocal const trunc64 : (x : flt64 -> flt64)
+	pkglocal const floor64 : (x : flt64 -> flt64)
+	pkglocal const ceil64  : (x : flt64 -> flt64)
 ;;
 
 const Flt32NegMask : uint32 = (1 << 31)
@@ -15,13 +15,13 @@
 const Flt64NegMask : uint64 = (1 << 63)
 const Flt64SigMask : uint64 = (1 << 52) - 1
 
-pkglocal const floor32 = {f : flt32
+pkglocal const floor32 = {x : flt32
 	var n, e, s
-	(n, e, s) = std.flt32explode(f)
+	(n, e, s) = std.flt32explode(x)
 
 	/* Many special cases */
-	if e >= 23 || f == -0.0
-		-> f
+	if e >= 23 || x == -0.0
+		-> x
 	elif e < 0
 		if n
 			-> -1.0
@@ -46,25 +46,25 @@
 	-> std.flt32assem(n, e, s & ~m)
 }
 
-pkglocal const trunc32 = {f : flt32
-	if std.flt32bits(f) & Flt32NegMask != 0
-		-> -floor32(-f)
+pkglocal const trunc32 = {x : flt32
+	if std.flt32bits(x) & Flt32NegMask != 0
+		-> -floor32(-x)
 	else
-		-> floor32(f)
+		-> floor32(x)
 	;;
 }
 
-pkglocal const ceil32 = {f : flt32
-	-> -floor32(-f)
+pkglocal const ceil32 = {x : flt32
+	-> -floor32(-x)
 }
 
-pkglocal const floor64 = {f : flt64
+pkglocal const floor64 = {x : flt64
 	var n, e, s
-	(n, e, s) = std.flt64explode(f)
+	(n, e, s) = std.flt64explode(x)
 
 	/* Many special cases */
-	if e >= 52 || f == -0.0
-		-> f
+	if e >= 52 || x == -0.0
+		-> x
 	elif e < 0
 		if n
 			-> -1.0
@@ -76,10 +76,10 @@
 	if n
 		var fractional_mask = Flt64SigMask >> (e : uint64)
 		if s & fractional_mask == 0
-			-> f
+			-> x
 		else
 			/* Turns out the packing of exp and sig is useful */
-			var u : uint64 = std.flt64bits(f) & ~fractional_mask
+			var u : uint64 = std.flt64bits(x) & ~fractional_mask
 			u += ((1 << 52) >> (e : uint64))
 			-> std.flt64frombits(u)
 		;;
@@ -89,15 +89,15 @@
 	-> std.flt64assem(n, e, s & ~m)
 }
 
-pkglocal const trunc64 = {f : flt64
-	if std.flt64bits(f) & Flt64NegMask != 0
-		-> -floor64(-f)
+pkglocal const trunc64 = {x : flt64
+	if std.flt64bits(x) & Flt64NegMask != 0
+		-> -floor64(-x)
 	else
-		-> floor64(f)
+		-> floor64(x)
 	;;
 }
 
-pkglocal const ceil64 = {f : flt64
-	-> -floor64(-f)
+pkglocal const ceil64 = {x : flt64
+	-> -floor64(-x)
 }