shithub: opus

Download patch

ref: 1accd2472e678d540fa024f05da68088014dafaa
parent: 88c8b3078518b649933616fb7c9a78e4d086233a
author: Jan Buethe <jbuethe@amazon.de>
date: Fri Oct 20 10:14:31 EDT 2023

finalized quantization option in export_rdovae_weights.py

--- a/dnn/torch/rdovae/export_rdovae_weights.py
+++ b/dnn/torch/rdovae/export_rdovae_weights.py
@@ -121,9 +121,9 @@
         ('core_encoder.module.state_dense_2' , 'gdense2'    ,   'TANH', True)
     ]
 
-    for name, export_name, _, _ in encoder_dense_layers:
+    for name, export_name, _, quantize in encoder_dense_layers:
         layer = model.get_submodule(name)
-        dump_torch_weights(enc_writer, layer, name=export_name, verbose=True)
+        dump_torch_weights(enc_writer, layer, name=export_name, verbose=True, quantize=quantize, scale=None)
 
 
     encoder_gru_layers = [
@@ -134,8 +134,8 @@
         ('core_encoder.module.gru5'       , 'enc_gru5',   'TANH', True),
     ]
 
-    enc_max_rnn_units = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=True)
-                             for name, export_name, _, _ in encoder_gru_layers])
+    enc_max_rnn_units = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=quantize, scale=None, recurrent_scale=None)
+                             for name, export_name, _, quantize in encoder_gru_layers])
 
 
     encoder_conv_layers = [
@@ -146,7 +146,7 @@
         ('core_encoder.module.conv5.conv'       , 'enc_conv5',   'TANH', True),
     ]
 
-    enc_max_conv_inputs = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, quantize=False) for name, export_name, _, _ in encoder_conv_layers])
+    enc_max_conv_inputs = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, quantize=quantize, scale=None) for name, export_name, _, quantize in encoder_conv_layers])
 
 
     del enc_writer
@@ -159,9 +159,9 @@
         ('core_decoder.module.gru_init'    , 'dec_gru_init',        'TANH', True),
     ]
 
-    for name, export_name, _, _ in decoder_dense_layers:
+    for name, export_name, _, quantize in decoder_dense_layers:
         layer = model.get_submodule(name)
-        dump_torch_weights(dec_writer, layer, name=export_name, verbose=True)
+        dump_torch_weights(dec_writer, layer, name=export_name, verbose=True, quantize=quantize, scale=None)
 
 
     decoder_gru_layers = [
@@ -172,8 +172,8 @@
         ('core_decoder.module.gru5'         , 'dec_gru5',    'TANH', True),
     ]
 
-    dec_max_rnn_units = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=True)
-                             for name, export_name, _, _ in decoder_gru_layers])
+    dec_max_rnn_units = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=quantize, scale=None, recurrent_scale=None)
+                             for name, export_name, _, quantize in decoder_gru_layers])
 
     decoder_conv_layers = [
         ('core_decoder.module.conv1.conv'       , 'dec_conv1',   'TANH', True),
@@ -183,7 +183,7 @@
         ('core_decoder.module.conv5.conv'       , 'dec_conv5',   'TANH', True),
     ]
 
-    dec_max_conv_inputs = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, quantize=False) for name, export_name, _, _ in decoder_conv_layers])
+    dec_max_conv_inputs = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, quantize=quantize, scale=None) for name, export_name, _, quantize in decoder_conv_layers])
 
     del dec_writer
 
--