ref: 1accd2472e678d540fa024f05da68088014dafaa
parent: 88c8b3078518b649933616fb7c9a78e4d086233a
author: Jan Buethe <jbuethe@amazon.de>
date: Fri Oct 20 10:14:31 EDT 2023
finalized quantization option in export_rdovae_weights.py
--- a/dnn/torch/rdovae/export_rdovae_weights.py
+++ b/dnn/torch/rdovae/export_rdovae_weights.py
@@ -121,9 +121,9 @@
('core_encoder.module.state_dense_2' , 'gdense2' , 'TANH', True)]
- for name, export_name, _, _ in encoder_dense_layers:
+ for name, export_name, _, quantize in encoder_dense_layers:
layer = model.get_submodule(name)
- dump_torch_weights(enc_writer, layer, name=export_name, verbose=True)
+ dump_torch_weights(enc_writer, layer, name=export_name, verbose=True, quantize=quantize, scale=None)
encoder_gru_layers = [
@@ -134,8 +134,8 @@
('core_encoder.module.gru5' , 'enc_gru5', 'TANH', True),]
- enc_max_rnn_units = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=True)
- for name, export_name, _, _ in encoder_gru_layers])
+ enc_max_rnn_units = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=quantize, scale=None, recurrent_scale=None)
+ for name, export_name, _, quantize in encoder_gru_layers])
encoder_conv_layers = [
@@ -146,7 +146,7 @@
('core_encoder.module.conv5.conv' , 'enc_conv5', 'TANH', True),]
- enc_max_conv_inputs = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, quantize=False) for name, export_name, _, _ in encoder_conv_layers])
+ enc_max_conv_inputs = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, quantize=quantize, scale=None) for name, export_name, _, quantize in encoder_conv_layers])
del enc_writer
@@ -159,9 +159,9 @@
('core_decoder.module.gru_init' , 'dec_gru_init', 'TANH', True),]
- for name, export_name, _, _ in decoder_dense_layers:
+ for name, export_name, _, quantize in decoder_dense_layers:
layer = model.get_submodule(name)
- dump_torch_weights(dec_writer, layer, name=export_name, verbose=True)
+ dump_torch_weights(dec_writer, layer, name=export_name, verbose=True, quantize=quantize, scale=None)
decoder_gru_layers = [
@@ -172,8 +172,8 @@
('core_decoder.module.gru5' , 'dec_gru5', 'TANH', True),]
- dec_max_rnn_units = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=True)
- for name, export_name, _, _ in decoder_gru_layers])
+ dec_max_rnn_units = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=quantize, scale=None, recurrent_scale=None)
+ for name, export_name, _, quantize in decoder_gru_layers])
decoder_conv_layers = [
('core_decoder.module.conv1.conv' , 'dec_conv1', 'TANH', True),@@ -183,7 +183,7 @@
('core_decoder.module.conv5.conv' , 'dec_conv5', 'TANH', True),]
- dec_max_conv_inputs = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, quantize=False) for name, export_name, _, _ in decoder_conv_layers])
+ dec_max_conv_inputs = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, quantize=quantize, scale=None) for name, export_name, _, quantize in decoder_conv_layers])
del dec_writer
--
⑨