ref: 3122b6b3bc565dc6be04977d3f2a785c30c6f6e3
parent: f9fe6c0ed8b73f9aafb8432554763687e829c23b
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Sat Oct 20 22:42:52 EDT 2018
most promising model for now
--- a/dnn/test_wavenet_audio.py
+++ b/dnn/test_wavenet_audio.py
@@ -42,7 +42,7 @@
-model.load_weights('lpcnet9_384_10_G16_29.h5')+model.load_weights('lpcnet9_384_10_G16_120.h5')order = 16
@@ -70,7 +70,7 @@
p *= np.power(p, np.maximum(0, 1.5*features[c, fr, 37] - .5))
p = p/(1e-18 + np.sum(p))
#Cut off the tail of the remaining distribution
- p = np.maximum(p-0.0005, 0).astype('float64')+ p = np.maximum(p-0.002, 0).astype('float64')p = p/(1e-8 + np.sum(p))
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))
--
⑨