ref: 374ba430c4e58379563b68b3bef6f3fdbdc3823d
parent: 679dfbab584d27154e3399f645aa19b04ca937cf
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Thu Jul 12 14:20:25 EDT 2018
stashing stuff here
--- a/dnn/denoise.c
+++ b/dnn/denoise.c
@@ -577,6 +577,7 @@
return 0;
}
for (i=0;i<FRAME_SIZE;i++) x[i] = tmp[i];
+ for (i=0;i<FRAME_SIZE;i++) x[i] += rand()/(float)RAND_MAX - .5;
for (i=0;i<FRAME_SIZE;i++) E += tmp[i]*(float)tmp[i];
biquad(x, mem_hp_x, x, b_hp, a_hp, FRAME_SIZE);
preemphasis(x, &mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
--- a/dnn/lpcnet.py
+++ b/dnn/lpcnet.py
@@ -12,7 +12,7 @@
rnn_units=512
pcm_bits = 8
pcm_levels = 2**pcm_bits
-nb_used_features = 37
+nb_used_features = 38
def new_wavernn_model():
@@ -22,11 +22,11 @@
dec_feat = Input(shape=(None, 32))
dec_state = Input(shape=(rnn_units,))
- conv1 = Conv1D(16, 7, padding='causal')
- pconv1 = Conv1D(16, 5, padding='same')
- pconv2 = Conv1D(16, 5, padding='same')
- fconv1 = Conv1D(128, 3, padding='same')
- fconv2 = Conv1D(32, 3, padding='same')
+ conv1 = Conv1D(16, 7, padding='causal', activation='tanh')
+ pconv1 = Conv1D(16, 5, padding='same', activation='tanh')
+ pconv2 = Conv1D(16, 5, padding='same', activation='tanh')
+ fconv1 = Conv1D(128, 3, padding='same', activation='tanh')
+ fconv2 = Conv1D(32, 3, padding='same', activation='tanh')
if False:
cpcm = conv1(pcm)
@@ -40,17 +40,17 @@
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True)
- rnn_in = Concatenate()([cpcm, cpitch, rep(cfeat)])
+ rnn_in = Concatenate()([cpcm, rep(cfeat)])
md = MDense(pcm_levels, activation='softmax')
gru_out, state = rnn(rnn_in)
ulaw_prob = md(gru_out)
- model = Model([pcm, pitch, feat], ulaw_prob)
+ model = Model([pcm, feat], ulaw_prob)
encoder = Model(feat, cfeat)
- dec_rnn_in = Concatenate()([cpcm, cpitch, dec_feat])
+ dec_rnn_in = Concatenate()([cpcm, dec_feat])
dec_gru_out, state = rnn(dec_rnn_in, initial_state=dec_state)
dec_ulaw_prob = md(dec_gru_out)
- decoder = Model([pcm, pitch, dec_feat, dec_state], [dec_ulaw_prob, state])
+ decoder = Model([pcm, dec_feat, dec_state], [dec_ulaw_prob, state])
return model, encoder, decoder
--- a/dnn/test_lpcnet.py
+++ b/dnn/test_lpcnet.py
@@ -47,7 +47,7 @@
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
-model.load_weights('lpcnet1i_30.h5')+model.load_weights('lpcnet3a_21.h5')order = 16
@@ -61,7 +61,7 @@
cfeat = enc.predict(features[c:c+1, :, :nb_used_features])
for fr in range(1, feature_chunk_size):
f = c*feature_chunk_size + fr
- a = features[c, fr, nb_used_features+1:]
+ a = features[c, fr, nb_used_features:]
#print(a)
gain = 1.;
@@ -69,9 +69,10 @@
period = period - 4
for i in range(frame_size):
pitch[0, 0, 0] = exc[f*frame_size + i - period, 0]
- fexc[0, 0, 0] = exc[f*frame_size + i - 1]
+ fexc[0, 0, 0] = 2*exc[f*frame_size + i - 1]
+ #fexc[0, 0, 0] = in_data[f*frame_size + i, 0]
#print(cfeat.shape)
- p, state = dec.predict([fexc, pitch, cfeat[:, fr:fr+1, :], state])
+ p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state])
p = p/(1e-5 + np.sum(p))
#print(np.sum(p))
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128
--- a/dnn/train_lpcnet.py
+++ b/dnn/train_lpcnet.py
@@ -13,13 +13,13 @@
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
-config.gpu_options.per_process_gpu_memory_fraction = 0.28
+config.gpu_options.per_process_gpu_memory_fraction = 0.44
set_session(tf.Session(config=config))
nb_epochs = 40
batch_size = 64
-model = lpcnet.new_wavernn_model()
+model, enc, dec = lpcnet.new_wavernn_model()
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.summary()
@@ -63,8 +63,8 @@
# f.create_dataset('data', data=in_data[:50000, :, :]) # f.create_dataset('feat', data=features[:50000, :, :])-checkpoint = ModelCheckpoint('lpcnet1k_{epoch:02d}.h5')+checkpoint = ModelCheckpoint('lpcnet3b_{epoch:02d}.h5') #model.load_weights('wavernn1c_01.h5')-model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
-model.fit([in_data, in_pitch, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])
+model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
+model.fit([in_data, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])
--
⑨