shithub: opus

Download patch

ref: 7119eaf33be606331b32f96fc554939eddf72ce4
parent: 70fdf474719e29a773c11671e07909007d407bc9
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Sun Nov 25 12:20:24 EST 2018

Plumbing for the frame rate network

--- a/dnn/dump_lpcnet.py
+++ b/dnn/dump_lpcnet.py
@@ -187,10 +187,10 @@
 hf.write('#define MAX_MDENSE_TMP {}\n\n'.format(max_mdense_tmp))
 
 
-hf.write('struct RNNState {\n')
+hf.write('typedef struct {\n')
 for i, name in enumerate(layer_list):
     hf.write('  float {}_state[{}_STATE_SIZE];\n'.format(name, name.upper())) 
-hf.write('};\n')
+hf.write('} LPCNetState;\n')
 
 hf.write('\n\n#endif\n')
 
--- /dev/null
+++ b/dnn/lpcnet.c
@@ -1,0 +1,52 @@
+/* Copyright (c) 2018 Mozilla */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
+   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "nnet_data.h"
+#include "nnet.h"
+#include "common.h"
+#include "arch.h"
+
+#define NB_FEATURES 38
+
+#define FRAME_INPUT_SIZE (NB_FEATURES + EMBED_PITCH_OUT_SIZE)
+
+void run_frame_network(LPCNetState *net, float *out, const float *features, int pitch)
+{
+    int i;
+    float in[FRAME_INPUT_SIZE];
+    float conv1_out[FEATURE_CONV1_OUT_SIZE];
+    float conv2_out[FEATURE_CONV2_OUT_SIZE];
+    float dense1_out[FEATURE_DENSE1_OUT_SIZE];
+    RNN_COPY(in, features, NB_FEATURES);
+    compute_embedding(&embed_pitch, &in[NB_FEATURES], pitch);
+    compute_conv1d(&feature_conv1, conv1_out, net->feature_conv1_state, in);
+    compute_conv1d(&feature_conv2, conv2_out, net->feature_conv2_state, conv1_out);
+    celt_assert(FRAME_INPUT_SIZE == FEATURE_CONV2_OUT_SIZE);
+    for (i=0;i<FEATURE_CONV2_OUT_SIZE;i++) conv2_out[i] += in[i];
+    compute_dense(&feature_dense1, dense1_out, conv2_out);
+    compute_dense(&feature_dense2, out, dense1_out);
+}
+
--- a/dnn/nnet.c
+++ b/dnn/nnet.c
@@ -122,6 +122,7 @@
    M = layer->nb_inputs;
    N = layer->nb_neurons;
    stride = N;
+   celt_assert(input != output);
    for (i=0;i<N;i++)
       output[i] = layer->bias[i];
    gemm_accum(output, layer->input_weights, N, M, stride, input);
@@ -134,6 +135,7 @@
    int N, M, C;
    int stride;
    float tmp[MAX_MDENSE_TMP];
+   celt_assert(input != output);
    M = layer->nb_inputs;
    N = layer->nb_neurons;
    C = layer->nb_channels;
@@ -163,6 +165,7 @@
    float r[MAX_RNN_NEURONS];
    float h[MAX_RNN_NEURONS];
    celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
+   celt_assert(input != state);
    M = gru->nb_inputs;
    N = gru->nb_neurons;
    stride = 3*N;
@@ -210,6 +213,7 @@
    int N, M;
    int stride;
    float tmp[MAX_CONV_INPUTS];
+   celt_assert(input != output);
    celt_assert(layer->nb_inputs*layer->kernel_size <= MAX_CONV_INPUTS);
    RNN_COPY(tmp, mem, layer->nb_inputs*(layer->kernel_size-1));
    RNN_COPY(tmp, input, layer->nb_inputs);
--