ref: 79980b20445df952404cac24d93422e1cff56fc6
parent: 20fea538c26af5d3e886832f4764ad82935ae424
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Sun Jan 17 21:13:52 EST 2021
Minor update to training scripts
--- a/dnn/training_tf2/train_lpcnet.py
+++ b/dnn/training_tf2/train_lpcnet.py
@@ -37,17 +37,17 @@
import h5py
import tensorflow as tf
-gpus = tf.config.experimental.list_physical_devices('GPU')-if gpus:
- try:
- tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
- except RuntimeError as e:
- print(e)
+#gpus = tf.config.experimental.list_physical_devices('GPU')+#if gpus:
+# try:
+# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
+# except RuntimeError as e:
+# print(e)
nb_epochs = 120
# Try reducing batch_size if you run out of memory on your GPU
-batch_size = 64
+batch_size = 128
model, _, _ = lpcnet.new_lpcnet_model(training=True)
@@ -102,15 +102,14 @@
del in_exc
# dump models to disk as we go
-checkpoint = ModelCheckpoint('lpcnet32y_384_10_G16_{epoch:02d}.h5')+checkpoint = ModelCheckpoint('lpcnet33_384_{epoch:02d}.h5')#Set this to True to adapt an existing model (e.g. on new data)
adaptation = False
-model.load_weights('lpcnet32v_384_10_G16_00.h5')if adaptation:
#Adapting from an existing model
- model.load_weights('lpcnet32v_384_10_G16_100.h5')+ model.load_weights('lpcnet32v_384_100.h5')sparsify = lpcnet.Sparsify(0, 0, 1, (0.05, 0.05, 0.2))
lr = 0.0001
decay = 0
@@ -121,5 +120,5 @@
decay = 5e-5
model.compile(optimizer=Adam(lr, decay=decay, beta_2=0.99), loss='sparse_categorical_crossentropy')
-model.save_weights('lpcnet32y_384_10_G16_00.h5');+model.save_weights('lpcnet33_384_00.h5');model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, sparsify])
--
⑨