ref: 94ac0841df4dc5aa9f72706d637dae62d330ff37
parent: c025744e34df941db169d5061e3c07a767fe32d8
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Sat Nov 24 10:47:48 EST 2018
Precomputing sizes
--- a/dnn/dump_lpcnet.py
+++ b/dnn/dump_lpcnet.py
@@ -12,6 +12,9 @@
import h5py
import re
+max_rnn_neurons = 1
+max_conv_inputs = 1
+
def printVector(f, vector, name):
v = np.reshape(vector, (-1));
#print('static const float ', name, '[', len(v), '] = \n', file=f)@@ -36,6 +39,7 @@
Layer.dump_layer = dump_layer_ignore
def dump_gru_layer(self, f, hf):
+ global max_rnn_neurons
name = self.name
print("printing layer " + name + " of type " + self.__class__.__name__)weights = self.get_weights()
@@ -50,9 +54,12 @@
reset_after = 0
else:
reset_after = 1
+ neurons = weights[0].shape[1]//3
+ max_rnn_neurons = max(max_rnn_neurons, neurons)
f.write('const GRULayer {} = {{\n {}_bias,\n {}_weights,\n {}_recurrent_weights,\n {}, {}, ACTIVATION_{}, {}\n}};\n\n'.format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
- hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))+ hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('extern const GRULayer {};\n\n'.format(name));return True
CuDNNGRU.dump_layer = dump_gru_layer
@@ -67,7 +74,7 @@
activation = self.activation.__name__.upper()
f.write('const DenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, ACTIVATION_{}\n}};\n\n'.format(name, name, name, weights[0].shape[0], weights[0].shape[1], activation))
- hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]))+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1])) hf.write('extern const DenseLayer {};\n\n'.format(name));return False
Dense.dump_layer = dump_dense_layer
@@ -82,12 +89,13 @@
activation = self.activation.__name__.upper()
f.write('const MDenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}_factor,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n'.format(name, name, name, name, weights[0].shape[0], weights[0].shape[1], weights[0].shape[2], activation))
- hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[0]))+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[0])) hf.write('extern const MDenseLayer {};\n\n'.format(name));return False
MDense.dump_layer = dump_mdense_layer
def dump_conv1d_layer(self, f, hf):
+ global max_conv_inputs
name = self.name
print("printing layer " + name + " of type " + self.__class__.__name__)weights = self.get_weights()
@@ -94,11 +102,13 @@
printVector(f, weights[0], name + '_weights')
printVector(f, weights[-1], name + '_bias')
activation = self.activation.__name__.upper()
+ max_conv_inputs = max(max_conv_inputs, weights[0].shape[1]*weights[0].shape[0])
f.write('const Conv1DLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n'.format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
- hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]))+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2]))+ hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1))) hf.write('extern const Conv1DLayer {};\n\n'.format(name));- return False
+ return True
Conv1D.dump_layer = dump_conv1d_layer
@@ -109,7 +119,7 @@
printVector(f, weights[0], name + '_weights')
f.write('const EmbeddingLayer {} = {{\n {}_weights,\n {}, {}\n}};\n\n'.format(name, name, weights[0].shape[0], weights[0].shape[1]))
- hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]))+ hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1])) hf.write('extern const EmbeddingLayer {};\n\n'.format(name));return False
Embedding.dump_layer = dump_embedding_layer
@@ -125,7 +135,6 @@
hf = open(sys.argv[3], 'w')
-
f.write('/*This file is automatically generated from a Keras model*/\n\n') f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "nnet.h"\n#include "foo.h"\n\n')@@ -137,9 +146,12 @@
if layer.dump_layer(f, hf):
layer_list.append(layer.name)
+hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons))+hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs))+
hf.write('struct RNNState {\n')for i, name in enumerate(layer_list):
- hf.write(' float {}_state[{}_SIZE];\n'.format(name, name.upper())) + hf.write(' float {}_state[{}_STATE_SIZE];\n'.format(name, name.upper())) hf.write('};\n') hf.write('\n\n#endif\n')--- a/dnn/nnet.c
+++ b/dnn/nnet.c
@@ -157,11 +157,11 @@
int i;
int N, M;
int stride;
- float tmp[MAX_NEURONS];
- float z[MAX_NEURONS];
- float r[MAX_NEURONS];
- float h[MAX_NEURONS];
- celt_assert(gru->nb_neurons <= MAX_NEURONS);
+ float tmp[MAX_RNN_NEURONS];
+ float z[MAX_RNN_NEURONS];
+ float r[MAX_RNN_NEURONS];
+ float h[MAX_RNN_NEURONS];
+ celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
M = gru->nb_inputs;
N = gru->nb_neurons;
stride = 3*N;
--- a/dnn/nnet.h
+++ b/dnn/nnet.h
@@ -28,9 +28,6 @@
#ifndef _NNET_H_
#define _NNET_H_
-#define MAX_NEURONS 1024
-#define MAX_CONV_INPUTS 1024
-
#define ACTIVATION_LINEAR 0
#define ACTIVATION_SIGMOID 1
#define ACTIVATION_TANH 2
--
⑨