ref: 9629ea6a7015ea64f3c8d4d78cd2453bc8379795
parent: 0f7fe64d5a438db9c4cf6b6640a43c98d8565191
author: Jean-Marc Valin <jmvalin@amazon.com>
date: Thu Oct 13 21:01:39 EDT 2022
Fine-tuning the scripts
--- a/dnn/training_tf2/fec_encoder.py
+++ b/dnn/training_tf2/fec_encoder.py
@@ -108,8 +108,8 @@
features = features[:, :num_subframes, :]
#variable quantizer depending on the delay
-q0 = 2
-q1 = 10
+q0 = 3
+q1 = 15
quant_id = np.round(q1 + (q0-q1)*np.arange(args.num_redundancy_frames//2)/args.num_redundancy_frames).astype('int16')#print(quant_id)
@@ -154,7 +154,10 @@
fake_lambda = np.ones((sym_batch.shape[0], sym_batch.shape[1], 1), dtype='float32')
rate_input = np.concatenate((sym_batch, hard_distr_embed, fake_lambda), axis=-1)
rates = sq_rate_metric(None, rate_input, reduce=False).numpy()
-print("rate = ", np.mean(rates))+print(rates.shape)
+print("average rate = ", np.mean(rates[args.num_redundancy_frames:,:]))+
+#sym_batch.tofile('qsyms.f32')sym_batch = sym_batch / quant_scale
print(sym_batch.shape, quant_state.shape)
--- a/dnn/training_tf2/rdovae.py
+++ b/dnn/training_tf2/rdovae.py
@@ -167,8 +167,8 @@
abs_kx = tf.abs(kx)
kk=tf.reduce_sum(abs_y, axis=-1)
#print("sums = ", kk)- plus = 1.0001*tf.reduce_min((abs_y+.5)/(abs_kx+1e-15), axis=-1)
- minus = .9999*tf.reduce_max((abs_y-.5)/(abs_kx+1e-15), axis=-1)
+ plus = 1.000001*tf.reduce_min((abs_y+.5)/(abs_kx+1e-15), axis=-1)
+ minus = .999999*tf.reduce_max((abs_y-.5)/(abs_kx+1e-15), axis=-1)
#print("plus = ", plus) #print("minus = ", minus)factor = tf.where(kk>k, minus, plus)
@@ -183,7 +183,7 @@
y = tf.round(kx)
#print(y)
-
+ #print(K.mean(K.sum(K.abs(y), axis=-1)))
return y
def pvq_quantize(x, k):
@@ -281,7 +281,7 @@
range_select = Lambda(lambda x: x[0][:,x[1]:x[2],:])
elem_select = Lambda(lambda x: x[0][:,x[1],:])
- points = [0, 64, 128, 192, 256]
+ points = [0, 100, 200, 300, 400]
outputs = []
for i in range(len(points)-1):
begin = points[i]//bunch
--
⑨