ref: a922f83cca2b67d1a947e6673c304f99ba9b0230
parent: 08b5fe6cdce594ece41a6c1cdd4273da33866b2a
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Tue Aug 21 09:02:26 EDT 2018
Fix input noise
--- a/dnn/test_wavenet_audio.py
+++ b/dnn/test_wavenet_audio.py
@@ -66,7 +66,7 @@
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
-model.load_weights('wavenet3h13_30.h5')+model.load_weights('wavenet3h21_30.h5')order = 16
@@ -90,11 +90,13 @@
fexc[0, 0, 1] = np.minimum(127, lin2ulaw(pred/32768.)) + 128
p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state])
+ #p = p*p
+ #p = p/(1e-18 + np.sum(p))
p = np.maximum(p-0.001, 0)
p = p/(1e-5 + np.sum(p))
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128
pcm[f*frame_size + i, 0] = 32768*ulaw2lin(iexc[0, 0, 0]*1.0)
- print(iexc[0, 0, 0], out_data[f*frame_size + i, 0], pcm[f*frame_size + i, 0])
+ print(iexc[0, 0, 0], 32768*ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred)
--- a/dnn/train_wavenet_audio.py
+++ b/dnn/train_wavenet_audio.py
@@ -45,7 +45,9 @@
features = features[:nb_frames*feature_chunk_size*nb_features]
in_data = np.concatenate([data[0:1], data[:-1]]);
-in_data = in_data + np.random.randint(-1, 1, len(data))
+noise = np.concatenate([np.zeros((len(data)//3)), np.random.randint(-2, 2, len(data)//3), np.random.randint(-1, 1, len(data)//3)])
+in_data = in_data + noise
+in_data = np.maximum(-127, np.minimum(127, in_data))
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
@@ -52,7 +54,7 @@
pred = np.fromfile(pred_file, dtype='int16')
pred = pred[:nb_frames*pcm_chunk_size]
-pred_in = 32768.*ulaw2lin(data)
+pred_in = 32768.*ulaw2lin(in_data)
for i in range(2, nb_frames*feature_chunk_size):
pred[i*frame_size:(i+1)*frame_size] = 0
if i % 100000 == 0:
@@ -59,7 +61,7 @@
print(i)
for k in range(16):
pred[i*frame_size:(i+1)*frame_size] = pred[i*frame_size:(i+1)*frame_size] - \
- pred_in[i*frame_size-k-1:(i+1)*frame_size-k-1]*features[i, nb_features-16+k]
+ pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k]
pred = np.minimum(127, lin2ulaw(pred/32768.))
#pred = pred + np.random.randint(-1, 1, len(data))
@@ -90,7 +92,7 @@
# f.create_dataset('data', data=in_data[:50000, :, :]) # f.create_dataset('feat', data=features[:50000, :, :])-checkpoint = ModelCheckpoint('wavenet3h13_{epoch:02d}.h5')+checkpoint = ModelCheckpoint('wavenet3h21_{epoch:02d}.h5') #model.load_weights('wavernn1c_01.h5')model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
--
⑨