ref: aba9af8bdebbc9af0dbecc3060121d52d84cd557
parent: 08211c279ffb4aad129d497b01e06c0f18bc238c
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Mon Oct 8 22:39:12 EDT 2018
mu-law code cleanup
--- a/dnn/test_wavenet_audio.py
+++ b/dnn/test_wavenet_audio.py
@@ -34,7 +34,7 @@
pcm_chunk_size = frame_size*feature_chunk_size
data = np.fromfile(pcmfile, dtype='int16')
-data = np.minimum(127, lin2ulaw(data/32768.))
+data = lin2ulaw(data)
nb_frames = len(data)//pcm_chunk_size
features = np.fromfile(feature_file, dtype='float32')
@@ -54,9 +54,9 @@
in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1))
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
-in_data = (in_data.astype('int16')+128).astype('uint8')+in_data = in_data.astype('uint8')out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
-out_data = (out_data.astype('int16')+128).astype('uint8')+out_data = out_data.astype('uint8')features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
features = features[:, :, :]
@@ -66,7 +66,7 @@
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
-model.load_weights('wavenet4f3_30.h5')+model.load_weights('wavenet4f2_30.h5')order = 16
@@ -87,7 +87,7 @@
for i in range(frame_size):
#fexc[0, 0, 0] = iexc + 128
pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0])
- fexc[0, 0, 1] = np.minimum(127, lin2ulaw(pred/32768.)) + 128
+ fexc[0, 0, 1] = lin2ulaw(pred)
p, state = dec.predict([fexc, iexc, cfeat[:, fr:fr+1, :], state])
#p = p*p
@@ -96,8 +96,8 @@
p = p/(1e-8 + np.sum(p))
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))
- pcm[f*frame_size + i, 0] = pred + 32768*ulaw2lin(iexc[0, 0, 0]-128)
- fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i, 0]/32768) + 128
- print(iexc[0, 0, 0], 32768*ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred)
+ pcm[f*frame_size + i, 0] = pred + ulaw2lin(iexc[0, 0, 0])
+ fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i, 0])
+ print(iexc[0, 0, 0], ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred)
--- a/dnn/train_wavenet_audio.py
+++ b/dnn/train_wavenet_audio.py
@@ -36,7 +36,7 @@
pcm_chunk_size = frame_size*feature_chunk_size
udata = np.fromfile(pcm_file, dtype='int16')
-data = np.minimum(127, lin2ulaw(udata/32768.))
+data = lin2ulaw(udata)
nb_frames = len(data)//pcm_chunk_size
features = np.fromfile(feature_file, dtype='float32')
@@ -48,7 +48,7 @@
in_data = np.concatenate([data[0:1], data[:-1]]);
noise = np.concatenate([np.zeros((len(data)*1//5)), np.random.randint(-3, 3, len(data)*1//5), np.random.randint(-2, 2, len(data)*1//5), np.random.randint(-1, 1, len(data)*2//5)])
in_data = in_data + noise
-in_data = np.maximum(-127, np.minimum(127, in_data))
+in_data = np.clip(in_data, 0, 255)
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
@@ -55,7 +55,7 @@
upred = np.fromfile(pred_file, dtype='int16')
upred = upred[:nb_frames*pcm_chunk_size]
-pred_in = 32768.*ulaw2lin(in_data)
+pred_in = ulaw2lin(in_data)
for i in range(2, nb_frames*feature_chunk_size):
upred[i*frame_size:(i+1)*frame_size] = 0
#if i % 100000 == 0:
@@ -64,7 +64,7 @@
upred[i*frame_size:(i+1)*frame_size] = upred[i*frame_size:(i+1)*frame_size] - \
pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k]
-pred = np.minimum(127, lin2ulaw(upred/32768.))
+pred = lin2ulaw(upred)
#pred = pred + np.random.randint(-1, 1, len(data))
@@ -77,23 +77,22 @@
in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1))
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
-in_data = (in_data.astype('int16')+128).astype('uint8')-out_data = lin2ulaw((udata-upred)/32768)
+in_data = in_data.astype('uint8')+out_data = lin2ulaw(udata-upred)
in_exc = np.concatenate([out_data[0:1], out_data[:-1]]);
out_data = np.reshape(out_data, (nb_frames, pcm_chunk_size, 1))
-out_data = np.maximum(-127, np.minimum(127, out_data))
-out_data = (out_data.astype('int16')+128).astype('uint8')+out_data = out_data.astype('uint8')in_exc = np.reshape(in_exc, (nb_frames, pcm_chunk_size, 1))
-in_exc = np.maximum(-127, np.minimum(127, in_exc))
-in_exc = (in_exc.astype('int16')+128).astype('uint8')+in_exc = in_exc.astype('uint8')features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
features = features[:, :, :nb_used_features]
pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1))
-pred = (pred.astype('int16')+128).astype('uint8')+pred = pred.astype('uint8')+
periods = (50*features[:,:,36:37]+100).astype('int16')in_data = np.concatenate([in_data, pred], axis=-1)
@@ -104,7 +103,7 @@
# f.create_dataset('data', data=in_data[:50000, :, :]) # f.create_dataset('feat', data=features[:50000, :, :])-checkpoint = ModelCheckpoint('wavenet4f3_{epoch:02d}.h5')+checkpoint = ModelCheckpoint('wavenet5b_{epoch:02d}.h5') #model.load_weights('wavenet4f2_30.h5')model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
--- a/dnn/ulaw.py
+++ b/dnn/ulaw.py
@@ -2,15 +2,18 @@
import numpy as np
import math
+scale = 255.0/32768.0
+scale_1 = 32768.0/255.0
def ulaw2lin(u):
+ u = u - 128
s = np.sign(u)
u = np.abs(u)
- return s*(np.exp(u/128.*math.log(256))-1)/255
+ return s*scale_1*(np.exp(u/128.*math.log(256))-1)
def lin2ulaw(x):
s = np.sign(x)
x = np.abs(x)
- u = (s*(128*np.log(1+255*x)/math.log(256)))
- u = np.round(u)
+ u = (s*(128*np.log(1+scale*x)/math.log(256)))
+ u = np.clip(128 + np.round(u), 0, 255)
return u.astype('int16')--
⑨