shithub: opus

Download patch

ref: da60266f6e11cb8d2d28aafa8ea05e5dadf3e8b6
parent: feb32828877ea5e8723ea2a446eb20d7b3fba426
author: Jan Buethe <jbuethe@amazon.de>
date: Thu Nov 2 12:52:50 EDT 2023

updated moc method

--- a/dnn/torch/osce/utils/compare.py
+++ /dev/null
@@ -1,90 +1,0 @@
-import numpy as np
-import scipy.signal
-
-def power_spectrum(x, window_size=160, hop_size=40, window='hamming'):
-    num_spectra = (len(x) - window_size - hop_size) // hop_size
-    window = scipy.signal.get_window(window, window_size)
-    N = window_size // 2
-
-    frames = np.concatenate([x[np.newaxis, i * hop_size : i * hop_size + window_size] for i in range(num_spectra)]) * window
-    psd = np.abs(np.fft.fft(frames, axis=1)[:, :N + 1]) ** 2
-
-    return psd
-
-
-def frequency_mask(num_bands, up_factor, down_factor):
-
-    up_mask = np.zeros((num_bands, num_bands))
-    down_mask = np.zeros((num_bands, num_bands))
-
-    for i in range(num_bands):
-        up_mask[i, : i + 1] = up_factor ** np.arange(i, -1, -1)
-        down_mask[i, i :] = down_factor ** np.arange(num_bands - i)
-
-    return down_mask @ up_mask
-
-
-def rect_fb(band_limits, num_bins=None):
-    num_bands = len(band_limits) - 1
-    if num_bins is None:
-        num_bins = band_limits[-1]
-
-    fb = np.zeros((num_bands, num_bins))
-    for i in range(num_bands):
-        fb[i, band_limits[i]:band_limits[i+1]] = 1
-
-    return fb
-
-
-def compare(x, y):
-    """ Modified version of opus_compare for 16 kHz mono signals
-
-    Args:
-        x (np.ndarray): reference input signal scaled to [-1, 1]
-        y (np.ndarray): test signal scaled to [-1, 1]
-
-    Returns:
-        float: perceptually weighted error
-    """
-    # filter bank: bark scale with minimum-2-bin bands and cutoff at 7.5 kHz
-    band_limits = [0, 2, 4, 6, 7, 9, 11, 13, 15, 18, 22, 26, 31, 36, 43, 51, 60, 75]
-    num_bands = len(band_limits) - 1
-    fb = rect_fb(band_limits, num_bins=81)
-
-    # trim samples to same size
-    num_samples = min(len(x), len(y))
-    x = x[:num_samples] * 2**15
-    y = y[:num_samples] * 2**15
-
-    psd_x = power_spectrum(x) + 100000
-    psd_y = power_spectrum(y) + 100000
-
-    num_frames = psd_x.shape[0]
-
-    # average band energies
-    be_x = (psd_x @ fb.T) / np.sum(fb, axis=1)
-
-    # frequecy masking
-    f_mask = frequency_mask(num_bands, 0.1, 0.03)
-    mask_x = be_x @ f_mask.T
-
-    # temporal masking
-    for i in range(1, num_frames):
-        mask_x[i, :] += 0.5 * mask_x[i-1, :]
-
-    # apply mask
-    masked_psd_x = psd_x + 0.1 * (mask_x @ fb)
-    masked_psd_y = psd_y + 0.1 * (mask_x @ fb)
-
-    # 2-frame average
-    masked_psd_x = masked_psd_x[1:] +  masked_psd_x[:-1]
-    masked_psd_y = masked_psd_y[1:] +  masked_psd_y[:-1]
-
-    # distortion metric
-    re = masked_psd_y / masked_psd_x
-    im = re - np.log(re) - 1
-    Eb = ((im @ fb.T) / np.sum(fb, axis=1))
-    Ef = np.mean(Eb ** 2, axis=1)
-    err = np.mean(Ef ** 4, axis=0) ** (1/16)
-
-    return float(err)
\ No newline at end of file
--- /dev/null
+++ b/dnn/torch/osce/utils/moc.py
@@ -1,0 +1,153 @@
+import numpy as np
+import scipy.signal
+
+def compute_vad_mask(x, fs, stop_db=-70):
+
+    frame_length = (fs + 49) // 50
+    x = x[: frame_length * (len(x) // frame_length)]
+
+    frames = x.reshape(-1, frame_length)
+    frame_energy = np.sum(frames ** 2, axis=1)
+    frame_energy_smooth = np.convolve(frame_energy, np.ones(5) / 5, mode='same')
+
+    max_threshold = frame_energy.max() * 10 ** (stop_db/20)
+    vactive = np.ones_like(frames)
+    vactive[frame_energy_smooth < max_threshold, :] = 0
+    vactive = vactive.reshape(-1)
+
+    filter = np.sin(np.arange(frame_length) * np.pi / (frame_length - 1))
+    filter = filter / filter.sum()
+
+    mask = np.convolve(vactive, filter, mode='same')
+
+    return x, mask
+
+def convert_mask(mask, num_frames, frame_size=160, hop_size=40):
+    num_samples = frame_size + (num_frames - 1) * hop_size
+    if len(mask) < num_samples:
+        mask = np.concatenate((mask, np.zeros(num_samples - len(mask))), dtype=mask.dtype)
+    else:
+        mask = mask[:num_samples]
+
+    new_mask = np.array([np.mean(mask[i*hop_size : i*hop_size + frame_size]) for i in range(num_frames)])
+
+    return new_mask
+
+def power_spectrum(x, window_size=160, hop_size=40, window='hamming'):
+    num_spectra = (len(x) - window_size - hop_size) // hop_size
+    window = scipy.signal.get_window(window, window_size)
+    N = window_size // 2
+
+    frames = np.concatenate([x[np.newaxis, i * hop_size : i * hop_size + window_size] for i in range(num_spectra)]) * window
+    psd = np.abs(np.fft.fft(frames, axis=1)[:, :N + 1]) ** 2
+
+    return psd
+
+
+def frequency_mask(num_bands, up_factor, down_factor):
+
+    up_mask = np.zeros((num_bands, num_bands))
+    down_mask = np.zeros((num_bands, num_bands))
+
+    for i in range(num_bands):
+        up_mask[i, : i + 1] = up_factor ** np.arange(i, -1, -1)
+        down_mask[i, i :] = down_factor ** np.arange(num_bands - i)
+
+    return down_mask @ up_mask
+
+
+def rect_fb(band_limits, num_bins=None):
+    num_bands = len(band_limits) - 1
+    if num_bins is None:
+        num_bins = band_limits[-1]
+
+    fb = np.zeros((num_bands, num_bins))
+    for i in range(num_bands):
+        fb[i, band_limits[i]:band_limits[i+1]] = 1
+
+    return fb
+
+
+def compare(x, y, apply_vad=False):
+    """ Modified version of opus_compare for 16 kHz mono signals
+
+    Args:
+        x (np.ndarray): reference input signal scaled to [-1, 1]
+        y (np.ndarray): test signal scaled to [-1, 1]
+
+    Returns:
+        float: perceptually weighted error
+    """
+    # filter bank: bark scale with minimum-2-bin bands and cutoff at 7.5 kHz
+    band_limits = [0, 2, 4, 6, 7, 9, 11, 13, 15, 18, 22, 26, 31, 36, 43, 51, 60, 75]
+    num_bands = len(band_limits) - 1
+    fb = rect_fb(band_limits, num_bins=81)
+
+    # trim samples to same size
+    num_samples = min(len(x), len(y))
+    x = x[:num_samples] * 2**15
+    y = y[:num_samples] * 2**15
+
+    psd_x = power_spectrum(x) + 100000
+    psd_y = power_spectrum(y) + 100000
+
+    num_frames = psd_x.shape[0]
+
+    # average band energies
+    be_x = (psd_x @ fb.T) / np.sum(fb, axis=1)
+
+    # frequecy masking
+    f_mask = frequency_mask(num_bands, 0.1, 0.03)
+    mask_x = be_x @ f_mask.T
+
+    # temporal masking
+    for i in range(1, num_frames):
+        mask_x[i, :] += 0.5 * mask_x[i-1, :]
+
+    # apply mask
+    masked_psd_x = psd_x + 0.1 * (mask_x @ fb)
+    masked_psd_y = psd_y + 0.1 * (mask_x @ fb)
+
+    # 2-frame average
+    masked_psd_x = masked_psd_x[1:] +  masked_psd_x[:-1]
+    masked_psd_y = masked_psd_y[1:] +  masked_psd_y[:-1]
+
+    # distortion metric
+    re = masked_psd_y / masked_psd_x
+    im = re - np.log(re) - 1
+    Eb = ((im @ fb.T) / np.sum(fb, axis=1))
+    Ef = np.mean(Eb , axis=1)
+
+    if apply_vad:
+        _, mask = compute_vad_mask(x, 16000)
+        mask = convert_mask(mask, Ef.shape[0])
+    else:
+        mask = np.ones_like(Ef)
+
+    err = np.mean(np.abs(Ef[mask > 1e-6]) ** 3) ** (1/6)
+
+    return float(err)
+
+if __name__ == "__main__":
+    import argparse
+    from scipy.io import wavfile
+
+    parser = argparse.ArgumentParser()
+    parser.add_argument('ref', type=str, help='reference wav file')
+    parser.add_argument('deg', type=str, help='degraded wav file')
+    parser.add_argument('--apply-vad', action='store_true')
+    args = parser.parse_args()
+
+
+    fs1, x = wavfile.read(args.ref)
+    fs2, y = wavfile.read(args.deg)
+
+    if max(fs1, fs2) != 16000:
+        raise ValueError('error: encountered sampling frequency diffrent from 16kHz')
+
+    x = x.astype(np.float32) / 2**15
+    y = y.astype(np.float32) / 2**15
+
+    err = compare(x, y, apply_vad=args.apply_vad)
+
+    print(f"MOC: {err}")
--