ref: fb1d4fdec28d79abd06dfb79bacaa3fd57c5a109
parent: fa1d2824fad7fff313c335385de41d083df3c76f
author: Jean-Marc Valin <jmvalin@jmvalin.ca>
date: Tue Oct 16 00:05:52 EDT 2018
...
--- a/dnn/lpcnet.py
+++ b/dnn/lpcnet.py
@@ -11,7 +11,7 @@
import h5py
import sys
-rnn_units1=256
+rnn_units1=512
rnn_units2=32
pcm_bits = 8
embed_size = 128
--- a/dnn/train_wavenet_audio.py
+++ b/dnn/train_wavenet_audio.py
@@ -111,6 +111,7 @@
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
features = features[:, :, :nb_used_features]
+features[:,:,18:36] = 0
pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1))
pred = pred.astype('uint8')@@ -119,8 +120,8 @@
in_data = np.concatenate([in_data, pred], axis=-1)
# dump models to disk as we go
-checkpoint = ModelCheckpoint('wavenet5p0_{epoch:02d}.h5')+checkpoint = ModelCheckpoint('lpcnet5_512_10_G32np_{epoch:02d}.h5') #model.load_weights('wavenet4f2_30.h5')-model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
-model.fit([in_data, in_exc, features, periods], out_data, batch_size=batch_size, epochs=60, validation_split=0.2, callbacks=[checkpoint, lpcnet.Sparsify(1000, 20000, 200, 0.25)])
+model.compile(optimizer=Adam(0.0005, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
+model.fit([in_data, in_exc, features, periods], out_data, batch_size=batch_size, epochs=60, validation_split=0.2, callbacks=[checkpoint, lpcnet.Sparsify(1000, 20000, 200, 0.1)])
--
⑨