ref: 37365c52f772209be58bad1f7acace60cf54e26b
dir: /libfaad/sbr_qmf.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. ** ** $Id: sbr_qmf.c,v 1.32 2007/11/01 12:33:36 menno Exp $ **/ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include <stdlib.h> #include <string.h> #include "sbr_dct.h" #include "sbr_qmf.h" #include "sbr_qmf_c.h" #include "sbr_syntax.h" qmfa_info *qmfa_init(uint8_t channels) { qmfa_info *qmfa = (qmfa_info*)faad_malloc(sizeof(qmfa_info)); /* x is implemented as double ringbuffer */ qmfa->x = (real_t*)faad_malloc(2 * channels * 10 * sizeof(real_t)); memset(qmfa->x, 0, 2 * channels * 10 * sizeof(real_t)); /* ringbuffer index */ qmfa->x_index = 0; qmfa->channels = channels; return qmfa; } void qmfa_end(qmfa_info *qmfa) { if (qmfa) { if (qmfa->x) faad_free(qmfa->x); faad_free(qmfa); } } void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input, qmf_t X[MAX_NTSRHFG][64], uint8_t offset, uint8_t kx) { ALIGN real_t u[64]; #ifndef SBR_LOW_POWER ALIGN real_t in_real[32], in_imag[32], out_real[32], out_imag[32]; #else ALIGN real_t y[32]; #endif uint32_t in = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { int16_t n; /* shift input buffer x */ /* input buffer is not shifted anymore, x is implemented as double ringbuffer */ //memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t)); /* add new samples to input buffer x */ for (n = 32 - 1; n >= 0; n--) { #ifdef FIXED_POINT qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = (input[in++]) >> 4; #else qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = input[in++]; #endif } /* window and summation to create array u */ for (n = 0; n < 64; n++) { u[n] = MUL_F(qmfa->x[qmfa->x_index + n], qmf_c[2*n]) + MUL_F(qmfa->x[qmfa->x_index + n + 64], qmf_c[2*(n + 64)]) + MUL_F(qmfa->x[qmfa->x_index + n + 128], qmf_c[2*(n + 128)]) + MUL_F(qmfa->x[qmfa->x_index + n + 192], qmf_c[2*(n + 192)]) + MUL_F(qmfa->x[qmfa->x_index + n + 256], qmf_c[2*(n + 256)]); } /* update ringbuffer index */ qmfa->x_index -= 32; if (qmfa->x_index < 0) qmfa->x_index = (320-32); /* calculate 32 subband samples by introducing X */ #ifdef SBR_LOW_POWER y[0] = u[48]; for (n = 1; n < 16; n++) y[n] = u[n+48] + u[48-n]; for (n = 16; n < 32; n++) y[n] = -u[n-16] + u[48-n]; DCT3_32_unscaled(u, y); for (n = 0; n < 32; n++) { if (n < kx) { #ifdef FIXED_POINT QMF_RE(X[l + offset][n]) = u[n] /*<< 1*/; #else QMF_RE(X[l + offset][n]) = 2. * u[n]; #endif } else { QMF_RE(X[l + offset][n]) = 0; } } #else // Reordering of data moved from DCT_IV to here in_imag[31] = u[1]; in_real[0] = u[0]; for (n = 1; n < 31; n++) { in_imag[31 - n] = u[n+1]; in_real[n] = -u[64-n]; } in_imag[0] = u[32]; in_real[31] = -u[33]; // dct4_kernel is DCT_IV without reordering which is done before and after FFT dct4_kernel(in_real, in_imag, out_real, out_imag); // Reordering of data moved from DCT_IV to here for (n = 0; n < 16; n++) { if (2*n+1 < kx) { #ifdef FIXED_POINT QMF_RE(X[l + offset][2*n]) = out_real[n]; QMF_IM(X[l + offset][2*n]) = out_imag[n]; QMF_RE(X[l + offset][2*n+1]) = -out_imag[31-n]; QMF_IM(X[l + offset][2*n+1]) = -out_real[31-n]; #else QMF_RE(X[l + offset][2*n]) = 2. * out_real[n]; QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n]; QMF_RE(X[l + offset][2*n+1]) = -2. * out_imag[31-n]; QMF_IM(X[l + offset][2*n+1]) = -2. * out_real[31-n]; #endif } else { if (2*n < kx) { #ifdef FIXED_POINT QMF_RE(X[l + offset][2*n]) = out_real[n]; QMF_IM(X[l + offset][2*n]) = out_imag[n]; #else QMF_RE(X[l + offset][2*n]) = 2. * out_real[n]; QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n]; #endif } else { QMF_RE(X[l + offset][2*n]) = 0; QMF_IM(X[l + offset][2*n]) = 0; } QMF_RE(X[l + offset][2*n+1]) = 0; QMF_IM(X[l + offset][2*n+1]) = 0; } } #endif } } static const complex_t qmf32_pre_twiddle[] = { { FRAC_CONST(0.999924701839145), FRAC_CONST(-0.012271538285720) }, { FRAC_CONST(0.999322384588350), FRAC_CONST(-0.036807222941359) }, { FRAC_CONST(0.998118112900149), FRAC_CONST(-0.061320736302209) }, { FRAC_CONST(0.996312612182778), FRAC_CONST(-0.085797312344440) }, { FRAC_CONST(0.993906970002356), FRAC_CONST(-0.110222207293883) }, { FRAC_CONST(0.990902635427780), FRAC_CONST(-0.134580708507126) }, { FRAC_CONST(0.987301418157858), FRAC_CONST(-0.158858143333861) }, { FRAC_CONST(0.983105487431216), FRAC_CONST(-0.183039887955141) }, { FRAC_CONST(0.978317370719628), FRAC_CONST(-0.207111376192219) }, { FRAC_CONST(0.972939952205560), FRAC_CONST(-0.231058108280671) }, { FRAC_CONST(0.966976471044852), FRAC_CONST(-0.254865659604515) }, { FRAC_CONST(0.960430519415566), FRAC_CONST(-0.278519689385053) }, { FRAC_CONST(0.953306040354194), FRAC_CONST(-0.302005949319228) }, { FRAC_CONST(0.945607325380521), FRAC_CONST(-0.325310292162263) }, { FRAC_CONST(0.937339011912575), FRAC_CONST(-0.348418680249435) }, { FRAC_CONST(0.928506080473216), FRAC_CONST(-0.371317193951838) }, { FRAC_CONST(0.919113851690058), FRAC_CONST(-0.393992040061048) }, { FRAC_CONST(0.909167983090522), FRAC_CONST(-0.416429560097637) }, { FRAC_CONST(0.898674465693954), FRAC_CONST(-0.438616238538528) }, { FRAC_CONST(0.887639620402854), FRAC_CONST(-0.460538710958240) }, { FRAC_CONST(0.876070094195407), FRAC_CONST(-0.482183772079123) }, { FRAC_CONST(0.863972856121587), FRAC_CONST(-0.503538383725718) }, { FRAC_CONST(0.851355193105265), FRAC_CONST(-0.524589682678469) }, { FRAC_CONST(0.838224705554838), FRAC_CONST(-0.545324988422046) }, { FRAC_CONST(0.824589302785025), FRAC_CONST(-0.565731810783613) }, { FRAC_CONST(0.810457198252595), FRAC_CONST(-0.585797857456439) }, { FRAC_CONST(0.795836904608884), FRAC_CONST(-0.605511041404326) }, { FRAC_CONST(0.780737228572094), FRAC_CONST(-0.624859488142386) }, { FRAC_CONST(0.765167265622459), FRAC_CONST(-0.643831542889791) }, { FRAC_CONST(0.749136394523459), FRAC_CONST(-0.662415777590172) }, { FRAC_CONST(0.732654271672413), FRAC_CONST(-0.680600997795453) }, { FRAC_CONST(0.715730825283819), FRAC_CONST(-0.698376249408973) } }; qmfs_info *qmfs_init(uint8_t channels) { qmfs_info *qmfs = (qmfs_info*)faad_malloc(sizeof(qmfs_info)); /* v is a double ringbuffer */ qmfs->v = (real_t*)faad_malloc(2 * channels * 20 * sizeof(real_t)); memset(qmfs->v, 0, 2 * channels * 20 * sizeof(real_t)); qmfs->v_index = 0; qmfs->channels = channels; return qmfs; } void qmfs_end(qmfs_info *qmfs) { if (qmfs) { if (qmfs->v) faad_free(qmfs->v); faad_free(qmfs); } } #ifdef SBR_LOW_POWER void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { ALIGN real_t x[16]; ALIGN real_t y[16]; int32_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffers */ /* we are not shifting v, it is a double ringbuffer */ //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t)); /* calculate 64 samples */ for (k = 0; k < 16; k++) { #ifdef FIXED_POINT y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k])); x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k])); #else y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k])) / 32.0; x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k])) / 32.0; #endif } /* even n samples */ DCT2_16_unscaled(x, x); /* odd n samples */ DCT4_16(y, y); for (n = 8; n < 24; n++) { qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 640 + n*2] = x[n-8]; qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 640 + n*2+1] = y[n-8]; } for (n = 0; n < 16; n++) { qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = qmfs->v[qmfs->v_index + 32-n]; } qmfs->v[qmfs->v_index + 48] = qmfs->v[qmfs->v_index + 640 + 48] = 0; for (n = 1; n < 16; n++) { qmfs->v[qmfs->v_index + 48+n] = qmfs->v[qmfs->v_index + 640 + 48+n] = -qmfs->v[qmfs->v_index + 48-n]; } /* calculate 32 output samples and window */ for (k = 0; k < 32; k++) { output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) + MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]); } /* update the ringbuffer index */ qmfs->v_index -= 64; if (qmfs->v_index < 0) qmfs->v_index = (640-64); } } void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { ALIGN real_t x[64]; ALIGN real_t y[64]; int32_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffers */ /* we are not shifting v, it is a double ringbuffer */ //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t)); /* calculate 128 samples */ for (k = 0; k < 32; k++) { #ifdef FIXED_POINT y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k])); x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k])); #else y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k])) / 32.0; x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k])) / 32.0; #endif } /* even n samples */ DCT2_32_unscaled(x, x); /* odd n samples */ DCT4_32(y, y); for (n = 16; n < 48; n++) { qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 1280 + n*2] = x[n-16]; qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 1280 + n*2+1] = y[n-16]; } for (n = 0; n < 32; n++) { qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 1280 + n] = qmfs->v[qmfs->v_index + 64-n]; } qmfs->v[qmfs->v_index + 96] = qmfs->v[qmfs->v_index + 1280 + 96] = 0; for (n = 1; n < 32; n++) { qmfs->v[qmfs->v_index + 96+n] = qmfs->v[qmfs->v_index + 1280 + 96+n] = -qmfs->v[qmfs->v_index + 96-n]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[k]) + MUL_F(qmfs->v[qmfs->v_index + 192 + k], qmf_c[64 + k]) + MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[128 + k]) + MUL_F(qmfs->v[qmfs->v_index + 256 + 192 + k], qmf_c[128 + 64 + k]) + MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[256 + k]) + MUL_F(qmfs->v[qmfs->v_index + 512 + 192 + k], qmf_c[256 + 64 + k]) + MUL_F(qmfs->v[qmfs->v_index + 768 + k], qmf_c[384 + k]) + MUL_F(qmfs->v[qmfs->v_index + 768 + 192 + k], qmf_c[384 + 64 + k]) + MUL_F(qmfs->v[qmfs->v_index + 1024 + k], qmf_c[512 + k]) + MUL_F(qmfs->v[qmfs->v_index + 1024 + 192 + k], qmf_c[512 + 64 + k]); } /* update the ringbuffer index */ qmfs->v_index -= 128; if (qmfs->v_index < 0) qmfs->v_index = (1280-128); } } #else void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { ALIGN real_t x1[32], x2[32]; #ifndef FIXED_POINT real_t scale = 1.f/64.f; #endif int32_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffer v */ /* buffer is not shifted, we are using a ringbuffer */ //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t)); /* calculate 64 samples */ /* complex pre-twiddle */ for (k = 0; k < 32; k++) { x1[k] = MUL_F(QMF_RE(X[l][k]), RE(qmf32_pre_twiddle[k])) - MUL_F(QMF_IM(X[l][k]), IM(qmf32_pre_twiddle[k])); x2[k] = MUL_F(QMF_IM(X[l][k]), RE(qmf32_pre_twiddle[k])) + MUL_F(QMF_RE(X[l][k]), IM(qmf32_pre_twiddle[k])); #ifndef FIXED_POINT x1[k] *= scale; x2[k] *= scale; #else x1[k] >>= 1; x2[k] >>= 1; #endif } /* transform */ DCT4_32(x1, x1); DST4_32(x2, x2); for (n = 0; n < 32; n++) { qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = -x1[n] + x2[n]; qmfs->v[qmfs->v_index + 63 - n] = qmfs->v[qmfs->v_index + 640 + 63 - n] = x1[n] + x2[n]; } /* calculate 32 output samples and window */ for (k = 0; k < 32; k++) { output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) + MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) + MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]); } /* update ringbuffer index */ qmfs->v_index -= 64; if (qmfs->v_index < 0) qmfs->v_index = (640 - 64); } } void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], real_t *output) { // ALIGN real_t x1[64], x2[64]; #ifndef SBR_LOW_POWER ALIGN real_t in_real1[32], in_imag1[32], out_real1[32], out_imag1[32]; ALIGN real_t in_real2[32], in_imag2[32], out_real2[32], out_imag2[32]; #endif qmf_t * pX; real_t * pring_buffer_1, * pring_buffer_3; // real_t * ptemp_1, * ptemp_2; #ifdef PREFER_POINTERS // These pointers are used if target platform has autoinc address generators real_t * pring_buffer_2, * pring_buffer_4; real_t * pring_buffer_5, * pring_buffer_6; real_t * pring_buffer_7, * pring_buffer_8; real_t * pring_buffer_9, * pring_buffer_10; const real_t * pqmf_c_1, * pqmf_c_2, * pqmf_c_3, * pqmf_c_4; const real_t * pqmf_c_5, * pqmf_c_6, * pqmf_c_7, * pqmf_c_8; const real_t * pqmf_c_9, * pqmf_c_10; #endif // #ifdef PREFER_POINTERS #ifndef FIXED_POINT real_t scale = 1.f/64.f; #endif int32_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffer v */ /* buffer is not shifted, we use double ringbuffer */ //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t)); /* calculate 128 samples */ #ifndef FIXED_POINT pX = X[l]; in_imag1[31] = scale*QMF_RE(pX[1]); in_real1[0] = scale*QMF_RE(pX[0]); in_imag2[31] = scale*QMF_IM(pX[63-1]); in_real2[0] = scale*QMF_IM(pX[63-0]); for (k = 1; k < 31; k++) { in_imag1[31 - k] = scale*QMF_RE(pX[2*k + 1]); in_real1[ k] = scale*QMF_RE(pX[2*k ]); in_imag2[31 - k] = scale*QMF_IM(pX[63 - (2*k + 1)]); in_real2[ k] = scale*QMF_IM(pX[63 - (2*k )]); } in_imag1[0] = scale*QMF_RE(pX[63]); in_real1[31] = scale*QMF_RE(pX[62]); in_imag2[0] = scale*QMF_IM(pX[63-63]); in_real2[31] = scale*QMF_IM(pX[63-62]); #else pX = X[l]; in_imag1[31] = QMF_RE(pX[1]) >> 1; in_real1[0] = QMF_RE(pX[0]) >> 1; in_imag2[31] = QMF_IM(pX[62]) >> 1; in_real2[0] = QMF_IM(pX[63]) >> 1; for (k = 1; k < 31; k++) { in_imag1[31 - k] = QMF_RE(pX[2*k + 1]) >> 1; in_real1[ k] = QMF_RE(pX[2*k ]) >> 1; in_imag2[31 - k] = QMF_IM(pX[63 - (2*k + 1)]) >> 1; in_real2[ k] = QMF_IM(pX[63 - (2*k )]) >> 1; } in_imag1[0] = QMF_RE(pX[63]) >> 1; in_real1[31] = QMF_RE(pX[62]) >> 1; in_imag2[0] = QMF_IM(pX[0]) >> 1; in_real2[31] = QMF_IM(pX[1]) >> 1; #endif // dct4_kernel is DCT_IV without reordering which is done before and after FFT dct4_kernel(in_real1, in_imag1, out_real1, out_imag1); dct4_kernel(in_real2, in_imag2, out_real2, out_imag2); pring_buffer_1 = qmfs->v + qmfs->v_index; pring_buffer_3 = pring_buffer_1 + 1280; #ifdef PREFER_POINTERS pring_buffer_2 = pring_buffer_1 + 127; pring_buffer_4 = pring_buffer_1 + (1280 + 127); #endif // #ifdef PREFER_POINTERS // ptemp_1 = x1; // ptemp_2 = x2; #ifdef PREFER_POINTERS for (n = 0; n < 32; n ++) { //real_t x1 = *ptemp_1++; //real_t x2 = *ptemp_2++; // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer *pring_buffer_1++ = *pring_buffer_3++ = out_real2[n] - out_real1[n]; *pring_buffer_2-- = *pring_buffer_4-- = out_real2[n] + out_real1[n]; //x1 = *ptemp_1++; //x2 = *ptemp_2++; *pring_buffer_1++ = *pring_buffer_3++ = out_imag2[31-n] + out_imag1[31-n]; *pring_buffer_2-- = *pring_buffer_4-- = out_imag2[31-n] - out_imag1[31-n]; } #else // #ifdef PREFER_POINTERS for (n = 0; n < 32; n++) { // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer pring_buffer_1[2*n] = pring_buffer_3[2*n] = out_real2[n] - out_real1[n]; pring_buffer_1[127-2*n] = pring_buffer_3[127-2*n] = out_real2[n] + out_real1[n]; pring_buffer_1[2*n+1] = pring_buffer_3[2*n+1] = out_imag2[31-n] + out_imag1[31-n]; pring_buffer_1[127-(2*n+1)] = pring_buffer_3[127-(2*n+1)] = out_imag2[31-n] - out_imag1[31-n]; } #endif // #ifdef PREFER_POINTERS pring_buffer_1 = qmfs->v + qmfs->v_index; #ifdef PREFER_POINTERS pring_buffer_2 = pring_buffer_1 + 192; pring_buffer_3 = pring_buffer_1 + 256; pring_buffer_4 = pring_buffer_1 + (256 + 192); pring_buffer_5 = pring_buffer_1 + 512; pring_buffer_6 = pring_buffer_1 + (512 + 192); pring_buffer_7 = pring_buffer_1 + 768; pring_buffer_8 = pring_buffer_1 + (768 + 192); pring_buffer_9 = pring_buffer_1 + 1024; pring_buffer_10 = pring_buffer_1 + (1024 + 192); pqmf_c_1 = qmf_c; pqmf_c_2 = qmf_c + 64; pqmf_c_3 = qmf_c + 128; pqmf_c_4 = qmf_c + 192; pqmf_c_5 = qmf_c + 256; pqmf_c_6 = qmf_c + 320; pqmf_c_7 = qmf_c + 384; pqmf_c_8 = qmf_c + 448; pqmf_c_9 = qmf_c + 512; pqmf_c_10 = qmf_c + 576; #endif // #ifdef PREFER_POINTERS /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { #ifdef PREFER_POINTERS output[out++] = MUL_F(*pring_buffer_1++, *pqmf_c_1++) + MUL_F(*pring_buffer_2++, *pqmf_c_2++) + MUL_F(*pring_buffer_3++, *pqmf_c_3++) + MUL_F(*pring_buffer_4++, *pqmf_c_4++) + MUL_F(*pring_buffer_5++, *pqmf_c_5++) + MUL_F(*pring_buffer_6++, *pqmf_c_6++) + MUL_F(*pring_buffer_7++, *pqmf_c_7++) + MUL_F(*pring_buffer_8++, *pqmf_c_8++) + MUL_F(*pring_buffer_9++, *pqmf_c_9++) + MUL_F(*pring_buffer_10++, *pqmf_c_10++); #else // #ifdef PREFER_POINTERS output[out++] = MUL_F(pring_buffer_1[k+0], qmf_c[k+0]) + MUL_F(pring_buffer_1[k+192], qmf_c[k+64]) + MUL_F(pring_buffer_1[k+256], qmf_c[k+128]) + MUL_F(pring_buffer_1[k+(256+192)], qmf_c[k+192]) + MUL_F(pring_buffer_1[k+512], qmf_c[k+256]) + MUL_F(pring_buffer_1[k+(512+192)], qmf_c[k+320]) + MUL_F(pring_buffer_1[k+768], qmf_c[k+384]) + MUL_F(pring_buffer_1[k+(768+192)], qmf_c[k+448]) + MUL_F(pring_buffer_1[k+1024], qmf_c[k+512]) + MUL_F(pring_buffer_1[k+(1024+192)], qmf_c[k+576]); #endif // #ifdef PREFER_POINTERS } /* update ringbuffer index */ qmfs->v_index -= 128; if (qmfs->v_index < 0) qmfs->v_index = (1280 - 128); } } #endif #endif