ref: 4cf97afb0123a5915bdfba7c843bc2185c8e2fa6
dir: /libfaad/ic_predict.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. ** ** $Id: ic_predict.c,v 1.28 2007/11/01 12:33:31 menno Exp $ **/ #include "common.h" #include "structs.h" #ifdef MAIN_DEC #include "syntax.h" #include "ic_predict.h" #include "pns.h" static void flt_round(float32_t *pf) { int32_t flg; uint32_t tmp, tmp1, tmp2; tmp = *(uint32_t*)pf; flg = tmp & (uint32_t)0x00008000; tmp &= (uint32_t)0xffff0000; tmp1 = tmp; /* round 1/2 lsb toward infinity */ if (flg) { tmp &= (uint32_t)0xff800000; /* extract exponent and sign */ tmp |= (uint32_t)0x00010000; /* insert 1 lsb */ tmp2 = tmp; /* add 1 lsb and elided one */ tmp &= (uint32_t)0xff800000; /* extract exponent and sign */ *pf = *(float32_t*)&tmp1 + *(float32_t*)&tmp2 - *(float32_t*)&tmp; } else { *pf = *(float32_t*)&tmp; } } static int16_t quant_pred(float32_t x) { int16_t q; uint32_t *tmp = (uint32_t*)&x; q = (int16_t)(*tmp>>16); return q; } static float32_t inv_quant_pred(int16_t q) { float32_t x; uint32_t *tmp = (uint32_t*)&x; *tmp = ((uint32_t)q)<<16; return x; } static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred) { uint16_t tmp; int16_t i, j; real_t dr1; float32_t predictedvalue; real_t e0, e1; real_t k1, k2; real_t r[2]; real_t COR[2]; real_t VAR[2]; r[0] = inv_quant_pred(state->r[0]); r[1] = inv_quant_pred(state->r[1]); COR[0] = inv_quant_pred(state->COR[0]); COR[1] = inv_quant_pred(state->COR[1]); VAR[0] = inv_quant_pred(state->VAR[0]); VAR[1] = inv_quant_pred(state->VAR[1]); #if 1 tmp = state->VAR[0]; j = (tmp >> 7); i = tmp & 0x7f; if (j >= 128) { j -= 128; k1 = COR[0] * exp_table[j] * mnt_table[i]; } else { k1 = REAL_CONST(0); } #else { #define B 0.953125 real_t c = COR[0]; real_t v = VAR[0]; float32_t tmp; if (c == 0 || v <= 1) { k1 = 0; } else { tmp = B / v; flt_round(&tmp); k1 = c * tmp; } } #endif if (pred) { #if 1 tmp = state->VAR[1]; j = (tmp >> 7); i = tmp & 0x7f; if (j >= 128) { j -= 128; k2 = COR[1] * exp_table[j] * mnt_table[i]; } else { k2 = REAL_CONST(0); } #else #define B 0.953125 real_t c = COR[1]; real_t v = VAR[1]; float32_t tmp; if (c == 0 || v <= 1) { k2 = 0; } else { tmp = B / v; flt_round(&tmp); k2 = c * tmp; } #endif predictedvalue = k1*r[0] + k2*r[1]; flt_round(&predictedvalue); *output = input + predictedvalue; } /* calculate new state data */ e0 = *output; e1 = e0 - k1*r[0]; dr1 = k1*e0; VAR[0] = ALPHA*VAR[0] + 0.5f * (r[0]*r[0] + e0*e0); COR[0] = ALPHA*COR[0] + r[0]*e0; VAR[1] = ALPHA*VAR[1] + 0.5f * (r[1]*r[1] + e1*e1); COR[1] = ALPHA*COR[1] + r[1]*e1; r[1] = A * (r[0]-dr1); r[0] = A * e0; state->r[0] = quant_pred(r[0]); state->r[1] = quant_pred(r[1]); state->COR[0] = quant_pred(COR[0]); state->COR[1] = quant_pred(COR[1]); state->VAR[0] = quant_pred(VAR[0]); state->VAR[1] = quant_pred(VAR[1]); } static void reset_pred_state(pred_state *state) { state->r[0] = 0; state->r[1] = 0; state->COR[0] = 0; state->COR[1] = 0; state->VAR[0] = 0x3F80; state->VAR[1] = 0x3F80; } void pns_reset_pred_state(ic_stream *ics, pred_state *state) { uint8_t sfb, g, b; uint16_t i, offs, offs2; /* prediction only for long blocks */ if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) return; for (g = 0; g < ics->num_window_groups; g++) { for (b = 0; b < ics->window_group_length[g]; b++) { for (sfb = 0; sfb < ics->max_sfb; sfb++) { if (is_noise(ics, g, sfb)) { offs = ics->swb_offset[sfb]; offs2 = min(ics->swb_offset[sfb+1], ics->swb_offset_max); for (i = offs; i < offs2; i++) reset_pred_state(&state[i]); } } } } } void reset_all_predictors(pred_state *state, uint16_t frame_len) { uint16_t i; for (i = 0; i < frame_len; i++) reset_pred_state(&state[i]); } /* intra channel prediction */ void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state, uint16_t frame_len, uint8_t sf_index) { uint8_t sfb; uint16_t bin; if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) { reset_all_predictors(state, frame_len); } else { for (sfb = 0; sfb < max_pred_sfb(sf_index); sfb++) { uint16_t low = ics->swb_offset[sfb]; uint16_t high = min(ics->swb_offset[sfb+1], ics->swb_offset_max); for (bin = low; bin < high; bin++) { ic_predict(&state[bin], spec[bin], &spec[bin], (ics->predictor_data_present && ics->pred.prediction_used[sfb])); } } if (ics->predictor_data_present) { if (ics->pred.predictor_reset) { for (bin = ics->pred.predictor_reset_group_number - 1; bin < frame_len; bin += 30) { reset_pred_state(&state[bin]); } } } } } #endif