ref: 4cf97afb0123a5915bdfba7c843bc2185c8e2fa6
dir: /libfaad/sbr_fbt.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. ** ** $Id: sbr_fbt.c,v 1.21 2007/11/01 12:33:35 menno Exp $ **/ /* Calculate frequency band tables */ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include <stdlib.h> #include "sbr_syntax.h" #include "sbr_fbt.h" /* static function declarations */ static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1); /* calculate the start QMF channel for the master frequency band table */ /* parameter is also called k0 */ uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode, uint32_t sample_rate) { static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16, 17, 24, 32, 35, 48 }; static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0, 6, 6, 6 }; static const int8_t offset[7][16] = { { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 }, { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 }, { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 }, { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 }, { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 }, { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 }, { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 } }; uint8_t startMin = startMinTable[get_sr_index(sample_rate)]; uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)]; #if 0 /* replaced with table (startMinTable) */ if (sample_rate >= 64000) { startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5); } else if (sample_rate < 32000) { startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5); } else { startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5); } #endif if (bs_samplerate_mode) { return startMin + offset[offsetIndex][bs_start_freq]; #if 0 /* replaced by offsetIndexTable */ switch (sample_rate) { case 16000: return startMin + offset[0][bs_start_freq]; case 22050: return startMin + offset[1][bs_start_freq]; case 24000: return startMin + offset[2][bs_start_freq]; case 32000: return startMin + offset[3][bs_start_freq]; default: if (sample_rate > 64000) { return startMin + offset[5][bs_start_freq]; } else { /* 44100 <= sample_rate <= 64000 */ return startMin + offset[4][bs_start_freq]; } } #endif } else { return startMin + offset[6][bs_start_freq]; } } static int longcmp(const void *a, const void *b) { return ((int)(*(int32_t*)a - *(int32_t*)b)); } /* calculate the stop QMF channel for the master frequency band table */ /* parameter is also called k2 */ uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate, uint8_t k0) { if (bs_stop_freq == 15) { return min(64, k0 * 3); } else if (bs_stop_freq == 14) { return min(64, k0 * 2); } else { static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23, 32, 32, 35, 48, 64, 70, 96 }; static const int8_t offset[12][14] = { { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 }, { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 }, { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 }, { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 }, { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 }, { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 }, { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 }, { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 }, { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 } }; #if 0 uint8_t i; int32_t stopDk[13], stopDk_t[14], k2; #endif uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)]; #if 0 /* replaced by table lookup */ if (sample_rate >= 64000) { stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5); } else if (sample_rate < 32000) { stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5); } else { stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5); } #endif #if 0 /* replaced by table lookup */ /* diverging power series */ for (i = 0; i <= 13; i++) { stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5); } for (i = 0; i < 13; i++) { stopDk[i] = stopDk_t[i+1] - stopDk_t[i]; } /* needed? */ qsort(stopDk, 13, sizeof(stopDk[0]), longcmp); k2 = stopMin; for (i = 0; i < bs_stop_freq; i++) { k2 += stopDk[i]; } return min(64, k2); #endif /* bs_stop_freq <= 13 */ return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]); } return 0; } /* calculate the master frequency table from k0, k2, bs_freq_scale and bs_alter_scale version for bs_freq_scale = 0 */ uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2, uint8_t bs_alter_scale) { int8_t incr; uint8_t k; uint8_t dk; uint32_t nrBands, k2Achieved; int32_t k2Diff, vDk[64] = {0}; /* mft only defined for k2 > k0 */ if (k2 <= k0) { sbr->N_master = 0; return 1; } dk = bs_alter_scale ? 2 : 1; #if 0 /* replaced by float-less design */ nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f); #else if (bs_alter_scale) { nrBands = (((k2-k0+2)>>2)<<1); } else { nrBands = (((k2-k0)>>1)<<1); } #endif nrBands = min(nrBands, 63); if (nrBands <= 0) return 1; k2Achieved = k0 + nrBands * dk; k2Diff = k2 - k2Achieved; for (k = 0; k < nrBands; k++) vDk[k] = dk; if (k2Diff) { incr = (k2Diff > 0) ? -1 : 1; k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0); while (k2Diff != 0) { vDk[k] -= incr; k += incr; k2Diff += incr; } } sbr->f_master[0] = k0; for (k = 1; k <= nrBands; k++) sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]); sbr->N_master = (uint8_t)nrBands; sbr->N_master = (min(sbr->N_master, 64)); #if 0 printf("f_master[%d]: ", nrBands); for (k = 0; k <= nrBands; k++) { printf("%d ", sbr->f_master[k]); } printf("\n"); #endif return 0; } /* This function finds the number of bands using this formula: bands * log(a1/a0)/log(2.0) + 0.5 */ static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1) { #ifdef FIXED_POINT /* table with log2() values */ static const real_t log2Table[65] = { COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007), COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221), COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186), COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956), COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134), COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561), COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022), COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104), COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169), COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189), COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547), COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517), COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420), COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135), COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494), COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235), COEF_CONST(6.0) }; real_t r0 = log2Table[a0]; /* coef */ real_t r1 = log2Table[a1]; /* coef */ real_t r2 = (r1 - r0); /* coef */ if (warp) r2 = MUL_C(r2, COEF_CONST(1.0/1.3)); /* convert r2 to real and then multiply and round */ r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1)); return (r2 >> REAL_BITS); #else real_t div = (real_t)log(2.0); if (warp) div *= (real_t)1.3; return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5); #endif } static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1) { #ifdef FIXED_POINT /* table with log() values */ static const real_t logTable[65] = { COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887), COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491), COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728), COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011), COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792), COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159), COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660), COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045), COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615), COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461), COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157), COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017), COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327), COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852), COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439), COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264), COEF_CONST(4.158883083) }; /* standard Taylor polynomial coefficients for exp(x) around 0 */ /* a polynomial around x=1 is more precise, as most values are around 1.07, but this is just fine already */ static const real_t c1 = COEF_CONST(1.0); static const real_t c2 = COEF_CONST(1.0/2.0); static const real_t c3 = COEF_CONST(1.0/6.0); static const real_t c4 = COEF_CONST(1.0/24.0); real_t r0 = logTable[a0]; /* coef */ real_t r1 = logTable[a1]; /* coef */ real_t r2 = (r1 - r0) / bands; /* coef */ real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2); return (rexp >> (COEF_BITS-REAL_BITS)); /* real */ #else return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands); #endif } /* version for bs_freq_scale > 0 */ uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2, uint8_t bs_freq_scale, uint8_t bs_alter_scale) { uint8_t k, bands, twoRegions; uint8_t k1; uint8_t nrBand0, nrBand1; int32_t vDk0[64] = {0}, vDk1[64] = {0}; int32_t vk0[64] = {0}, vk1[64] = {0}; uint8_t temp1[] = { 6, 5, 4 }; real_t q, qk; int32_t A_1; #ifdef FIXED_POINT real_t rk2, rk0; #endif /* mft only defined for k2 > k0 */ if (k2 <= k0) { sbr->N_master = 0; return 1; } bands = temp1[bs_freq_scale-1]; #ifdef FIXED_POINT rk0 = (real_t)k0 << REAL_BITS; rk2 = (real_t)k2 << REAL_BITS; if (rk2 > MUL_C(rk0, COEF_CONST(2.2449))) #else if ((float)k2/(float)k0 > 2.2449) #endif { twoRegions = 1; k1 = k0 << 1; } else { twoRegions = 0; k1 = k2; } nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1)); nrBand0 = min(nrBand0, 63); if (nrBand0 <= 0) return 1; q = find_initial_power(nrBand0, k0, k1); #ifdef FIXED_POINT qk = (real_t)k0 << REAL_BITS; //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); A_1 = k0; #else qk = REAL_CONST(k0); A_1 = (int32_t)(qk + .5); #endif for (k = 0; k <= nrBand0; k++) { int32_t A_0 = A_1; #ifdef FIXED_POINT qk = MUL_R(qk,q); A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); #else qk *= q; A_1 = (int32_t)(qk + 0.5); #endif vDk0[k] = A_1 - A_0; } /* needed? */ qsort(vDk0, nrBand0, sizeof(vDk0[0]), longcmp); vk0[0] = k0; for (k = 1; k <= nrBand0; k++) { vk0[k] = vk0[k-1] + vDk0[k-1]; if (vDk0[k-1] == 0) return 1; } if (!twoRegions) { for (k = 0; k <= nrBand0; k++) sbr->f_master[k] = (uint8_t) vk0[k]; sbr->N_master = nrBand0; sbr->N_master = min(sbr->N_master, 64); return 0; } nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2)); nrBand1 = min(nrBand1, 63); q = find_initial_power(nrBand1, k1, k2); #ifdef FIXED_POINT qk = (real_t)k1 << REAL_BITS; //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); A_1 = k1; #else qk = REAL_CONST(k1); A_1 = (int32_t)(qk + .5); #endif for (k = 0; k <= nrBand1 - 1; k++) { int32_t A_0 = A_1; #ifdef FIXED_POINT qk = MUL_R(qk,q); A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); #else qk *= q; A_1 = (int32_t)(qk + 0.5); #endif vDk1[k] = A_1 - A_0; } if (vDk1[0] < vDk0[nrBand0 - 1]) { int32_t change; /* needed? */ qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), longcmp); change = vDk0[nrBand0 - 1] - vDk1[0]; vDk1[0] = vDk0[nrBand0 - 1]; vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change; } /* needed? */ qsort(vDk1, nrBand1, sizeof(vDk1[0]), longcmp); vk1[0] = k1; for (k = 1; k <= nrBand1; k++) { vk1[k] = vk1[k-1] + vDk1[k-1]; if (vDk1[k-1] == 0) return 1; } sbr->N_master = nrBand0 + nrBand1; sbr->N_master = min(sbr->N_master, 64); for (k = 0; k <= nrBand0; k++) { sbr->f_master[k] = (uint8_t) vk0[k]; } for (k = nrBand0 + 1; k <= sbr->N_master; k++) { sbr->f_master[k] = (uint8_t) vk1[k - nrBand0]; } #if 0 printf("f_master[%d]: ", sbr->N_master); for (k = 0; k <= sbr->N_master; k++) { printf("%d ", sbr->f_master[k]); } printf("\n"); #endif return 0; } /* calculate the derived frequency border tables from f_master */ uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band, uint8_t k2) { uint8_t k, i; uint32_t minus; /* The following relation shall be satisfied: bs_xover_band < N_Master */ if (sbr->N_master <= bs_xover_band) return 1; sbr->N_high = sbr->N_master - bs_xover_band; sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1)); sbr->n[0] = sbr->N_low; sbr->n[1] = sbr->N_high; for (k = 0; k <= sbr->N_high; k++) { sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band]; } sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0]; if (sbr->M > MAX_M) return 1; sbr->kx = sbr->f_table_res[HI_RES][0]; if (sbr->kx > 32) return 1; if (sbr->kx + sbr->M > 64) return 1; minus = (sbr->N_high & 1) ? 1 : 0; for (k = 0; k <= sbr->N_low; k++) { if (k == 0) i = 0; else i = (uint8_t)(2*k - minus); sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i]; } #if 0 printf("bs_freq_scale: %d\n", sbr->bs_freq_scale); printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands); printf("f_table_res[HI_RES][%d]: ", sbr->N_high); for (k = 0; k <= sbr->N_high; k++) { printf("%d ", sbr->f_table_res[HI_RES][k]); } printf("\n"); #endif #if 0 printf("f_table_res[LO_RES][%d]: ", sbr->N_low); for (k = 0; k <= sbr->N_low; k++) { printf("%d ", sbr->f_table_res[LO_RES][k]); } printf("\n"); #endif sbr->N_Q = 0; if (sbr->bs_noise_bands == 0) { sbr->N_Q = 1; } else { #if 0 sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5)); #else sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2))); #endif sbr->N_Q = min(5, sbr->N_Q); } for (k = 0; k <= sbr->N_Q; k++) { if (k == 0) { i = 0; } else { /* i = i + (int32_t)((sbr->N_low - i)/(sbr->N_Q + 1 - k)); */ i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k); } sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i]; } /* build table for mapping k to g in hf patching */ for (k = 0; k < 64; k++) { uint8_t g; for (g = 0; g < sbr->N_Q; g++) { if ((sbr->f_table_noise[g] <= k) && (k < sbr->f_table_noise[g+1])) { sbr->table_map_k_to_g[k] = g; break; } } } #if 0 printf("f_table_noise[%d]: ", sbr->N_Q); for (k = 0; k <= sbr->N_Q; k++) { printf("%d ", sbr->f_table_noise[k] - sbr->kx); } printf("\n"); #endif return 0; } /* TODO: blegh, ugly */ /* Modified to calculate for all possible bs_limiter_bands always * This reduces the number calls to this functions needed (now only on * header reset) */ void limiter_frequency_table(sbr_info *sbr) { #if 0 static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2), REAL_CONST(2), REAL_CONST(3) }; #else static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152), REAL_CONST(1.185093), REAL_CONST(1.119872) }; #endif uint8_t k, s; int8_t nrLim; #if 0 real_t limBands; #endif sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx; sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx; sbr->N_L[0] = 1; #if 0 printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]); for (k = 0; k <= sbr->N_L[0]; k++) { printf("%d ", sbr->f_table_lim[0][k]); } printf("\n"); #endif for (s = 1; s < 4; s++) { int32_t limTable[100 /*TODO*/] = {0}; uint8_t patchBorders[64/*??*/] = {0}; #if 0 limBands = limiterBandsPerOctave[s - 1]; #endif patchBorders[0] = sbr->kx; for (k = 1; k <= sbr->noPatches; k++) { patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1]; } for (k = 0; k <= sbr->N_low; k++) { limTable[k] = sbr->f_table_res[LO_RES][k]; } for (k = 1; k < sbr->noPatches; k++) { limTable[k+sbr->N_low] = patchBorders[k]; } /* needed */ qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp); k = 1; nrLim = sbr->noPatches + sbr->N_low - 1; if (nrLim < 0) // TODO: BIG FAT PROBLEM return; restart: if (k <= nrLim) { real_t nOctaves; if (limTable[k-1] != 0) #if 0 nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0)); #else #ifdef FIXED_POINT nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1])); #else nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1]; #endif #endif else nOctaves = 0; #if 0 if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49)) #else if (nOctaves < limiterBandsCompare[s - 1]) #endif { uint8_t i; if (limTable[k] != limTable[k-1]) { uint8_t found = 0, found2 = 0; for (i = 0; i <= sbr->noPatches; i++) { if (limTable[k] == patchBorders[i]) found = 1; } if (found) { found2 = 0; for (i = 0; i <= sbr->noPatches; i++) { if (limTable[k-1] == patchBorders[i]) found2 = 1; } if (found2) { k++; goto restart; } else { /* remove (k-1)th element */ limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low]; qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp); nrLim--; goto restart; } } } /* remove kth element */ limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low]; qsort(limTable, nrLim, sizeof(limTable[0]), longcmp); nrLim--; goto restart; } else { k++; goto restart; } } sbr->N_L[s] = nrLim; for (k = 0; k <= nrLim; k++) { sbr->f_table_lim[s][k] = limTable[k] - sbr->kx; } #if 0 printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]); for (k = 0; k <= sbr->N_L[s]; k++) { printf("%d ", sbr->f_table_lim[s][k]); } printf("\n"); #endif } } #endif