ref: 6494791b6bd4bd644ca9aecb7f1b9b7ade79c925
dir: /libfaad/fixed.h/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. ** ** $Id: fixed.h,v 1.32 2007/11/01 12:33:30 menno Exp $ **/ #ifndef __FIXED_H__ #define __FIXED_H__ #ifdef __cplusplus extern "C" { #endif #if defined(_WIN32_WCE) && defined(_ARM_) #include <cmnintrin.h> #endif #define COEF_BITS 28 #define COEF_PRECISION (1 << COEF_BITS) #define REAL_BITS 14 // MAXIMUM OF 14 FOR FIXED POINT SBR #define REAL_PRECISION (1 << REAL_BITS) /* FRAC is the fractional only part of the fixed point number [0.0..1.0) */ #define FRAC_SIZE 32 /* frac is a 32 bit integer */ #define FRAC_BITS 31 #define FRAC_PRECISION ((uint32_t)(1 << FRAC_BITS)) #define FRAC_MAX 0x7FFFFFFF typedef int32_t real_t; #define REAL_CONST(A) (((A) >= 0) ? ((real_t)((A)*(REAL_PRECISION)+0.5)) : ((real_t)((A)*(REAL_PRECISION)-0.5))) #define COEF_CONST(A) (((A) >= 0) ? ((real_t)((A)*(COEF_PRECISION)+0.5)) : ((real_t)((A)*(COEF_PRECISION)-0.5))) #define FRAC_CONST(A) (((A) == 1.00) ? ((real_t)FRAC_MAX) : (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5)))) //#define FRAC_CONST(A) (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5))) #define Q2_BITS 22 #define Q2_PRECISION (1 << Q2_BITS) #define Q2_CONST(A) (((A) >= 0) ? ((real_t)((A)*(Q2_PRECISION)+0.5)) : ((real_t)((A)*(Q2_PRECISION)-0.5))) #if defined(_WIN32) && !defined(_WIN32_WCE) /* multiply with real shift */ static INLINE real_t MUL_R(real_t A, real_t B) { _asm { mov eax,A imul B shrd eax,edx,REAL_BITS } } /* multiply with coef shift */ static INLINE real_t MUL_C(real_t A, real_t B) { _asm { mov eax,A imul B shrd eax,edx,COEF_BITS } } static INLINE real_t MUL_Q2(real_t A, real_t B) { _asm { mov eax,A imul B shrd eax,edx,Q2_BITS } } static INLINE real_t MUL_SHIFT6(real_t A, real_t B) { _asm { mov eax,A imul B shrd eax,edx,6 } } static INLINE real_t MUL_SHIFT23(real_t A, real_t B) { _asm { mov eax,A imul B shrd eax,edx,23 } } #if 1 static INLINE real_t _MulHigh(real_t A, real_t B) { _asm { mov eax,A imul B mov eax,edx } } /* multiply with fractional shift */ static INLINE real_t MUL_F(real_t A, real_t B) { return _MulHigh(A,B) << (FRAC_SIZE-FRAC_BITS); } /* Complex multiplication */ static INLINE void ComplexMult(real_t *y1, real_t *y2, real_t x1, real_t x2, real_t c1, real_t c2) { *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS); *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS); } #else static INLINE real_t MUL_F(real_t A, real_t B) { _asm { mov eax,A imul B shrd eax,edx,FRAC_BITS } } /* Complex multiplication */ static INLINE void ComplexMult(real_t *y1, real_t *y2, real_t x1, real_t x2, real_t c1, real_t c2) { *y1 = MUL_F(x1, c1) + MUL_F(x2, c2); *y2 = MUL_F(x2, c1) - MUL_F(x1, c2); } #endif #elif defined(__GNUC__) && defined (__arm__) /* taken from MAD */ #define arm_mul(x, y, SCALEBITS) \ ({ \ uint32_t __hi; \ uint32_t __lo; \ uint32_t __result; \ asm("smull %0, %1, %3, %4\n\t" \ "movs %0, %0, lsr %5\n\t" \ "adc %2, %0, %1, lsl %6" \ : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \ : "%r" (x), "r" (y), \ "M" (SCALEBITS), "M" (32 - (SCALEBITS)) \ : "cc"); \ __result; \ }) static INLINE real_t MUL_R(real_t A, real_t B) { return arm_mul(A, B, REAL_BITS); } static INLINE real_t MUL_C(real_t A, real_t B) { return arm_mul(A, B, COEF_BITS); } static INLINE real_t MUL_Q2(real_t A, real_t B) { return arm_mul(A, B, Q2_BITS); } static INLINE real_t MUL_SHIFT6(real_t A, real_t B) { return arm_mul(A, B, 6); } static INLINE real_t MUL_SHIFT23(real_t A, real_t B) { return arm_mul(A, B, 23); } static INLINE real_t _MulHigh(real_t x, real_t y) { uint32_t __lo; uint32_t __hi; asm("smull\t%0, %1, %2, %3" : "=&r"(__lo),"=&r"(__hi) : "%r"(x),"r"(y) : "cc"); return __hi; } static INLINE real_t MUL_F(real_t A, real_t B) { return _MulHigh(A, B) << (FRAC_SIZE-FRAC_BITS); } /* Complex multiplication */ static INLINE void ComplexMult(real_t *y1, real_t *y2, real_t x1, real_t x2, real_t c1, real_t c2) { int32_t tmp, yt1, yt2; asm("smull %0, %1, %4, %6\n\t" "smlal %0, %1, %5, %7\n\t" "rsb %3, %4, #0\n\t" "smull %0, %2, %5, %6\n\t" "smlal %0, %2, %3, %7" : "=&r" (tmp), "=&r" (yt1), "=&r" (yt2), "=r" (x1) : "3" (x1), "r" (x2), "r" (c1), "r" (c2) : "cc" ); *y1 = yt1 << (FRAC_SIZE-FRAC_BITS); *y2 = yt2 << (FRAC_SIZE-FRAC_BITS); } #else /* multiply with real shift */ #define MUL_R(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (REAL_BITS-1))) >> REAL_BITS) /* multiply with coef shift */ #define MUL_C(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (COEF_BITS-1))) >> COEF_BITS) /* multiply with fractional shift */ #if defined(_WIN32_WCE) && defined(_ARM_) /* eVC for PocketPC has an intrinsic function that returns only the high 32 bits of a 32x32 bit multiply */ static INLINE real_t MUL_F(real_t A, real_t B) { return _MulHigh(A,B) << (32-FRAC_BITS); } #else #ifdef __BFIN__ #define _MulHigh(X,Y) ({ int __xxo; \ asm ( \ "a1 = %2.H * %1.L (IS,M);\n\t" \ "a0 = %1.H * %2.H, a1+= %1.H * %2.L (IS,M);\n\t"\ "a1 = a1 >>> 16;\n\t" \ "%0 = (a0 += a1);\n\t" \ : "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; }) #define MUL_F(X,Y) ({ int __xxo; \ asm ( \ "a1 = %2.H * %1.L (M);\n\t" \ "a0 = %1.H * %2.H, a1+= %1.H * %2.L (M);\n\t" \ "a1 = a1 >>> 16;\n\t" \ "%0 = (a0 += a1);\n\t" \ : "=d" (__xxo) : "d" (X), "d" (Y) : "A0","A1"); __xxo; }) #else #define _MulHigh(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_SIZE-1))) >> FRAC_SIZE) #define MUL_F(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_BITS-1))) >> FRAC_BITS) #endif #endif #define MUL_Q2(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (Q2_BITS-1))) >> Q2_BITS) #define MUL_SHIFT6(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (6-1))) >> 6) #define MUL_SHIFT23(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (23-1))) >> 23) /* Complex multiplication */ static INLINE void ComplexMult(real_t *y1, real_t *y2, real_t x1, real_t x2, real_t c1, real_t c2) { *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS); *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS); } #endif #ifdef __cplusplus } #endif #endif