ref: 7bf3dcb9e077fe0902daf398de7411310c6f5431
parent: 6f1727f4b144e1643c704c62e679567f2b4a26a1
author: Paul Brossier <piem@piem.org>
date: Tue Sep 15 13:02:45 EDT 2009
src/tempo/beattracking.c: no changes, indent
--- a/src/tempo/beattracking.c
+++ b/src/tempo/beattracking.c
@@ -1,19 +1,19 @@
/*
- Copyright (C) 2005 Matthew Davies and Paul Brossier
+ Copyright (C) 2005 Matthew Davies and Paul Brossier
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
@@ -22,351 +22,372 @@
#include "mathutils.h"
#include "tempo/beattracking.h"
-uint_t fvec_gettimesig(fvec_t * acf, uint_t acflen, uint_t gp);
-void aubio_beattracking_checkstate(aubio_beattracking_t * bt);
+uint_t fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp);
+void aubio_beattracking_checkstate (aubio_beattracking_t * bt);
-struct _aubio_beattracking_t {
- fvec_t * rwv; /** rayleigh weighting for beat period in general model */
- fvec_t * dfwv; /** exponential weighting for beat alignment in general model */
- fvec_t * gwv; /** gaussian weighting for beat period in context dependant model */
- fvec_t * phwv; /** gaussian weighting for beat alignment in context dependant model */
- fvec_t * dfrev; /** reversed onset detection function */
- fvec_t * acf; /** vector for autocorrelation function (of current detection function frame) */
- fvec_t * acfout; /** store result of passing acf through s.i.c.f.b. */
- fvec_t * phout;
- uint_t timesig; /** time signature of input, set to zero until context dependent model activated */
- uint_t step;
- uint_t rayparam; /** Rayleigh parameter */
- smpl_t lastbeat;
- sint_t counter;
- uint_t flagstep;
- smpl_t g_var;
- smpl_t gp;
- smpl_t bp;
- smpl_t rp;
- smpl_t rp1;
- smpl_t rp2;
+struct _aubio_beattracking_t
+{
+ fvec_t *rwv; /** rayleigh weighting for beat period in general model */
+ fvec_t *dfwv; /** exponential weighting for beat alignment in general model */
+ fvec_t *gwv; /** gaussian weighting for beat period in context dependant model */
+ fvec_t *phwv; /** gaussian weighting for beat alignment in context dependant model */
+ fvec_t *dfrev; /** reversed onset detection function */
+ fvec_t *acf; /** vector for autocorrelation function (of current detection function frame) */
+ fvec_t *acfout; /** store result of passing acf through s.i.c.f.b. */
+ fvec_t *phout;
+ uint_t timesig; /** time signature of input, set to zero until context dependent model activated */
+ uint_t step;
+ uint_t rayparam; /** Rayleigh parameter */
+ smpl_t lastbeat;
+ sint_t counter;
+ uint_t flagstep;
+ smpl_t g_var;
+ smpl_t gp;
+ smpl_t bp;
+ smpl_t rp;
+ smpl_t rp1;
+ smpl_t rp2;
};
-aubio_beattracking_t * new_aubio_beattracking(uint_t winlen,
- uint_t channels) {
+aubio_beattracking_t *
+new_aubio_beattracking (uint_t winlen, uint_t channels)
+{
- aubio_beattracking_t * p = AUBIO_NEW(aubio_beattracking_t);
- uint_t i = 0;
- /* parameter for rayleigh weight vector - sets preferred tempo to
- * 120bpm [43] */
- smpl_t rayparam = 48./512. * winlen;
- smpl_t dfwvnorm = EXP((LOG(2.0)/rayparam)*(winlen+2));
- /** length over which beat period is found [128] */
- uint_t laglen = winlen/4;
- /** step increment - both in detection function samples -i.e. 11.6ms or
- * 1 onset frame [128] */
- uint_t step = winlen/4; /* 1.5 seconds */
+ aubio_beattracking_t *p = AUBIO_NEW (aubio_beattracking_t);
+ uint_t i = 0;
+ /* parameter for rayleigh weight vector - sets preferred tempo to
+ * 120bpm [43] */
+ smpl_t rayparam = 48. / 512. * winlen;
+ smpl_t dfwvnorm = EXP ((LOG (2.0) / rayparam) * (winlen + 2));
+ /* length over which beat period is found [128] */
+ uint_t laglen = winlen / 4;
+ /* step increment - both in detection function samples -i.e. 11.6ms or
+ * 1 onset frame [128] */
+ uint_t step = winlen / 4; /* 1.5 seconds */
- p->lastbeat = 0;
- p->counter = 0;
- p->flagstep = 0;
- p->g_var = 3.901; // constthresh empirically derived!
- p->rp = 1;
- p->gp = 0;
+ p->lastbeat = 0;
+ p->counter = 0;
+ p->flagstep = 0;
+ p->g_var = 3.901; // constthresh empirically derived!
+ p->rp = 1;
+ p->gp = 0;
- p->rayparam = rayparam;
- p->step = step;
- p->rwv = new_fvec(laglen,1);
- p->gwv = new_fvec(laglen,1);
- p->dfwv = new_fvec(winlen,1);
- p->dfrev = new_fvec(winlen,channels);
- p->acf = new_fvec(winlen,channels);
- p->acfout = new_fvec(laglen,channels);
- p->phwv = new_fvec(2*laglen,1);
- p->phout = new_fvec(winlen,channels);
+ p->rayparam = rayparam;
+ p->step = step;
+ p->rwv = new_fvec (laglen, 1);
+ p->gwv = new_fvec (laglen, 1);
+ p->dfwv = new_fvec (winlen, 1);
+ p->dfrev = new_fvec (winlen, channels);
+ p->acf = new_fvec (winlen, channels);
+ p->acfout = new_fvec (laglen, channels);
+ p->phwv = new_fvec (2 * laglen, 1);
+ p->phout = new_fvec (winlen, channels);
- p->timesig = 0;
+ p->timesig = 0;
- /* exponential weighting, dfwv = 0.5 when i = 43 */
- for (i=0;i<winlen;i++) {
- p->dfwv->data[0][i] = (EXP((LOG(2.0)/rayparam)*(i+1)))
- / dfwvnorm;
- }
+ /* exponential weighting, dfwv = 0.5 when i = 43 */
+ for (i = 0; i < winlen; i++) {
+ p->dfwv->data[0][i] = (EXP ((LOG (2.0) / rayparam) * (i + 1)))
+ / dfwvnorm;
+ }
- for (i=0;i<(laglen);i++){
- p->rwv->data[0][i] = ((smpl_t)(i+1.) / SQR((smpl_t)rayparam)) *
- EXP((-SQR((smpl_t)(i+1.)) / (2.*SQR((smpl_t)rayparam))));
- }
+ for (i = 0; i < (laglen); i++) {
+ p->rwv->data[0][i] = ((smpl_t) (i + 1.) / SQR ((smpl_t) rayparam)) *
+ EXP ((-SQR ((smpl_t) (i + 1.)) / (2. * SQR ((smpl_t) rayparam))));
+ }
- return p;
+ return p;
}
-void del_aubio_beattracking(aubio_beattracking_t * p) {
- del_fvec(p->rwv);
- del_fvec(p->gwv);
- del_fvec(p->dfwv);
- del_fvec(p->dfrev);
- del_fvec(p->acf);
- del_fvec(p->acfout);
- del_fvec(p->phwv);
- del_fvec(p->phout);
- AUBIO_FREE(p);
+void
+del_aubio_beattracking (aubio_beattracking_t * p)
+{
+ del_fvec (p->rwv);
+ del_fvec (p->gwv);
+ del_fvec (p->dfwv);
+ del_fvec (p->dfrev);
+ del_fvec (p->acf);
+ del_fvec (p->acfout);
+ del_fvec (p->phwv);
+ del_fvec (p->phout);
+ AUBIO_FREE (p);
}
-void aubio_beattracking_do(aubio_beattracking_t * bt, fvec_t * dfframe, fvec_t * output) {
+void
+aubio_beattracking_do (aubio_beattracking_t * bt, fvec_t * dfframe,
+ fvec_t * output)
+{
- uint_t i,k;
- uint_t step = bt->step;
- uint_t laglen = bt->rwv->length;
- uint_t winlen = bt->dfwv->length;
- uint_t maxindex = 0;
- //number of harmonics in shift invariant comb filterbank
- uint_t numelem = 4;
+ uint_t i, k;
+ uint_t step = bt->step;
+ uint_t laglen = bt->rwv->length;
+ uint_t winlen = bt->dfwv->length;
+ uint_t maxindex = 0;
+ //number of harmonics in shift invariant comb filterbank
+ uint_t numelem = 4;
- smpl_t phase; // beat alignment (step - lastbeat)
- smpl_t beat; // beat position
- smpl_t bp; // beat period
- uint_t a,b; // used to build shift invariant comb filterbank
- uint_t kmax; // number of elements used to find beat phase
+ smpl_t phase; // beat alignment (step - lastbeat)
+ smpl_t beat; // beat position
+ smpl_t bp; // beat period
+ uint_t a, b; // used to build shift invariant comb filterbank
+ uint_t kmax; // number of elements used to find beat phase
- /* copy dfframe, apply detection function weighting, and revert */
- fvec_copy(dfframe, bt->dfrev);
- fvec_weight(bt->dfrev, bt->dfwv);
- fvec_rev(bt->dfrev);
+ /* copy dfframe, apply detection function weighting, and revert */
+ fvec_copy (dfframe, bt->dfrev);
+ fvec_weight (bt->dfrev, bt->dfwv);
+ fvec_rev (bt->dfrev);
- /* compute autocorrelation function */
- aubio_autocorr(dfframe,bt->acf);
+ /* compute autocorrelation function */
+ aubio_autocorr (dfframe, bt->acf);
- /* if timesig is unknown, use metrically unbiased version of filterbank */
- if(!bt->timesig) {
- numelem = 4;
- } else {
- numelem = bt->timesig;
- }
+ /* if timesig is unknown, use metrically unbiased version of filterbank */
+ if (!bt->timesig) {
+ numelem = 4;
+ } else {
+ numelem = bt->timesig;
+ }
- /* first and last output values are left intentionally as zero */
- fvec_zeros(bt->acfout);
+ /* first and last output values are left intentionally as zero */
+ fvec_zeros (bt->acfout);
- /* compute shift invariant comb filterbank */
- for(i=1;i<laglen-1;i++){
- for (a=1; a<=numelem; a++){
- for(b=(1-a); b<a; b++){
- bt->acfout->data[0][i] += bt->acf->data[0][a*(i+1)+b-1]
- * 1./(2.*a-1.);
- }
- }
- }
- /* apply Rayleigh weight */
- fvec_weight(bt->acfout, bt->rwv);
+ /* compute shift invariant comb filterbank */
+ for (i = 1; i < laglen - 1; i++) {
+ for (a = 1; a <= numelem; a++) {
+ for (b = (1 - a); b < a; b++) {
+ bt->acfout->data[0][i] += bt->acf->data[0][a * (i + 1) + b - 1]
+ * 1. / (2. * a - 1.);
+ }
+ }
+ }
+ /* apply Rayleigh weight */
+ fvec_weight (bt->acfout, bt->rwv);
- /* find non-zero Rayleigh period */
- maxindex = vec_max_elem(bt->acfout);
- bt->rp = maxindex ? vec_quadint(bt->acfout, maxindex, 1) : 1;
- //rp = (maxindex==127) ? 43 : maxindex; //rayparam
- bt->rp = (maxindex==bt->acfout->length-1) ? bt->rayparam : maxindex; //rayparam
+ /* find non-zero Rayleigh period */
+ maxindex = vec_max_elem (bt->acfout);
+ bt->rp = maxindex ? vec_quadint (bt->acfout, maxindex, 1) : 1;
+ //rp = (maxindex==127) ? 43 : maxindex; //rayparam
+ bt->rp = (maxindex == bt->acfout->length - 1) ? bt->rayparam : maxindex; //rayparam
- /* activate biased filterbank */
- aubio_beattracking_checkstate(bt);
-#if 0 // debug metronome mode
- bt->bp = 36.9142;
+ /* activate biased filterbank */
+ aubio_beattracking_checkstate (bt);
+#if 0 // debug metronome mode
+ bt->bp = 36.9142;
#endif
- bp = bt->bp;
- /* end of biased filterbank */
+ bp = bt->bp;
+ /* end of biased filterbank */
- /* deliberate integer operation, could be set to 3 max eventually */
- kmax = FLOOR(winlen/bp);
+ /* deliberate integer operation, could be set to 3 max eventually */
+ kmax = FLOOR (winlen / bp);
- /* initialize output */
- fvec_zeros(bt->phout);
- for(i=0;i<bp;i++){
- for(k=0;k<kmax;k++){
- bt->phout->data[0][i] += bt->dfrev->data[0][i+(uint_t)ROUND(bp*k)];
- }
- }
- fvec_weight(bt->phout, bt->phwv);
+ /* initialize output */
+ fvec_zeros (bt->phout);
+ for (i = 0; i < bp; i++) {
+ for (k = 0; k < kmax; k++) {
+ bt->phout->data[0][i] += bt->dfrev->data[0][i + (uint_t) ROUND (bp * k)];
+ }
+ }
+ fvec_weight (bt->phout, bt->phwv);
- /* find Rayleigh period */
- maxindex = vec_max_elem(bt->phout);
- if (maxindex == winlen) maxindex = 0;
- phase = 1. + vec_quadint(bt->phout, maxindex, 1);
-#if 0 // debug metronome mode
- phase = step - bt->lastbeat;
+ /* find Rayleigh period */
+ maxindex = vec_max_elem (bt->phout);
+ if (maxindex == winlen)
+ maxindex = 0;
+ phase = 1. + vec_quadint (bt->phout, maxindex, 1);
+#if 0 // debug metronome mode
+ phase = step - bt->lastbeat;
#endif
- /* reset output */
- fvec_zeros(output);
+ /* reset output */
+ fvec_zeros (output);
- i = 1;
- beat = bp - phase;
- /* start counting the beats */
- if(beat >= 0) {
- output->data[0][i] = beat;
- i++;
- }
+ i = 1;
+ beat = bp - phase;
+ /* start counting the beats */
+ if (beat >= 0) {
+ output->data[0][i] = beat;
+ i++;
+ }
- while( beat + bp <= step) {
- beat += bp;
- output->data[0][i] = beat;
- i++;
- }
+ while (beat + bp <= step) {
+ beat += bp;
+ output->data[0][i] = beat;
+ i++;
+ }
- bt->lastbeat = beat;
- /* store the number of beat found in this frame as the first element */
- output->data[0][0] = i;
+ bt->lastbeat = beat;
+ /* store the number of beat found in this frame as the first element */
+ output->data[0][0] = i;
}
-uint_t fvec_gettimesig(fvec_t * acf, uint_t acflen, uint_t gp){
- sint_t k = 0;
- smpl_t three_energy = 0., four_energy = 0.;
- if( acflen > 6 * gp + 2 ){
- for(k=-2;k<2;k++){
- three_energy += acf->data[0][3*gp+k];
- four_energy += acf->data[0][4*gp+k];
- }
- }
- else{ /*Expanded to be more accurate in time sig estimation*/
- for(k=-2;k<2;k++){
- three_energy += acf->data[0][3*gp+k]+acf->data[0][6*gp+k];
- four_energy += acf->data[0][4*gp+k]+acf->data[0][2*gp+k];
- }
- }
- return (three_energy > four_energy) ? 3 : 4;
-}
+uint_t
+fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp)
+{
+ sint_t k = 0;
+ smpl_t three_energy = 0., four_energy = 0.;
+ if (acflen > 6 * gp + 2) {
+ for (k = -2; k < 2; k++) {
+ three_energy += acf->data[0][3 * gp + k];
+ four_energy += acf->data[0][4 * gp + k];
+ }
+ } else {
+ /*Expanded to be more accurate in time sig estimation */
+ for (k = -2; k < 2; k++) {
+ three_energy += acf->data[0][3 * gp + k] + acf->data[0][6 * gp + k];
+ four_energy += acf->data[0][4 * gp + k] + acf->data[0][2 * gp + k];
+ }
+ }
+ return (three_energy > four_energy) ? 3 : 4;
+}
-void aubio_beattracking_checkstate(aubio_beattracking_t * bt) {
- uint_t i,j,a,b;
- uint_t flagconst = 0;
- sint_t counter = bt->counter;
- uint_t flagstep = bt->flagstep;
- smpl_t gp = bt->gp;
- smpl_t bp = bt->bp;
- smpl_t rp = bt->rp;
- smpl_t rp1 = bt->rp1;
- smpl_t rp2 = bt->rp2;
- uint_t laglen = bt->rwv->length;
- uint_t acflen = bt->acf->length;
- uint_t step = bt->step;
- fvec_t * acf = bt->acf;
- fvec_t * acfout = bt->acfout;
+void
+aubio_beattracking_checkstate (aubio_beattracking_t * bt)
+{
+ uint_t i, j, a, b;
+ uint_t flagconst = 0;
+ sint_t counter = bt->counter;
+ uint_t flagstep = bt->flagstep;
+ smpl_t gp = bt->gp;
+ smpl_t bp = bt->bp;
+ smpl_t rp = bt->rp;
+ smpl_t rp1 = bt->rp1;
+ smpl_t rp2 = bt->rp2;
+ uint_t laglen = bt->rwv->length;
+ uint_t acflen = bt->acf->length;
+ uint_t step = bt->step;
+ fvec_t *acf = bt->acf;
+ fvec_t *acfout = bt->acfout;
- if (gp) {
- // doshiftfbank again only if context dependent model is in operation
- //acfout = doshiftfbank(acf,gwv,timesig,laglen,acfout);
- //don't need acfout now, so can reuse vector
- // gwv is, in first loop, definitely all zeros, but will have
- // proper values when context dependent model is activated
- fvec_zeros(acfout);
- for(i=1;i<laglen-1;i++){
- for (a=1;a<=bt->timesig;a++){
- for(b=(1-a);b<a;b++){
- acfout->data[0][i] += acf->data[0][a*(i+1)+b-1];
- }
- }
- }
- fvec_weight(acfout, bt->gwv);
- gp = vec_quadint(acfout, vec_max_elem(acfout), 1);
- /*
- while(gp<32) gp =gp*2;
- while(gp>64) gp = gp/2;
- */
- } else {
- //still only using general model
- gp = 0;
- }
+ if (gp) {
+ // doshiftfbank again only if context dependent model is in operation
+ //acfout = doshiftfbank(acf,gwv,timesig,laglen,acfout);
+ //don't need acfout now, so can reuse vector
+ // gwv is, in first loop, definitely all zeros, but will have
+ // proper values when context dependent model is activated
+ fvec_zeros (acfout);
+ for (i = 1; i < laglen - 1; i++) {
+ for (a = 1; a <= bt->timesig; a++) {
+ for (b = (1 - a); b < a; b++) {
+ acfout->data[0][i] += acf->data[0][a * (i + 1) + b - 1];
+ }
+ }
+ }
+ fvec_weight (acfout, bt->gwv);
+ gp = vec_quadint (acfout, vec_max_elem (acfout), 1);
+ /*
+ while(gp<32) gp =gp*2;
+ while(gp>64) gp = gp/2;
+ */
+ } else {
+ //still only using general model
+ gp = 0;
+ }
- //now look for step change - i.e. a difference between gp and rp that
- // is greater than 2*constthresh - always true in first case, since gp = 0
- if(counter == 0){
- if(ABS(gp - rp) > 2.*bt->g_var) {
- flagstep = 1; // have observed step change.
- counter = 3; // setup 3 frame counter
- } else {
- flagstep = 0;
- }
- }
+ //now look for step change - i.e. a difference between gp and rp that
+ // is greater than 2*constthresh - always true in first case, since gp = 0
+ if (counter == 0) {
+ if (ABS (gp - rp) > 2. * bt->g_var) {
+ flagstep = 1; // have observed step change.
+ counter = 3; // setup 3 frame counter
+ } else {
+ flagstep = 0;
+ }
+ }
+ //i.e. 3rd frame after flagstep initially set
+ if (counter == 1 && flagstep == 1) {
+ //check for consistency between previous beatperiod values
+ if (ABS (2. * rp - rp1 - rp2) < bt->g_var) {
+ //if true, can activate context dependent model
+ flagconst = 1;
+ counter = 0; // reset counter and flagstep
+ } else {
+ //if not consistent, then don't flag consistency!
+ flagconst = 0;
+ counter = 2; // let it look next time
+ }
+ } else if (counter > 0) {
+ //if counter doesn't = 1,
+ counter = counter - 1;
+ }
- //i.e. 3rd frame after flagstep initially set
- if (counter==1 && flagstep==1) {
- //check for consistency between previous beatperiod values
- if(ABS(2.*rp - rp1 -rp2) < bt->g_var) {
- //if true, can activate context dependent model
- flagconst = 1;
- counter = 0; // reset counter and flagstep
- } else {
- //if not consistent, then don't flag consistency!
- flagconst = 0;
- counter = 2; // let it look next time
- }
- } else if (counter > 0) {
- //if counter doesn't = 1,
- counter = counter-1;
- }
+ rp2 = rp1;
+ rp1 = rp;
- rp2 = rp1; rp1 = rp;
+ if (flagconst) {
+ /* first run of new hypothesis */
+ gp = rp;
+ bt->timesig = fvec_gettimesig (acf, acflen, gp);
+ for (j = 0; j < laglen; j++)
+ bt->gwv->data[0][j] =
+ EXP (-.5 * SQR ((smpl_t) (j + 1. - gp)) / SQR (bt->g_var));
+ flagconst = 0;
+ bp = gp;
+ /* flat phase weighting */
+ fvec_ones (bt->phwv);
+ } else if (bt->timesig) {
+ /* context dependant model */
+ bp = gp;
+ /* gaussian phase weighting */
+ if (step > bt->lastbeat) {
+ for (j = 0; j < 2 * laglen; j++) {
+ bt->phwv->data[0][j] =
+ EXP (-.5 * SQR ((smpl_t) (1. + j - step +
+ bt->lastbeat)) / (bp / 8.));
+ }
+ } else {
+ //AUBIO_DBG("NOT using phase weighting as step is %d and lastbeat %d \n",
+ // step,bt->lastbeat);
+ fvec_ones (bt->phwv);
+ }
+ } else {
+ /* initial state */
+ bp = rp;
+ /* flat phase weighting */
+ fvec_ones (bt->phwv);
+ }
- if (flagconst) {
- /* first run of new hypothesis */
- gp = rp;
- bt->timesig = fvec_gettimesig(acf,acflen, gp);
- for(j=0;j<laglen;j++)
- bt->gwv->data[0][j] = EXP(-.5*SQR((smpl_t)(j+1.-gp))/SQR(bt->g_var));
- flagconst = 0;
- bp = gp;
- /* flat phase weighting */
- fvec_ones(bt->phwv);
- } else if (bt->timesig) {
- /* context dependant model */
- bp = gp;
- /* gaussian phase weighting */
- if (step > bt->lastbeat) {
- for(j=0;j<2*laglen;j++) {
- bt->phwv->data[0][j] = EXP(-.5*SQR((smpl_t)(1.+j-step+bt->lastbeat))/(bp/8.));
- }
- } else {
- //AUBIO_DBG("NOT using phase weighting as step is %d and lastbeat %d \n",
- // step,bt->lastbeat);
- fvec_ones(bt->phwv);
- }
- } else {
- /* initial state */
- bp = rp;
- /* flat phase weighting */
- fvec_ones(bt->phwv);
- }
+ /* do some further checks on the final bp value */
- /* do some further checks on the final bp value */
+ /* if tempo is > 206 bpm, half it */
+ while (bp < 25) {
+ //AUBIO_DBG("warning, doubling the beat period from %d\n", bp);
+ //AUBIO_DBG("warning, halving the tempo from %f\n", 60.*samplerate/hopsize/bp);
+ bp = bp * 2;
+ }
- /* if tempo is > 206 bpm, half it */
- while (bp < 25) {
- //AUBIO_DBG("warning, doubling the beat period from %d\n", bp);
- //AUBIO_DBG("warning, halving the tempo from %f\n", 60.*samplerate/hopsize/bp);
- bp = bp*2;
- }
-
- //AUBIO_DBG("tempo:\t%3.5f bpm | ", 5168./bp);
+ //AUBIO_DBG("tempo:\t%3.5f bpm | ", 5168./bp);
- /* smoothing */
- //bp = (uint_t) (0.8 * (smpl_t)bp + 0.2 * (smpl_t)bp2);
- //AUBIO_DBG("tempo:\t%3.5f bpm smoothed | bp2 %d | bp %d | ", 5168./bp, bp2, bp);
- //bp2 = bp;
- //AUBIO_DBG("time signature: %d \n", bt->timesig);
- bt->counter = counter;
- bt->flagstep = flagstep;
- bt->gp = gp;
- bt->bp = bp;
- bt->rp1 = rp1;
- bt->rp2 = rp2;
-
+ /* smoothing */
+ //bp = (uint_t) (0.8 * (smpl_t)bp + 0.2 * (smpl_t)bp2);
+ //AUBIO_DBG("tempo:\t%3.5f bpm smoothed | bp2 %d | bp %d | ", 5168./bp, bp2, bp);
+ //bp2 = bp;
+ //AUBIO_DBG("time signature: %d \n", bt->timesig);
+ bt->counter = counter;
+ bt->flagstep = flagstep;
+ bt->gp = gp;
+ bt->bp = bp;
+ bt->rp1 = rp1;
+ bt->rp2 = rp2;
}
-smpl_t aubio_beattracking_get_bpm(aubio_beattracking_t * bt) {
- if (bt->timesig != 0 && bt->counter == 0 && bt->flagstep == 0) {
- return 5168. / vec_quadint(bt->acfout, bt->bp, 1);
- } else {
- return 0.;
- }
+smpl_t
+aubio_beattracking_get_bpm (aubio_beattracking_t * bt)
+{
+ if (bt->timesig != 0 && bt->counter == 0 && bt->flagstep == 0) {
+ return 5168. / vec_quadint (bt->acfout, bt->bp, 1);
+ } else {
+ return 0.;
+ }
}
-smpl_t aubio_beattracking_get_confidence(aubio_beattracking_t * bt) {
- if (bt->gp) return vec_max(bt->acfout);
- else return 0.;
+smpl_t
+aubio_beattracking_get_confidence (aubio_beattracking_t * bt)
+{
+ if (bt->gp) {
+ return vec_max (bt->acfout);
+ } else {
+ return 0.;
+ }
}