shithub: aubio

Download patch

ref: 7bf3dcb9e077fe0902daf398de7411310c6f5431
parent: 6f1727f4b144e1643c704c62e679567f2b4a26a1
author: Paul Brossier <piem@piem.org>
date: Tue Sep 15 13:02:45 EDT 2009

src/tempo/beattracking.c: no changes, indent

--- a/src/tempo/beattracking.c
+++ b/src/tempo/beattracking.c
@@ -1,19 +1,19 @@
 /*
-         Copyright (C) 2005 Matthew Davies and Paul Brossier
+   Copyright (C) 2005 Matthew Davies and Paul Brossier
 
-         This program is free software; you can redistribute it and/or modify
-         it under the terms of the GNU General Public License as published by
-         the Free Software Foundation; either version 2 of the License, or
-         (at your option) any later version.
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2 of the License, or
+   (at your option) any later version.
 
-         This program is distributed in the hope that it will be useful,
-         but WITHOUT ANY WARRANTY; without even the implied warranty of
-         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-         GNU General Public License for more details.
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
 
-         You should have received a copy of the GNU General Public License
-         along with this program; if not, write to the Free Software
-         Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+   You should have received a copy of the GNU General Public License
+   along with this program; if not, write to the Free Software
+   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
          
 */
 
@@ -22,351 +22,372 @@
 #include "mathutils.h"
 #include "tempo/beattracking.h"
 
-uint_t fvec_gettimesig(fvec_t * acf, uint_t acflen, uint_t gp);
-void aubio_beattracking_checkstate(aubio_beattracking_t * bt);
+uint_t fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp);
+void aubio_beattracking_checkstate (aubio_beattracking_t * bt);
 
-struct _aubio_beattracking_t {
-        fvec_t * rwv;    /** rayleigh weighting for beat period in general model */
-        fvec_t * dfwv;   /** exponential weighting for beat alignment in general model */
-        fvec_t * gwv;    /** gaussian weighting for beat period in context dependant model */
-        fvec_t * phwv;   /** gaussian weighting for beat alignment in context dependant model */
-        fvec_t * dfrev;  /** reversed onset detection function */
-        fvec_t * acf;    /** vector for autocorrelation function (of current detection function frame) */
-        fvec_t * acfout; /** store result of passing acf through s.i.c.f.b. */
-        fvec_t * phout;
-        uint_t timesig;  /** time signature of input, set to zero until context dependent model activated */
-        uint_t step;
-        uint_t rayparam; /** Rayleigh parameter */
-        smpl_t lastbeat;
-        sint_t counter;
-        uint_t flagstep;
-        smpl_t g_var;
-        smpl_t gp;
-        smpl_t bp;
-        smpl_t rp;
-        smpl_t rp1;
-        smpl_t rp2;
+struct _aubio_beattracking_t
+{
+  fvec_t *rwv;           /** rayleigh weighting for beat period in general model */
+  fvec_t *dfwv;          /** exponential weighting for beat alignment in general model */
+  fvec_t *gwv;           /** gaussian weighting for beat period in context dependant model */
+  fvec_t *phwv;          /** gaussian weighting for beat alignment in context dependant model */
+  fvec_t *dfrev;         /** reversed onset detection function */
+  fvec_t *acf;           /** vector for autocorrelation function (of current detection function frame) */
+  fvec_t *acfout;        /** store result of passing acf through s.i.c.f.b. */
+  fvec_t *phout;
+  uint_t timesig;        /** time signature of input, set to zero until context dependent model activated */
+  uint_t step;
+  uint_t rayparam;       /** Rayleigh parameter */
+  smpl_t lastbeat;
+  sint_t counter;
+  uint_t flagstep;
+  smpl_t g_var;
+  smpl_t gp;
+  smpl_t bp;
+  smpl_t rp;
+  smpl_t rp1;
+  smpl_t rp2;
 };
 
-aubio_beattracking_t * new_aubio_beattracking(uint_t winlen,
-                uint_t channels) {
+aubio_beattracking_t *
+new_aubio_beattracking (uint_t winlen, uint_t channels)
+{
 
-        aubio_beattracking_t * p = AUBIO_NEW(aubio_beattracking_t);
-        uint_t i        = 0;
-	/* parameter for rayleigh weight vector - sets preferred tempo to
-	 * 120bpm [43] */
-	smpl_t rayparam = 48./512. * winlen;
-        smpl_t dfwvnorm = EXP((LOG(2.0)/rayparam)*(winlen+2));
- 	/** length over which beat period is found [128] */
-        uint_t laglen   = winlen/4;
-	/** step increment - both in detection function samples -i.e. 11.6ms or
-	 * 1 onset frame [128] */
-	uint_t step     = winlen/4; /* 1.5 seconds */
+  aubio_beattracking_t *p = AUBIO_NEW (aubio_beattracking_t);
+  uint_t i = 0;
+  /* parameter for rayleigh weight vector - sets preferred tempo to
+   * 120bpm [43] */
+  smpl_t rayparam = 48. / 512. * winlen;
+  smpl_t dfwvnorm = EXP ((LOG (2.0) / rayparam) * (winlen + 2));
+  /* length over which beat period is found [128] */
+  uint_t laglen = winlen / 4;
+  /* step increment - both in detection function samples -i.e. 11.6ms or
+   * 1 onset frame [128] */
+  uint_t step = winlen / 4;     /* 1.5 seconds */
 
-        p->lastbeat = 0;
-        p->counter = 0;
-        p->flagstep = 0;
-        p->g_var = 3.901; // constthresh empirically derived!
-        p->rp = 1;
-        p->gp = 0;
+  p->lastbeat = 0;
+  p->counter = 0;
+  p->flagstep = 0;
+  p->g_var = 3.901;             // constthresh empirically derived!
+  p->rp = 1;
+  p->gp = 0;
 
-        p->rayparam = rayparam;
-        p->step    = step;
-        p->rwv     = new_fvec(laglen,1);
-        p->gwv     = new_fvec(laglen,1);
-        p->dfwv    = new_fvec(winlen,1);
-        p->dfrev   = new_fvec(winlen,channels);
-        p->acf     = new_fvec(winlen,channels);
-        p->acfout  = new_fvec(laglen,channels);
-        p->phwv    = new_fvec(2*laglen,1);
-        p->phout   = new_fvec(winlen,channels);
+  p->rayparam = rayparam;
+  p->step = step;
+  p->rwv = new_fvec (laglen, 1);
+  p->gwv = new_fvec (laglen, 1);
+  p->dfwv = new_fvec (winlen, 1);
+  p->dfrev = new_fvec (winlen, channels);
+  p->acf = new_fvec (winlen, channels);
+  p->acfout = new_fvec (laglen, channels);
+  p->phwv = new_fvec (2 * laglen, 1);
+  p->phout = new_fvec (winlen, channels);
 
-        p->timesig = 0;
+  p->timesig = 0;
 
-        /* exponential weighting, dfwv = 0.5 when i =  43 */
-        for (i=0;i<winlen;i++) {
-                p->dfwv->data[0][i] = (EXP((LOG(2.0)/rayparam)*(i+1)))
-                        / dfwvnorm;
-        } 
+  /* exponential weighting, dfwv = 0.5 when i =  43 */
+  for (i = 0; i < winlen; i++) {
+    p->dfwv->data[0][i] = (EXP ((LOG (2.0) / rayparam) * (i + 1)))
+        / dfwvnorm;
+  }
 
-        for (i=0;i<(laglen);i++){
-                p->rwv->data[0][i] = ((smpl_t)(i+1.) / SQR((smpl_t)rayparam)) * 
-                        EXP((-SQR((smpl_t)(i+1.)) / (2.*SQR((smpl_t)rayparam))));
-        }
+  for (i = 0; i < (laglen); i++) {
+    p->rwv->data[0][i] = ((smpl_t) (i + 1.) / SQR ((smpl_t) rayparam)) *
+        EXP ((-SQR ((smpl_t) (i + 1.)) / (2. * SQR ((smpl_t) rayparam))));
+  }
 
-        return p;
+  return p;
 
 }
 
-void del_aubio_beattracking(aubio_beattracking_t * p) {
-        del_fvec(p->rwv);
-        del_fvec(p->gwv);
-        del_fvec(p->dfwv);
-        del_fvec(p->dfrev);
-        del_fvec(p->acf);
-        del_fvec(p->acfout);
-        del_fvec(p->phwv);
-        del_fvec(p->phout);
-        AUBIO_FREE(p);
+void
+del_aubio_beattracking (aubio_beattracking_t * p)
+{
+  del_fvec (p->rwv);
+  del_fvec (p->gwv);
+  del_fvec (p->dfwv);
+  del_fvec (p->dfrev);
+  del_fvec (p->acf);
+  del_fvec (p->acfout);
+  del_fvec (p->phwv);
+  del_fvec (p->phout);
+  AUBIO_FREE (p);
 }
 
 
-void aubio_beattracking_do(aubio_beattracking_t * bt, fvec_t * dfframe, fvec_t * output) {
+void
+aubio_beattracking_do (aubio_beattracking_t * bt, fvec_t * dfframe,
+    fvec_t * output)
+{
 
-        uint_t i,k;
-        uint_t step     = bt->step;
-        uint_t laglen   = bt->rwv->length;
-        uint_t winlen   = bt->dfwv->length;
-        uint_t maxindex = 0;
-        //number of harmonics in shift invariant comb filterbank
-        uint_t numelem  = 4;
+  uint_t i, k;
+  uint_t step = bt->step;
+  uint_t laglen = bt->rwv->length;
+  uint_t winlen = bt->dfwv->length;
+  uint_t maxindex = 0;
+  //number of harmonics in shift invariant comb filterbank
+  uint_t numelem = 4;
 
-        smpl_t phase; // beat alignment (step - lastbeat) 
-        smpl_t beat;  // beat position 
-        smpl_t bp;    // beat period
-        uint_t a,b;   // used to build shift invariant comb filterbank
-        uint_t kmax;  // number of elements used to find beat phase
+  smpl_t phase;                 // beat alignment (step - lastbeat) 
+  smpl_t beat;                  // beat position 
+  smpl_t bp;                    // beat period
+  uint_t a, b;                  // used to build shift invariant comb filterbank
+  uint_t kmax;                  // number of elements used to find beat phase
 
-        /* copy dfframe, apply detection function weighting, and revert */
-        fvec_copy(dfframe, bt->dfrev);
-        fvec_weight(bt->dfrev, bt->dfwv);
-        fvec_rev(bt->dfrev);
+  /* copy dfframe, apply detection function weighting, and revert */
+  fvec_copy (dfframe, bt->dfrev);
+  fvec_weight (bt->dfrev, bt->dfwv);
+  fvec_rev (bt->dfrev);
 
-        /* compute autocorrelation function */
-        aubio_autocorr(dfframe,bt->acf); 
+  /* compute autocorrelation function */
+  aubio_autocorr (dfframe, bt->acf);
 
-        /* if timesig is unknown, use metrically unbiased version of filterbank */
-        if(!bt->timesig) { 
-                numelem = 4;
-        } else {
-                numelem = bt->timesig;
-        }
+  /* if timesig is unknown, use metrically unbiased version of filterbank */
+  if (!bt->timesig) {
+    numelem = 4;
+  } else {
+    numelem = bt->timesig;
+  }
 
-        /* first and last output values are left intentionally as zero */
-        fvec_zeros(bt->acfout);
+  /* first and last output values are left intentionally as zero */
+  fvec_zeros (bt->acfout);
 
-        /* compute shift invariant comb filterbank */ 
-        for(i=1;i<laglen-1;i++){ 
-                for (a=1; a<=numelem; a++){
-                        for(b=(1-a); b<a; b++){
-                                bt->acfout->data[0][i] += bt->acf->data[0][a*(i+1)+b-1] 
-                                        * 1./(2.*a-1.);
-                        }
-                }
-        }
-        /* apply Rayleigh weight */
-        fvec_weight(bt->acfout, bt->rwv);
+  /* compute shift invariant comb filterbank */
+  for (i = 1; i < laglen - 1; i++) {
+    for (a = 1; a <= numelem; a++) {
+      for (b = (1 - a); b < a; b++) {
+        bt->acfout->data[0][i] += bt->acf->data[0][a * (i + 1) + b - 1]
+            * 1. / (2. * a - 1.);
+      }
+    }
+  }
+  /* apply Rayleigh weight */
+  fvec_weight (bt->acfout, bt->rwv);
 
-        /* find non-zero Rayleigh period */
-        maxindex = vec_max_elem(bt->acfout);
-        bt->rp = maxindex ? vec_quadint(bt->acfout, maxindex, 1) : 1;
-        //rp = (maxindex==127) ? 43 : maxindex; //rayparam
-        bt->rp = (maxindex==bt->acfout->length-1) ? bt->rayparam : maxindex; //rayparam
+  /* find non-zero Rayleigh period */
+  maxindex = vec_max_elem (bt->acfout);
+  bt->rp = maxindex ? vec_quadint (bt->acfout, maxindex, 1) : 1;
+  //rp = (maxindex==127) ? 43 : maxindex; //rayparam
+  bt->rp = (maxindex == bt->acfout->length - 1) ? bt->rayparam : maxindex;      //rayparam
 
-        /* activate biased filterbank */
-        aubio_beattracking_checkstate(bt);
-#if 0 // debug metronome mode
-        bt->bp = 36.9142;
+  /* activate biased filterbank */
+  aubio_beattracking_checkstate (bt);
+#if 0                           // debug metronome mode
+  bt->bp = 36.9142;
 #endif
-        bp = bt->bp;
-        /* end of biased filterbank */
+  bp = bt->bp;
+  /* end of biased filterbank */
 
 
-        /* deliberate integer operation, could be set to 3 max eventually */
-        kmax = FLOOR(winlen/bp);
+  /* deliberate integer operation, could be set to 3 max eventually */
+  kmax = FLOOR (winlen / bp);
 
-        /* initialize output */
-        fvec_zeros(bt->phout);
-        for(i=0;i<bp;i++){
-                for(k=0;k<kmax;k++){
-                        bt->phout->data[0][i] += bt->dfrev->data[0][i+(uint_t)ROUND(bp*k)];
-                }
-        }
-        fvec_weight(bt->phout, bt->phwv);
+  /* initialize output */
+  fvec_zeros (bt->phout);
+  for (i = 0; i < bp; i++) {
+    for (k = 0; k < kmax; k++) {
+      bt->phout->data[0][i] += bt->dfrev->data[0][i + (uint_t) ROUND (bp * k)];
+    }
+  }
+  fvec_weight (bt->phout, bt->phwv);
 
-        /* find Rayleigh period */
-        maxindex = vec_max_elem(bt->phout);
-        if (maxindex == winlen) maxindex = 0;
-        phase =  1. + vec_quadint(bt->phout, maxindex, 1);
-#if 0 // debug metronome mode
-        phase = step - bt->lastbeat;
+  /* find Rayleigh period */
+  maxindex = vec_max_elem (bt->phout);
+  if (maxindex == winlen)
+    maxindex = 0;
+  phase = 1. + vec_quadint (bt->phout, maxindex, 1);
+#if 0                           // debug metronome mode
+  phase = step - bt->lastbeat;
 #endif
 
-        /* reset output */
-        fvec_zeros(output);
+  /* reset output */
+  fvec_zeros (output);
 
-        i = 1;
-        beat = bp - phase;
-        /* start counting the beats */
-        if(beat >= 0) {
-                output->data[0][i] = beat;
-                i++;
-        }
+  i = 1;
+  beat = bp - phase;
+  /* start counting the beats */
+  if (beat >= 0) {
+    output->data[0][i] = beat;
+    i++;
+  }
 
-        while( beat + bp <= step) {
-                beat += bp;
-                output->data[0][i] = beat;
-                i++;
-        }
+  while (beat + bp <= step) {
+    beat += bp;
+    output->data[0][i] = beat;
+    i++;
+  }
 
-        bt->lastbeat = beat;
-        /* store the number of beat found in this frame as the first element */
-        output->data[0][0] = i;
+  bt->lastbeat = beat;
+  /* store the number of beat found in this frame as the first element */
+  output->data[0][0] = i;
 }
 
-uint_t fvec_gettimesig(fvec_t * acf, uint_t acflen, uint_t gp){
-        sint_t k = 0;
-        smpl_t three_energy = 0., four_energy = 0.;
-        if( acflen > 6 * gp + 2 ){
-                for(k=-2;k<2;k++){
-                        three_energy += acf->data[0][3*gp+k];
-                        four_energy += acf->data[0][4*gp+k];
-                }
-        }
-        else{ /*Expanded to be more accurate in time sig estimation*/
-                for(k=-2;k<2;k++){
-                        three_energy += acf->data[0][3*gp+k]+acf->data[0][6*gp+k];
-                        four_energy += acf->data[0][4*gp+k]+acf->data[0][2*gp+k];
-                }
-        }
-        return (three_energy > four_energy) ? 3 : 4;
-}
+uint_t
+fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp)
+{
+  sint_t k = 0;
+  smpl_t three_energy = 0., four_energy = 0.;
+  if (acflen > 6 * gp + 2) {
+    for (k = -2; k < 2; k++) {
+      three_energy += acf->data[0][3 * gp + k];
+      four_energy += acf->data[0][4 * gp + k];
+    }
+  } else {
+    /*Expanded to be more accurate in time sig estimation */
+    for (k = -2; k < 2; k++) {
+      three_energy += acf->data[0][3 * gp + k] + acf->data[0][6 * gp + k];
+      four_energy += acf->data[0][4 * gp + k] + acf->data[0][2 * gp + k];
+    }
+  }
+  return (three_energy > four_energy) ? 3 : 4;
+}
 
-void aubio_beattracking_checkstate(aubio_beattracking_t * bt) {
-        uint_t i,j,a,b;
-        uint_t flagconst  = 0;
-        sint_t counter  = bt->counter;
-        uint_t flagstep = bt->flagstep;
-        smpl_t gp       = bt->gp;
-        smpl_t bp       = bt->bp;
-        smpl_t rp       = bt->rp;
-        smpl_t rp1      = bt->rp1;
-        smpl_t rp2      = bt->rp2;
-        uint_t laglen   = bt->rwv->length;
-        uint_t acflen   = bt->acf->length;
-        uint_t step     = bt->step;
-        fvec_t * acf    = bt->acf;
-        fvec_t * acfout = bt->acfout;
+void
+aubio_beattracking_checkstate (aubio_beattracking_t * bt)
+{
+  uint_t i, j, a, b;
+  uint_t flagconst = 0;
+  sint_t counter = bt->counter;
+  uint_t flagstep = bt->flagstep;
+  smpl_t gp = bt->gp;
+  smpl_t bp = bt->bp;
+  smpl_t rp = bt->rp;
+  smpl_t rp1 = bt->rp1;
+  smpl_t rp2 = bt->rp2;
+  uint_t laglen = bt->rwv->length;
+  uint_t acflen = bt->acf->length;
+  uint_t step = bt->step;
+  fvec_t *acf = bt->acf;
+  fvec_t *acfout = bt->acfout;
 
-        if (gp) {
-                // doshiftfbank again only if context dependent model is in operation
-                //acfout = doshiftfbank(acf,gwv,timesig,laglen,acfout); 
-                //don't need acfout now, so can reuse vector
-                // gwv is, in first loop, definitely all zeros, but will have
-                // proper values when context dependent model is activated
-                fvec_zeros(acfout);
-                for(i=1;i<laglen-1;i++){ 
-                        for (a=1;a<=bt->timesig;a++){
-                                for(b=(1-a);b<a;b++){
-                                        acfout->data[0][i] += acf->data[0][a*(i+1)+b-1];
-                                }
-                        }
-                }
-                fvec_weight(acfout, bt->gwv); 
-                gp = vec_quadint(acfout, vec_max_elem(acfout), 1);
-                /*
-	        while(gp<32) gp =gp*2;
-	        while(gp>64) gp = gp/2;
-                */
-        } else {
-                //still only using general model
-                gp = 0;  
-        }
+  if (gp) {
+    // doshiftfbank again only if context dependent model is in operation
+    //acfout = doshiftfbank(acf,gwv,timesig,laglen,acfout); 
+    //don't need acfout now, so can reuse vector
+    // gwv is, in first loop, definitely all zeros, but will have
+    // proper values when context dependent model is activated
+    fvec_zeros (acfout);
+    for (i = 1; i < laglen - 1; i++) {
+      for (a = 1; a <= bt->timesig; a++) {
+        for (b = (1 - a); b < a; b++) {
+          acfout->data[0][i] += acf->data[0][a * (i + 1) + b - 1];
+        }
+      }
+    }
+    fvec_weight (acfout, bt->gwv);
+    gp = vec_quadint (acfout, vec_max_elem (acfout), 1);
+    /*
+       while(gp<32) gp =gp*2;
+       while(gp>64) gp = gp/2;
+     */
+  } else {
+    //still only using general model
+    gp = 0;
+  }
 
-        //now look for step change - i.e. a difference between gp and rp that 
-        // is greater than 2*constthresh - always true in first case, since gp = 0
-        if(counter == 0){
-                if(ABS(gp - rp) > 2.*bt->g_var) {
-                        flagstep = 1; // have observed  step change.
-                        counter  = 3; // setup 3 frame counter
-                } else {
-                        flagstep = 0;
-                }
-        }
+  //now look for step change - i.e. a difference between gp and rp that 
+  // is greater than 2*constthresh - always true in first case, since gp = 0
+  if (counter == 0) {
+    if (ABS (gp - rp) > 2. * bt->g_var) {
+      flagstep = 1;             // have observed  step change.
+      counter = 3;              // setup 3 frame counter
+    } else {
+      flagstep = 0;
+    }
+  }
+  //i.e. 3rd frame after flagstep initially set
+  if (counter == 1 && flagstep == 1) {
+    //check for consistency between previous beatperiod values
+    if (ABS (2. * rp - rp1 - rp2) < bt->g_var) {
+      //if true, can activate context dependent model
+      flagconst = 1;
+      counter = 0;              // reset counter and flagstep
+    } else {
+      //if not consistent, then don't flag consistency!
+      flagconst = 0;
+      counter = 2;              // let it look next time
+    }
+  } else if (counter > 0) {
+    //if counter doesn't = 1, 
+    counter = counter - 1;
+  }
 
-        //i.e. 3rd frame after flagstep initially set
-        if (counter==1 && flagstep==1) {
-                //check for consistency between previous beatperiod values
-                if(ABS(2.*rp - rp1 -rp2) < bt->g_var) {
-                        //if true, can activate context dependent model
-                        flagconst = 1;
-                        counter   = 0; // reset counter and flagstep
-                } else {
-                        //if not consistent, then don't flag consistency!
-                        flagconst = 0;
-                        counter   = 2; // let it look next time
-                }
-        } else if (counter > 0) {
-                //if counter doesn't = 1, 
-                counter = counter-1;
-        }
+  rp2 = rp1;
+  rp1 = rp;
 
-        rp2 = rp1; rp1 = rp; 
+  if (flagconst) {
+    /* first run of new hypothesis */
+    gp = rp;
+    bt->timesig = fvec_gettimesig (acf, acflen, gp);
+    for (j = 0; j < laglen; j++)
+      bt->gwv->data[0][j] =
+          EXP (-.5 * SQR ((smpl_t) (j + 1. - gp)) / SQR (bt->g_var));
+    flagconst = 0;
+    bp = gp;
+    /* flat phase weighting */
+    fvec_ones (bt->phwv);
+  } else if (bt->timesig) {
+    /* context dependant model */
+    bp = gp;
+    /* gaussian phase weighting */
+    if (step > bt->lastbeat) {
+      for (j = 0; j < 2 * laglen; j++) {
+        bt->phwv->data[0][j] =
+            EXP (-.5 * SQR ((smpl_t) (1. + j - step +
+                    bt->lastbeat)) / (bp / 8.));
+      }
+    } else {
+      //AUBIO_DBG("NOT using phase weighting as step is %d and lastbeat %d \n",
+      //                step,bt->lastbeat);
+      fvec_ones (bt->phwv);
+    }
+  } else {
+    /* initial state */
+    bp = rp;
+    /* flat phase weighting */
+    fvec_ones (bt->phwv);
+  }
 
-        if (flagconst) {
-                /* first run of new hypothesis */
-                gp = rp;
-                bt->timesig = fvec_gettimesig(acf,acflen, gp);
-                for(j=0;j<laglen;j++)
-                        bt->gwv->data[0][j] = EXP(-.5*SQR((smpl_t)(j+1.-gp))/SQR(bt->g_var));
-                flagconst = 0;
-                bp = gp;
-                /* flat phase weighting */
-                fvec_ones(bt->phwv);
-        } else if (bt->timesig) {
-                /* context dependant model */
-                bp = gp;
-                /* gaussian phase weighting */
-                if (step > bt->lastbeat) {
-                        for(j=0;j<2*laglen;j++)  {
-                                bt->phwv->data[0][j] = EXP(-.5*SQR((smpl_t)(1.+j-step+bt->lastbeat))/(bp/8.));
-                        }
-                } else { 
-                        //AUBIO_DBG("NOT using phase weighting as step is %d and lastbeat %d \n",
-                        //                step,bt->lastbeat);
-                        fvec_ones(bt->phwv); 
-                }
-        } else {
-                /* initial state */ 
-                bp = rp;
-                /* flat phase weighting */
-                fvec_ones(bt->phwv); 
-        }
+  /* do some further checks on the final bp value */
 
-        /* do some further checks on the final bp value */
+  /* if tempo is > 206 bpm, half it */
+  while (bp < 25) {
+    //AUBIO_DBG("warning, doubling the beat period from %d\n", bp);
+    //AUBIO_DBG("warning, halving the tempo from %f\n", 60.*samplerate/hopsize/bp);
+    bp = bp * 2;
+  }
 
-        /* if tempo is > 206 bpm, half it */
-        while (bp < 25) {
-                //AUBIO_DBG("warning, doubling the beat period from %d\n", bp);
-                //AUBIO_DBG("warning, halving the tempo from %f\n", 60.*samplerate/hopsize/bp);
-                bp = bp*2;
-        }
-        
-        //AUBIO_DBG("tempo:\t%3.5f bpm | ", 5168./bp);
+  //AUBIO_DBG("tempo:\t%3.5f bpm | ", 5168./bp);
 
-        /* smoothing */
-        //bp = (uint_t) (0.8 * (smpl_t)bp + 0.2 * (smpl_t)bp2);
-        //AUBIO_DBG("tempo:\t%3.5f bpm smoothed | bp2 %d | bp %d | ", 5168./bp, bp2, bp);
-        //bp2 = bp;
-        //AUBIO_DBG("time signature: %d \n", bt->timesig);
-        bt->counter = counter;
-        bt->flagstep = flagstep;
-        bt->gp = gp;
-        bt->bp = bp;
-        bt->rp1 = rp1;
-        bt->rp2 = rp2;
-
+  /* smoothing */
+  //bp = (uint_t) (0.8 * (smpl_t)bp + 0.2 * (smpl_t)bp2);
+  //AUBIO_DBG("tempo:\t%3.5f bpm smoothed | bp2 %d | bp %d | ", 5168./bp, bp2, bp);
+  //bp2 = bp;
+  //AUBIO_DBG("time signature: %d \n", bt->timesig);
+  bt->counter = counter;
+  bt->flagstep = flagstep;
+  bt->gp = gp;
+  bt->bp = bp;
+  bt->rp1 = rp1;
+  bt->rp2 = rp2;
 }
 
-smpl_t aubio_beattracking_get_bpm(aubio_beattracking_t * bt) {
-        if (bt->timesig != 0 && bt->counter == 0 && bt->flagstep == 0) {
-          return 5168. / vec_quadint(bt->acfout, bt->bp, 1);
-        } else {
-          return 0.;
-        }
+smpl_t
+aubio_beattracking_get_bpm (aubio_beattracking_t * bt)
+{
+  if (bt->timesig != 0 && bt->counter == 0 && bt->flagstep == 0) {
+    return 5168. / vec_quadint (bt->acfout, bt->bp, 1);
+  } else {
+    return 0.;
+  }
 }
 
-smpl_t aubio_beattracking_get_confidence(aubio_beattracking_t * bt) {
-        if (bt->gp) return vec_max(bt->acfout);
-        else return 0.;
+smpl_t
+aubio_beattracking_get_confidence (aubio_beattracking_t * bt)
+{
+  if (bt->gp) {
+    return vec_max (bt->acfout);
+  } else {
+    return 0.;
+  }
 }