shithub: dav1d

ref: 80e47425e6ca9834e19930ce9663009e421f314c
dir: /tests/checkasm/itx.c/

View raw version
/*
 * Copyright © 2018, VideoLAN and dav1d authors
 * Copyright © 2018, Two Orioles, LLC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "tests/checkasm/checkasm.h"

#include <math.h>

#include "src/itx.h"
#include "src/levels.h"
#include "src/scan.h"
#include "src/tables.h"

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.707106781186547524401
#endif

enum Tx1D { DCT, ADST, FLIPADST, IDENTITY, WHT };

static const uint8_t itx_1d_types[N_TX_TYPES_PLUS_LL][2] = {
    [DCT_DCT]           = { DCT,      DCT      },
    [ADST_DCT]          = { DCT,      ADST     },
    [DCT_ADST]          = { ADST,     DCT      },
    [ADST_ADST]         = { ADST,     ADST     },
    [FLIPADST_DCT]      = { DCT,      FLIPADST },
    [DCT_FLIPADST]      = { FLIPADST, DCT      },
    [FLIPADST_FLIPADST] = { FLIPADST, FLIPADST },
    [ADST_FLIPADST]     = { FLIPADST, ADST     },
    [FLIPADST_ADST]     = { ADST,     FLIPADST },
    [IDTX]              = { IDENTITY, IDENTITY },
    [V_DCT]             = { IDENTITY, DCT      },
    [H_DCT]             = { DCT,      IDENTITY },
    [V_ADST]            = { IDENTITY, ADST     },
    [H_ADST]            = { ADST,     IDENTITY },
    [V_FLIPADST]        = { IDENTITY, FLIPADST },
    [H_FLIPADST]        = { FLIPADST, IDENTITY },
    [WHT_WHT]           = { WHT,      WHT      },
};

static const char *const itx_1d_names[5] = {
    [DCT]      = "dct",
    [ADST]     = "adst",
    [FLIPADST] = "flipadst",
    [IDENTITY] = "identity",
    [WHT]      = "wht"
};

static const double scaling_factors[9] = {
    4.0000,             /*  4x4                          */
    4.0000 * M_SQRT1_2, /*  4x8   8x4                    */
    2.0000,             /*  4x16  8x8  16x4              */
    2.0000 * M_SQRT1_2, /*        8x16 16x8              */
    1.0000,             /*        8x32 16x16 32x8        */
    0.5000 * M_SQRT1_2, /*             16x32 32x16       */
    0.2500,             /*             16x64 32x32 64x16 */
    0.1250 * M_SQRT1_2, /*                   32x64 64x32 */
    0.0625,             /*                         64x64 */
};

/* FIXME: Ensure that those forward transforms are similar to the real AV1
 * transforms. The FLIPADST currently uses the ADST forward transform for
 * example which is obviously "incorrect", but we're just using it for now
 * since it does produce coefficients in the correct range at least. */

/* DCT-II */
static void fdct_1d(double *const out, const double *const in, const int sz) {
    for (int i = 0; i < sz; i++) {
        out[i] = 0.0;
        for (int j = 0; j < sz; j++)
            out[i] += in[j] * cos(M_PI * (2 * j + 1) * i / (sz * 2.0));
    }
    out[0] *= M_SQRT1_2;
}

/* See "Towards jointly optimal spatial prediction and adaptive transform in
 * video/image coding", by J. Han, A. Saxena, and K. Rose
 * IEEE Proc. ICASSP, pp. 726-729, Mar. 2010.
 * and "A Butterfly Structured Design of The Hybrid Transform Coding Scheme",
 * by Jingning Han, Yaowu Xu, and Debargha Mukherjee
 * http://research.google.com/pubs/archive/41418.pdf
 */
static void fadst_1d(double *const out, const double *const in, const int sz) {
    for (int i = 0; i < sz; i++) {
        out[i] = 0.0;
        for (int j = 0; j < sz; j++)
            out[i] += in[j] * sin(M_PI *
            (sz == 4 ? (    j + 1) * (2 * i + 1) / (8.0 + 1.0) :
                       (2 * j + 1) * (2 * i + 1) / (sz * 4.0)));
    }
}

static void fwht4_1d(double *const out, const double *const in)
{
    const double t0 = in[0] + in[1];
    const double t3 = in[3] - in[2];
    const double t4 = (t0 - t3) * 0.5;
    const double t1 = t4 - in[1];
    const double t2 = t4 - in[2];
    out[0] = t0 - t2;
    out[1] = t2;
    out[2] = t3 + t1;
    out[3] = t1;
}

static int copy_subcoefs(coef *coeff,
                         const enum RectTxfmSize tx, const enum TxfmType txtp,
                         const int sw, const int sh, const int subsh)
{
    /* copy the topleft coefficients such that the return value (being the
     * coefficient scantable index for the eob token) guarantees that only
     * the topleft $sub out of $sz (where $sz >= $sub) coefficients in both
     * dimensions are non-zero. This leads to braching to specific optimized
     * simd versions (e.g. dc-only) so that we get full asm coverage in this
     * test */
    const int16_t *const scan = dav1d_scans[tx][dav1d_tx_type_class[txtp]];
    const int sub_high = subsh > 0 ? subsh * 8 - 1 : 0;
    const int sub_low  = subsh > 1 ? sub_high - 8 : 0;
    int n, eob;

    for (n = 0, eob = 0; n < sw * sh; n++) {
        const int rc = scan[n];
        const int rcx = rc % sh, rcy = rc / sh;

        /* Pick a random eob within this sub-itx */
        if (rcx > sub_high || rcy > sub_high) {
            break; /* upper boundary */
        } else if (!eob && (rcx > sub_low || rcy > sub_low))
            eob = n; /* lower boundary */
    }

    if (eob)
        eob += rand() % (n - eob - 1);
    for (n = eob + 1; n < sw * sh; n++)
        coeff[scan[n]] = 0;
    return eob;
}

static int ftx(coef *const buf, const enum RectTxfmSize tx,
               const enum TxfmType txtp, const int w, const int h,
               const int subsh)
{
    double out[64 * 64], temp[64 * 64];
    const double scale = scaling_factors[ctz(w * h) - 4];
    const int sw = imin(w, 32), sh = imin(h, 32);

    for (int i = 0; i < h; i++) {
        double in[64], temp_out[64];

        for (int i = 0; i < w; i++)
            in[i] = (rand() & ((2 << BITDEPTH) - 1)) - ((1 << BITDEPTH) - 1);

        switch (itx_1d_types[txtp][0]) {
        case DCT:
            fdct_1d(temp_out, in, w);
            break;
        case ADST:
        case FLIPADST:
            fadst_1d(temp_out, in, w);
            break;
        case WHT:
            fwht4_1d(temp_out, in);
            break;
        case IDENTITY:
            memcpy(temp_out, in, w * sizeof(*temp_out));
            break;
        }

        for (int j = 0; j < w; j++)
            temp[j * h + i] = temp_out[j] * scale;
    }

    for (int i = 0; i < w; i++) {
        switch (itx_1d_types[txtp][0]) {
        case DCT:
            fdct_1d(&out[i * h], &temp[i * h], h);
            break;
        case ADST:
        case FLIPADST:
            fadst_1d(&out[i * h], &temp[i * h], h);
            break;
        case WHT:
            fwht4_1d(&out[i * h], &temp[i * h]);
            break;
        case IDENTITY:
            memcpy(&out[i * h], &temp[i * h], h * sizeof(*out));
            break;
        }
    }

    for (int y = 0; y < sh; y++)
        for (int x = 0; x < sw; x++)
            buf[y * sw + x] = out[y * w + x] + 0.5;

    return copy_subcoefs(buf, tx, txtp, sw, sh, subsh);
}

void bitfn(checkasm_check_itx)(void) {
    Dav1dInvTxfmDSPContext c;
    bitfn(dav1d_itx_dsp_init)(&c);

    ALIGN_STK_32(coef, coeff, 3, [32 * 32]);
    ALIGN_STK_32(pixel, c_dst, 64 * 64,);
    ALIGN_STK_32(pixel, a_dst, 64 * 64,);

    static const uint8_t txfm_size_order[N_RECT_TX_SIZES] = {
        TX_4X4,   RTX_4X8,  RTX_4X16,
        RTX_8X4,  TX_8X8,   RTX_8X16,  RTX_8X32,
        RTX_16X4, RTX_16X8, TX_16X16,  RTX_16X32, RTX_16X64,
                  RTX_32X8, RTX_32X16, TX_32X32,  RTX_32X64,
                            RTX_64X16, RTX_64X32, TX_64X64
    };

    static const uint8_t subsh_iters[5] = { 2, 2, 3, 5, 5 };

    declare_func(void, pixel *dst, ptrdiff_t dst_stride, coef *coeff, int eob);

    for (int i = 0; i < N_RECT_TX_SIZES; i++) {
        const enum RectTxfmSize tx = txfm_size_order[i];
        const int w = dav1d_txfm_dimensions[tx].w * 4;
        const int h = dav1d_txfm_dimensions[tx].h * 4;
        const int sw = imin(w, 32), sh = imin(h, 32);
        const int subsh_max = subsh_iters[imax(dav1d_txfm_dimensions[tx].lw,
                                               dav1d_txfm_dimensions[tx].lh)];

        for (enum TxfmType txtp = 0; txtp < N_TX_TYPES_PLUS_LL; txtp++)
            for (int subsh = 0; subsh < subsh_max; subsh++)
                if (check_func(c.itxfm_add[tx][txtp],
                               "inv_txfm_add_%dx%d_%s_%s_%d_%dbpc",
                               w, h, itx_1d_names[itx_1d_types[txtp][0]],
                               itx_1d_names[itx_1d_types[txtp][1]], subsh,
                               BITDEPTH))
                {
                    const int eob = ftx(coeff[0], tx, txtp, w, h, subsh);

                    for (int j = 0; j < w * h; j++)
                        c_dst[j] = a_dst[j] = rand() & ((1 << BITDEPTH) - 1);

                    memcpy(coeff[1], coeff[0], sw * sh * sizeof(**coeff));
                    memcpy(coeff[2], coeff[0], sw * sh * sizeof(**coeff));

                    call_ref(c_dst, w * sizeof(*c_dst), coeff[0], eob);
                    call_new(a_dst, w * sizeof(*c_dst), coeff[1], eob);
                    if (memcmp(c_dst, a_dst, w * h * sizeof(*c_dst)) ||
                        memcmp(coeff[0], coeff[1], sw * sh * sizeof(**coeff)))
                    {
                        fail();
                    }

                    bench_new(a_dst, w * sizeof(*c_dst), coeff[2], eob);
                }
        report("add_%dx%d", w, h);
    }
}