ref: 760c214519fe69951297985ee8d7cd817a6febc4
parent: 2ff01aa1e4c26b7df4727d3a9b3d0205ee1daab3
author: Kyle Siefring <kylesiefring@gmail.com>
date: Mon May 1 05:19:11 EDT 2017
block error avx2: sum in 32 bits when possible Add 31bit pairs before unpacking in x86 block error code AVX2 code provides a very minor performance improvement. BUG=webm:1210 Change-Id: I4c82308eaf65741dca2f5c6db9be9c85f905073a
--- a/vp9/encoder/x86/vp9_error_avx2.c
+++ b/vp9/encoder/x86/vp9_error_avx2.c
@@ -8,7 +8,8 @@
* be found in the AUTHORS file in the root of the source tree.
*/
-#include <immintrin.h> // AVX2
+#include <assert.h>
+#include <immintrin.h>
#include "./vp9_rtcd.h"
#include "vpx/vpx_integer.h"
@@ -17,22 +18,19 @@
int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
- __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg;
+ __m256i sse_reg, ssz_reg;
__m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
__m256i sse_reg_64hi, ssz_reg_64hi;
__m128i sse_reg128, ssz_reg128;
int64_t sse;
- int i;
- const __m256i zero_reg = _mm256_set1_epi16(0);
+ const __m256i zero_reg = _mm256_setzero_si256();
- // init sse and ssz registerd to zero
- sse_reg = _mm256_set1_epi16(0);
- ssz_reg = _mm256_set1_epi16(0);
-
- for (i = 0; i < block_size; i += 16) {
- // load 32 bytes from coeff and dqcoeff
- coeff_reg = load_tran_low(coeff + i);
- dqcoeff_reg = load_tran_low(dqcoeff + i);
+ // If the block size is 16 then the results will fit in 32 bits.
+ if (block_size == 16) {
+ __m256i coeff_reg, dqcoeff_reg, coeff_reg_hi, dqcoeff_reg_hi;
+ // Load 16 elements for coeff and dqcoeff.
+ coeff_reg = load_tran_low(coeff);
+ dqcoeff_reg = load_tran_low(dqcoeff);
// dqcoeff - coeff
dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg);
// madd (dqcoeff - coeff)
@@ -39,26 +37,62 @@
dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg);
// madd coeff
coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg);
- // expand each double word of madd (dqcoeff - coeff) to quad word
- exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
- exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg);
- // expand each double word of madd (coeff) to quad word
- exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
- exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg);
- // add each quad word of madd (dqcoeff - coeff) and madd (coeff)
- sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
- ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
- sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
- ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
+ // Save the higher 64 bit of each 128 bit lane.
+ dqcoeff_reg_hi = _mm256_srli_si256(dqcoeff_reg, 8);
+ coeff_reg_hi = _mm256_srli_si256(coeff_reg, 8);
+ // Add the higher 64 bit to the low 64 bit.
+ dqcoeff_reg = _mm256_add_epi32(dqcoeff_reg, dqcoeff_reg_hi);
+ coeff_reg = _mm256_add_epi32(coeff_reg, coeff_reg_hi);
+ // Expand each double word in the lower 64 bits to quad word.
+ sse_reg = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg);
+ ssz_reg = _mm256_unpacklo_epi32(coeff_reg, zero_reg);
+ } else {
+ int i;
+ assert(block_size % 32 == 0);
+ sse_reg = zero_reg;
+ ssz_reg = zero_reg;
+
+ for (i = 0; i < block_size; i += 32) {
+ __m256i coeff_reg_0, coeff_reg_1, dqcoeff_reg_0, dqcoeff_reg_1;
+ // Load 32 elements for coeff and dqcoeff.
+ coeff_reg_0 = load_tran_low(coeff + i);
+ dqcoeff_reg_0 = load_tran_low(dqcoeff + i);
+ coeff_reg_1 = load_tran_low(coeff + i + 16);
+ dqcoeff_reg_1 = load_tran_low(dqcoeff + i + 16);
+ // dqcoeff - coeff
+ dqcoeff_reg_0 = _mm256_sub_epi16(dqcoeff_reg_0, coeff_reg_0);
+ dqcoeff_reg_1 = _mm256_sub_epi16(dqcoeff_reg_1, coeff_reg_1);
+ // madd (dqcoeff - coeff)
+ dqcoeff_reg_0 = _mm256_madd_epi16(dqcoeff_reg_0, dqcoeff_reg_0);
+ dqcoeff_reg_1 = _mm256_madd_epi16(dqcoeff_reg_1, dqcoeff_reg_1);
+ // madd coeff
+ coeff_reg_0 = _mm256_madd_epi16(coeff_reg_0, coeff_reg_0);
+ coeff_reg_1 = _mm256_madd_epi16(coeff_reg_1, coeff_reg_1);
+ // Add the first madd (dqcoeff - coeff) with the second.
+ dqcoeff_reg_0 = _mm256_add_epi32(dqcoeff_reg_0, dqcoeff_reg_1);
+ // Add the first madd (coeff) with the second.
+ coeff_reg_0 = _mm256_add_epi32(coeff_reg_0, coeff_reg_1);
+ // Expand each double word of madd (dqcoeff - coeff) to quad word.
+ exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg_0, zero_reg);
+ exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg_0, zero_reg);
+ // expand each double word of madd (coeff) to quad word
+ exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg_0, zero_reg);
+ exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg_0, zero_reg);
+ // Add each quad word of madd (dqcoeff - coeff) and madd (coeff).
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo);
+ sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi);
+ ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi);
+ }
}
- // save the higher 64 bit of each 128 bit lane
+ // Save the higher 64 bit of each 128 bit lane.
sse_reg_64hi = _mm256_srli_si256(sse_reg, 8);
ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8);
- // add the higher 64 bit to the low 64 bit
+ // Add the higher 64 bit to the low 64 bit.
sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi);
ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi);
- // add each 64 bit from each of the 128 bit lane of the 256 bit
+ // Add each 64 bit from each of the 128 bit lane of the 256 bit.
sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg),
_mm256_extractf128_si256(sse_reg, 1));
@@ -65,7 +99,7 @@
ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg),
_mm256_extractf128_si256(ssz_reg, 1));
- // store the results
+ // Store the results.
_mm_storel_epi64((__m128i *)(&sse), sse_reg128);
_mm_storel_epi64((__m128i *)(ssz), ssz_reg128);