ref: e753d4930f3b2859968068ffb77f6a6159b2f3c6
dir: /vp9/encoder/arm/neon/vp9_denoiser_neon.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <arm_neon.h> #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_context_tree.h" #include "vp9/encoder/vp9_denoiser.h" #include "vpx_mem/vpx_mem.h" // Compute the sum of all pixel differences of this MB. static INLINE int horizontal_add_s8x16(const int8x16_t v_sum_diff_total) { const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff_total); const int32x4_t fedc_ba98_7654_3210 = vpaddlq_s16(fe_dc_ba_98_76_54_32_10); const int64x2_t fedcba98_76543210 = vpaddlq_s32(fedc_ba98_7654_3210); const int64x1_t x = vqadd_s64(vget_high_s64(fedcba98_76543210), vget_low_s64(fedcba98_76543210)); const int sum_diff = vget_lane_s32(vreinterpret_s32_s64(x), 0); return sum_diff; } // Denoise a 16x1 vector. static INLINE int8x16_t denoiser_16x1_neon( const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, const uint8x16_t v_level1_threshold, const uint8x16_t v_level2_threshold, const uint8x16_t v_level3_threshold, const uint8x16_t v_level1_adjustment, const uint8x16_t v_delta_level_1_and_2, const uint8x16_t v_delta_level_2_and_3, int8x16_t v_sum_diff_total) { const uint8x16_t v_sig = vld1q_u8(sig); const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y); /* Calculate absolute difference and sign masks. */ const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y); const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y); const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y); /* Figure out which level that put us in. */ const uint8x16_t v_level1_mask = vcleq_u8(v_level1_threshold, v_abs_diff); const uint8x16_t v_level2_mask = vcleq_u8(v_level2_threshold, v_abs_diff); const uint8x16_t v_level3_mask = vcleq_u8(v_level3_threshold, v_abs_diff); /* Calculate absolute adjustments for level 1, 2 and 3. */ const uint8x16_t v_level2_adjustment = vandq_u8(v_level2_mask, v_delta_level_1_and_2); const uint8x16_t v_level3_adjustment = vandq_u8(v_level3_mask, v_delta_level_2_and_3); const uint8x16_t v_level1and2_adjustment = vaddq_u8(v_level1_adjustment, v_level2_adjustment); const uint8x16_t v_level1and2and3_adjustment = vaddq_u8(v_level1and2_adjustment, v_level3_adjustment); /* Figure adjustment absolute value by selecting between the absolute * difference if in level0 or the value for level 1, 2 and 3. */ const uint8x16_t v_abs_adjustment = vbslq_u8(v_level1_mask, v_level1and2and3_adjustment, v_abs_diff); /* Calculate positive and negative adjustments. Apply them to the signal * and accumulate them. Adjustments are less than eight and the maximum * sum of them (7 * 16) can fit in a signed char. */ const uint8x16_t v_pos_adjustment = vandq_u8(v_diff_pos_mask, v_abs_adjustment); const uint8x16_t v_neg_adjustment = vandq_u8(v_diff_neg_mask, v_abs_adjustment); uint8x16_t v_running_avg_y = vqaddq_u8(v_sig, v_pos_adjustment); v_running_avg_y = vqsubq_u8(v_running_avg_y, v_neg_adjustment); /* Store results. */ vst1q_u8(running_avg_y, v_running_avg_y); /* Sum all the accumulators to have the sum of all pixel differences * for this macroblock. */ { const int8x16_t v_sum_diff = vqsubq_s8(vreinterpretq_s8_u8(v_pos_adjustment), vreinterpretq_s8_u8(v_neg_adjustment)); v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff); } return v_sum_diff_total; } static INLINE int8x16_t denoiser_adjust_16x1_neon( const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, const uint8x16_t k_delta, int8x16_t v_sum_diff_total) { uint8x16_t v_running_avg_y = vld1q_u8(running_avg_y); const uint8x16_t v_sig = vld1q_u8(sig); const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y); /* Calculate absolute difference and sign masks. */ const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y); const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y); const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y); // Clamp absolute difference to delta to get the adjustment. const uint8x16_t v_abs_adjustment = vminq_u8(v_abs_diff, (k_delta)); const uint8x16_t v_pos_adjustment = vandq_u8(v_diff_pos_mask, v_abs_adjustment); const uint8x16_t v_neg_adjustment = vandq_u8(v_diff_neg_mask, v_abs_adjustment); v_running_avg_y = vqsubq_u8(v_running_avg_y, v_pos_adjustment); v_running_avg_y = vqaddq_u8(v_running_avg_y, v_neg_adjustment); /* Store results. */ vst1q_u8(running_avg_y, v_running_avg_y); { const int8x16_t v_sum_diff = vqsubq_s8(vreinterpretq_s8_u8(v_neg_adjustment), vreinterpretq_s8_u8(v_pos_adjustment)); v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff); } return v_sum_diff_total; } // Denoise 8x8 and 8x16 blocks. static int vp9_denoiser_8xN_neon(const uint8_t *sig, int sig_stride, const uint8_t *mc_running_avg_y, int mc_avg_y_stride, uint8_t *running_avg_y, int avg_y_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude, int width) { int sum_diff_thresh, r, sum_diff = 0; const int shift_inc = (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 1 : 0; uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16]; const uint8x16_t v_level1_adjustment = vmovq_n_u8( (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3); const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1); const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2); const uint8x16_t v_level1_threshold = vdupq_n_u8(4 + shift_inc); const uint8x16_t v_level2_threshold = vdupq_n_u8(8); const uint8x16_t v_level3_threshold = vdupq_n_u8(16); const int b_height = (4 << b_height_log2_lookup[bs]) >> 1; int8x16_t v_sum_diff_total = vdupq_n_s8(0); for (r = 0; r < b_height; ++r) { memcpy(sig_buffer[r], sig, width); memcpy(sig_buffer[r] + width, sig + sig_stride, width); memcpy(mc_running_buffer[r], mc_running_avg_y, width); memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride, width); memcpy(running_buffer[r], running_avg_y, width); memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width); v_sum_diff_total = denoiser_16x1_neon( sig_buffer[r], mc_running_buffer[r], running_buffer[r], v_level1_threshold, v_level2_threshold, v_level3_threshold, v_level1_adjustment, v_delta_level_1_and_2, v_delta_level_2_and_3, v_sum_diff_total); { const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]); const uint8x8_t v_running_buffer_high = vget_high_u8(v_running_buffer); const uint8x8_t v_running_buffer_low = vget_low_u8(v_running_buffer); vst1_u8(running_avg_y, v_running_buffer_low); vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high); } // Update pointers for next iteration. sig += (sig_stride << 1); mc_running_avg_y += (mc_avg_y_stride << 1); running_avg_y += (avg_y_stride << 1); } { sum_diff = horizontal_add_s8x16(v_sum_diff_total); sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); if (abs(sum_diff) > sum_diff_thresh) { // Before returning to copy the block (i.e., apply no denoising), // check if we can still apply some (weaker) temporal filtering to // this block, that would otherwise not be denoised at all. Simplest // is to apply an additional adjustment to running_avg_y to bring it // closer to sig. The adjustment is capped by a maximum delta, and // chosen such that in most cases the resulting sum_diff will be // within the acceptable range given by sum_diff_thresh. // The delta is set by the excess of absolute pixel diff over the // threshold. const int delta = ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; // Only apply the adjustment for max delta up to 3. if (delta < 4) { const uint8x16_t k_delta = vmovq_n_u8(delta); running_avg_y -= avg_y_stride * (b_height << 1); for (r = 0; r < b_height; ++r) { v_sum_diff_total = denoiser_adjust_16x1_neon( sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_delta, v_sum_diff_total); { const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]); const uint8x8_t v_running_buffer_high = vget_high_u8(v_running_buffer); const uint8x8_t v_running_buffer_low = vget_low_u8(v_running_buffer); vst1_u8(running_avg_y, v_running_buffer_low); vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high); } // Update pointers for next iteration. running_avg_y += (avg_y_stride << 1); } sum_diff = horizontal_add_s8x16(v_sum_diff_total); if (abs(sum_diff) > sum_diff_thresh) { return COPY_BLOCK; } } else { return COPY_BLOCK; } } } return FILTER_BLOCK; } // Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks. static int vp9_denoiser_NxM_neon(const uint8_t *sig, int sig_stride, const uint8_t *mc_running_avg_y, int mc_avg_y_stride, uint8_t *running_avg_y, int avg_y_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { const int shift_inc = (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 1 : 0; const uint8x16_t v_level1_adjustment = vmovq_n_u8( (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3); const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1); const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2); const uint8x16_t v_level1_threshold = vmovq_n_u8(4 + shift_inc); const uint8x16_t v_level2_threshold = vdupq_n_u8(8); const uint8x16_t v_level3_threshold = vdupq_n_u8(16); const int b_width = (4 << b_width_log2_lookup[bs]); const int b_height = (4 << b_height_log2_lookup[bs]); const int b_width_shift4 = b_width >> 4; int8x16_t v_sum_diff_total[4][4]; int r, c, sum_diff = 0; for (r = 0; r < 4; ++r) { for (c = 0; c < b_width_shift4; ++c) { v_sum_diff_total[c][r] = vdupq_n_s8(0); } } for (r = 0; r < b_height; ++r) { for (c = 0; c < b_width_shift4; ++c) { v_sum_diff_total[c][r >> 4] = denoiser_16x1_neon( sig, mc_running_avg_y, running_avg_y, v_level1_threshold, v_level2_threshold, v_level3_threshold, v_level1_adjustment, v_delta_level_1_and_2, v_delta_level_2_and_3, v_sum_diff_total[c][r >> 4]); // Update pointers for next iteration. sig += 16; mc_running_avg_y += 16; running_avg_y += 16; } if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) { for (c = 0; c < b_width_shift4; ++c) { sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]); } } // Update pointers for next iteration. sig = sig - b_width + sig_stride; mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride; running_avg_y = running_avg_y - b_width + avg_y_stride; } { const int sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); if (abs(sum_diff) > sum_diff_thresh) { const int delta = ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; // Only apply the adjustment for max delta up to 3. if (delta < 4) { const uint8x16_t k_delta = vdupq_n_u8(delta); sig -= sig_stride * b_height; mc_running_avg_y -= mc_avg_y_stride * b_height; running_avg_y -= avg_y_stride * b_height; sum_diff = 0; for (r = 0; r < b_height; ++r) { for (c = 0; c < b_width_shift4; ++c) { v_sum_diff_total[c][r >> 4] = denoiser_adjust_16x1_neon(sig, mc_running_avg_y, running_avg_y, k_delta, v_sum_diff_total[c][r >> 4]); // Update pointers for next iteration. sig += 16; mc_running_avg_y += 16; running_avg_y += 16; } if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) { for (c = 0; c < b_width_shift4; ++c) { sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]); } } sig = sig - b_width + sig_stride; mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride; running_avg_y = running_avg_y - b_width + avg_y_stride; } if (abs(sum_diff) > sum_diff_thresh) { return COPY_BLOCK; } } else { return COPY_BLOCK; } } } return FILTER_BLOCK; } int vp9_denoiser_filter_neon(const uint8_t *sig, int sig_stride, const uint8_t *mc_avg, int mc_avg_stride, uint8_t *avg, int avg_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { // Rank by frequency of the block type to have an early termination. if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 || bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 || bs == BLOCK_32X64 || bs == BLOCK_64X32) { return vp9_denoiser_NxM_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg, avg_stride, increase_denoising, bs, motion_magnitude); } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) { return vp9_denoiser_8xN_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg, avg_stride, increase_denoising, bs, motion_magnitude, 8); } return COPY_BLOCK; }