ref: 11d46f6a81d380733874742988c229c52fa139dc
parent: 9a849169fa19af7a0572ea52d473b591a47877f1
author: cbagwell <cbagwell>
date: Sun Aug 27 19:04:51 EDT 2006
Add support of external gsm library instead of just internal.
--- a/Changelog
+++ b/Changelog
@@ -24,6 +24,8 @@
o Adding cross-platform support for getopt_long
o Make help screens print much more information and add
new --help-effect option. (Originally from Dirk).
+ o Add support for using an external gsm library instead of
+ just the internal one. Vladimir Nadvornik
sox-12.18.1
------------
--- a/configure
+++ b/configure
@@ -853,7 +853,8 @@
--enable-old-rate Use old rate code
--disable-fast-ulaw Disable fast ulaw compression (-32K memory)
--disable-fast-alaw Disable fast alaw compression (-32K memory)
- --disable-gsm Disable internal GSM support
+ --disable-gsm Disable GSM support
+ --disable-external-gsm Disable external GSM support
--disable-alsa-dsp Disable detection of ALSA
--disable-oss-dsp Disable detection of OSS
--disable-sun-audio Disable detection of SUN-style audio
@@ -1355,6 +1356,14 @@
enable_gsm=yes
fi;
+# Check whether --enable-gsm or --disable-gsm was given.
+if test "${enable_gsm+set}" = set; then
+ enableval="$enable_gsm"
+ enable_external_gsm=$enableval
+else
+ enable_external_gsm=yes
+fi;
+
# Check whether --enable-alsa_dsp or --disable-alsa_dsp was given.
if test "${enable_alsa_dsp+set}" = set; then
enableval="$enable_alsa_dsp"
@@ -5481,12 +5490,248 @@
if test "$enable_gsm" = yes
then
+ if test "$enable_external_gsm" = yes
+ then
+for ac_header in gsm/gsm.h
+do
+as_ac_Header=`echo "ac_cv_header_$ac_header" | $as_tr_sh`
+if eval "test \"\${$as_ac_Header+set}\" = set"; then
+ echo "$as_me:$LINENO: checking for $ac_header" >&5
+echo $ECHO_N "checking for $ac_header... $ECHO_C" >&6
+if eval "test \"\${$as_ac_Header+set}\" = set"; then
+ echo $ECHO_N "(cached) $ECHO_C" >&6
+fi
+echo "$as_me:$LINENO: result: `eval echo '${'$as_ac_Header'}'`" >&5
+echo "${ECHO_T}`eval echo '${'$as_ac_Header'}'`" >&6
+else
+ # Is the header compilable?
+echo "$as_me:$LINENO: checking $ac_header usability" >&5
+echo $ECHO_N "checking $ac_header usability... $ECHO_C" >&6
+cat >conftest.$ac_ext <<_ACEOF
+/* confdefs.h. */
+_ACEOF
+cat confdefs.h >>conftest.$ac_ext
+cat >>conftest.$ac_ext <<_ACEOF
+/* end confdefs.h. */
+$ac_includes_default
+#include <$ac_header>
+_ACEOF
+rm -f conftest.$ac_objext
+if { (eval echo "$as_me:$LINENO: \"$ac_compile\"") >&5
+ (eval $ac_compile) 2>conftest.er1
+ ac_status=$?
+ grep -v '^ *+' conftest.er1 >conftest.err
+ rm -f conftest.er1
+ cat conftest.err >&5
+ echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); } &&
+ { ac_try='test -z "$ac_c_werror_flag"
+ || test ! -s conftest.err'
+ { (eval echo "$as_me:$LINENO: \"$ac_try\"") >&5
+ (eval $ac_try) 2>&5
+ ac_status=$?
+ echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); }; } &&
+ { ac_try='test -s conftest.$ac_objext'
+ { (eval echo "$as_me:$LINENO: \"$ac_try\"") >&5
+ (eval $ac_try) 2>&5
+ ac_status=$?
+ echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); }; }; then
+ ac_header_compiler=yes
+else
+ echo "$as_me: failed program was:" >&5
+sed 's/^/| /' conftest.$ac_ext >&5
+
+ac_header_compiler=no
+fi
+rm -f conftest.err conftest.$ac_objext conftest.$ac_ext
+echo "$as_me:$LINENO: result: $ac_header_compiler" >&5
+echo "${ECHO_T}$ac_header_compiler" >&6
+
+# Is the header present?
+echo "$as_me:$LINENO: checking $ac_header presence" >&5
+echo $ECHO_N "checking $ac_header presence... $ECHO_C" >&6
+cat >conftest.$ac_ext <<_ACEOF
+/* confdefs.h. */
+_ACEOF
+cat confdefs.h >>conftest.$ac_ext
+cat >>conftest.$ac_ext <<_ACEOF
+/* end confdefs.h. */
+#include <$ac_header>
+_ACEOF
+if { (eval echo "$as_me:$LINENO: \"$ac_cpp conftest.$ac_ext\"") >&5
+ (eval $ac_cpp conftest.$ac_ext) 2>conftest.er1
+ ac_status=$?
+ grep -v '^ *+' conftest.er1 >conftest.err
+ rm -f conftest.er1
+ cat conftest.err >&5
+ echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); } >/dev/null; then
+ if test -s conftest.err; then
+ ac_cpp_err=$ac_c_preproc_warn_flag
+ ac_cpp_err=$ac_cpp_err$ac_c_werror_flag
+ else
+ ac_cpp_err=
+ fi
+else
+ ac_cpp_err=yes
+fi
+if test -z "$ac_cpp_err"; then
+ ac_header_preproc=yes
+else
+ echo "$as_me: failed program was:" >&5
+sed 's/^/| /' conftest.$ac_ext >&5
+
+ ac_header_preproc=no
+fi
+rm -f conftest.err conftest.$ac_ext
+echo "$as_me:$LINENO: result: $ac_header_preproc" >&5
+echo "${ECHO_T}$ac_header_preproc" >&6
+
+# So? What about this header?
+case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in
+ yes:no: )
+ { echo "$as_me:$LINENO: WARNING: $ac_header: accepted by the compiler, rejected by the preprocessor!" >&5
+echo "$as_me: WARNING: $ac_header: accepted by the compiler, rejected by the preprocessor!" >&2;}
+ { echo "$as_me:$LINENO: WARNING: $ac_header: proceeding with the compiler's result" >&5
+echo "$as_me: WARNING: $ac_header: proceeding with the compiler's result" >&2;}
+ ac_header_preproc=yes
+ ;;
+ no:yes:* )
+ { echo "$as_me:$LINENO: WARNING: $ac_header: present but cannot be compiled" >&5
+echo "$as_me: WARNING: $ac_header: present but cannot be compiled" >&2;}
+ { echo "$as_me:$LINENO: WARNING: $ac_header: check for missing prerequisite headers?" >&5
+echo "$as_me: WARNING: $ac_header: check for missing prerequisite headers?" >&2;}
+ { echo "$as_me:$LINENO: WARNING: $ac_header: see the Autoconf documentation" >&5
+echo "$as_me: WARNING: $ac_header: see the Autoconf documentation" >&2;}
+ { echo "$as_me:$LINENO: WARNING: $ac_header: section \"Present But Cannot Be Compiled\"" >&5
+echo "$as_me: WARNING: $ac_header: section \"Present But Cannot Be Compiled\"" >&2;}
+ { echo "$as_me:$LINENO: WARNING: $ac_header: proceeding with the preprocessor's result" >&5
+echo "$as_me: WARNING: $ac_header: proceeding with the preprocessor's result" >&2;}
+ { echo "$as_me:$LINENO: WARNING: $ac_header: in the future, the compiler will take precedence" >&5
+echo "$as_me: WARNING: $ac_header: in the future, the compiler will take precedence" >&2;}
+ (
+ cat <<\_ASBOX
+## --------------------------------------------- ##
+## Report this to cbagwell@users.sourceforge.net ##
+## --------------------------------------------- ##
+_ASBOX
+ ) |
+ sed "s/^/$as_me: WARNING: /" >&2
+ ;;
+esac
+echo "$as_me:$LINENO: checking for $ac_header" >&5
+echo $ECHO_N "checking for $ac_header... $ECHO_C" >&6
+if eval "test \"\${$as_ac_Header+set}\" = set"; then
+ echo $ECHO_N "(cached) $ECHO_C" >&6
+else
+ eval "$as_ac_Header=\$ac_header_preproc"
+fi
+echo "$as_me:$LINENO: result: `eval echo '${'$as_ac_Header'}'`" >&5
+echo "${ECHO_T}`eval echo '${'$as_ac_Header'}'`" >&6
+
+fi
+if test `eval echo '${'$as_ac_Header'}'` = yes; then
+ cat >>confdefs.h <<_ACEOF
+#define `echo "HAVE_$ac_header" | $as_tr_cpp` 1
+_ACEOF
+ found_libgsm=yes
+fi
+
+done
+
+
+ if test "$found_libgsm" = yes
+ then
+ echo "$as_me:$LINENO: checking for gsm_create in -lgsm" >&5
+echo $ECHO_N "checking for gsm_create in -lgsm... $ECHO_C" >&6
+if test "${ac_cv_lib_gsm_gsm_create+set}" = set; then
+ echo $ECHO_N "(cached) $ECHO_C" >&6
+else
+ ac_check_lib_save_LIBS=$LIBS
+LIBS="-lgsm $LIBS"
+cat >conftest.$ac_ext <<_ACEOF
+/* confdefs.h. */
+_ACEOF
+cat confdefs.h >>conftest.$ac_ext
+cat >>conftest.$ac_ext <<_ACEOF
+/* end confdefs.h. */
+
+/* Override any gcc2 internal prototype to avoid an error. */
+#ifdef __cplusplus
+extern "C"
+#endif
+/* We use char because int might match the return type of a gcc2
+ builtin and then its argument prototype would still apply. */
+char gsm_create ();
+int
+main ()
+{
+gsm_create ();
+ ;
+ return 0;
+}
+_ACEOF
+rm -f conftest.$ac_objext conftest$ac_exeext
+if { (eval echo "$as_me:$LINENO: \"$ac_link\"") >&5
+ (eval $ac_link) 2>conftest.er1
+ ac_status=$?
+ grep -v '^ *+' conftest.er1 >conftest.err
+ rm -f conftest.er1
+ cat conftest.err >&5
+ echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); } &&
+ { ac_try='test -z "$ac_c_werror_flag"
+ || test ! -s conftest.err'
+ { (eval echo "$as_me:$LINENO: \"$ac_try\"") >&5
+ (eval $ac_try) 2>&5
+ ac_status=$?
+ echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); }; } &&
+ { ac_try='test -s conftest$ac_exeext'
+ { (eval echo "$as_me:$LINENO: \"$ac_try\"") >&5
+ (eval $ac_try) 2>&5
+ ac_status=$?
+ echo "$as_me:$LINENO: \$? = $ac_status" >&5
+ (exit $ac_status); }; }; then
+ ac_cv_lib_gsm_gsm_create=yes
+else
+ echo "$as_me: failed program was:" >&5
+sed 's/^/| /' conftest.$ac_ext >&5
+
+ac_cv_lib_gsm_gsm_create=no
+fi
+rm -f conftest.err conftest.$ac_objext \
+ conftest$ac_exeext conftest.$ac_ext
+LIBS=$ac_check_lib_save_LIBS
+fi
+echo "$as_me:$LINENO: result: $ac_cv_lib_gsm_gsm_create" >&5
+echo "${ECHO_T}$ac_cv_lib_gsm_gsm_create" >&6
+if test $ac_cv_lib_gsm_gsm_create = yes; then
+ LIBS="$LIBS -lgsm"
+ GSM_SUPPORT=ext
+
cat >>confdefs.h <<\_ACEOF
+#define EXTERNAL_GSM 1
+_ACEOF
+
+
+fi
+
+ fi
+ fi
+
+ if test "$GSM_SUPPORT" = 0
+ then
+ GSM_SUPPORT=1
+ fi
+
+cat >>confdefs.h <<\_ACEOF
#define ENABLE_GSM 1
_ACEOF
- GSM_SUPPORT=1
fi
@@ -5499,7 +5744,7 @@
ac_config_headers="$ac_config_headers src/stconfig.h"
- ac_config_files="$ac_config_files Makefile src/libst-config src/Makefile src/gsm/Makefile"
+ ac_config_files="$ac_config_files Makefile src/libst-config src/Makefile src/libgsm/Makefile"
ac_config_files="$ac_config_files src/play"
@@ -6032,7 +6277,7 @@
"Makefile" ) CONFIG_FILES="$CONFIG_FILES Makefile" ;;
"src/libst-config" ) CONFIG_FILES="$CONFIG_FILES src/libst-config" ;;
"src/Makefile" ) CONFIG_FILES="$CONFIG_FILES src/Makefile" ;;
- "src/gsm/Makefile" ) CONFIG_FILES="$CONFIG_FILES src/gsm/Makefile" ;;
+ "src/libgsm/Makefile" ) CONFIG_FILES="$CONFIG_FILES src/libgsm/Makefile" ;;
"src/play" ) CONFIG_FILES="$CONFIG_FILES src/play" ;;
"src/stconfig.h" ) CONFIG_HEADERS="$CONFIG_HEADERS src/stconfig.h" ;;
*) { { echo "$as_me:$LINENO: error: invalid argument: $ac_config_target" >&5
--- a/configure.in
+++ b/configure.in
@@ -24,9 +24,13 @@
enable_fast_alaw=$enableval, enable_fast_alaw=yes)
AC_ARG_ENABLE(gsm,
- [ --disable-gsm Disable internal GSM support],
+ [ --disable-gsm Disable GSM support],
enable_gsm=$enableval, enable_gsm=yes)
+AC_ARG_ENABLE(gsm,
+ [ --disable-external-gsm Disable external GSM support],
+ enable_external_gsm=$enableval, enable_external_gsm=yes)
+
AC_ARG_ENABLE(alsa_dsp,
[ --disable-alsa-dsp Disable detection of ALSA],
[enable_alsa_dsp=$enableval],
@@ -226,9 +230,28 @@
if test "$enable_gsm" = yes
then
+ if test "$enable_external_gsm" = yes
+ then
+ AC_CHECK_HEADERS(gsm/gsm.h, found_libgsm=yes)
+
+ if test "$found_libgsm" = yes
+ then
+ AC_CHECK_LIB(gsm, gsm_create,
+ LIBS="$LIBS -lgsm"
+ GSM_SUPPORT=ext
+ AC_DEFINE([EXTERNAL_GSM], 1,
+ [Define if you have libgsm library installed])
+ )
+ fi
+ fi
+
+ if test "$GSM_SUPPORT" = 0
+ then
+ dnl use internal libgsm
+ GSM_SUPPORT=1
+ fi
AC_DEFINE([ENABLE_GSM], 1,
[Define if you want to use internal GSM library])
- GSM_SUPPORT=1
fi
AC_SUBST(NEED_OSS)
@@ -241,7 +264,7 @@
AC_CONFIG_HEADER(src/stconfig.h)
-AC_CONFIG_FILES([Makefile src/libst-config src/Makefile src/gsm/Makefile])
+AC_CONFIG_FILES([Makefile src/libst-config src/Makefile src/libgsm/Makefile])
AC_CONFIG_FILES([src/play], [chmod +x src/play])
AC_OUTPUT()
--- a/src/Makefile.in
+++ b/src/Makefile.in
@@ -57,10 +57,11 @@
GSMOBJ_0 =
-GSMOBJ_1 = gsm/add.o gsm/code.o gsm/decode.o gsm/long_term.o gsm/lpc.o \
- gsm/preprocess.o gsm/rpe.o gsm/gsm_destroy.o \
- gsm/gsm_decode.o gsm/gsm_encode.o gsm/gsm_create.o \
- gsm/gsm_option.o gsm/short_term.o gsm/table.o
+GSMOBJ_1 = libgsm/add.o libgsm/code.o libgsm/decode.o libgsm/long_term.o \
+ libgsm/lpc.o libgsm/preprocess.o libgsm/rpe.o \
+ libgsm/gsm_destroy.o libgsm/gsm_decode.o libgsm/gsm_encode.o \
+ libgsm/gsm_create.o libgsm/gsm_option.o libgsm/short_term.o \
+ libgsm/table.o
OSSOBJ_0 =
OSSOBJ_1 = oss.o
@@ -79,7 +80,8 @@
# target is just an easy way to make sure that makefile builds
# the objects instead of this makefile.
GSM_0 =
-GSM_1 = gsm/libgsm.a
+GSM_1 = libgsm/libgsm.a
+GSM_ext =
PLAY_0 =
PLAY_1 = play
@@ -98,8 +100,8 @@
$(AR) libst.a $(LIBOBJS)
$(RANLIB) libst.a
-gsm/libgsm.a:
- cd gsm && $(MAKE)
+libgsm/libgsm.a:
+ cd libgsm && $(MAKE)
PLAY_INSTALL_0 =
PLAY_INSTALL_1 = install-play
@@ -142,11 +144,11 @@
clean:
$(RM) *.o libst.a
- cd gsm && $(RM) *.o libgsm.a
+ cd libgsm && $(RM) *.o libgsm.a
distclean:
$(RM) *~ *.o *.raw *.sf core sox soxmix libst.a play libst-config
- cd gsm && $(RM) *~ *.o core libgsm.a Makefile
+ cd libgsm && $(RM) *~ *.o core libgsm.a Makefile
$(RM) stconfig.h ststdint.h Makefile
# Not all platforms use CPPFLAGS concept by default so define custom
--- a/src/gsm.c
+++ b/src/gsm.c
@@ -30,7 +30,12 @@
#if defined(ENABLE_GSM)
-#include "gsm/gsm.h"
+#if defined(EXTERNAL_GSM)
+#include <gsm/gsm.h>
+#else
+#include "libgsm/gsm.h"
+#endif
+
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
--- a/src/gsm/Makefile.gcc
+++ /dev/null
@@ -1,95 +1,0 @@
-#
-# Makefile.in
-#
-# Processed by configure into a Makefile. We assume the environment in
-# which we are running is a POSIX'y environment. Thus, all of the standard
-# POSIX tools are available.
-#
-
-
-srcdir = .
-top_srcdir = ..
-prefix = /usr/local
-exec_prefix = ${prefix}
-libdir = ${exec_prefix}/lib
-mandir = ${prefix}/man
-
-# Shell commands.
-
-CC = gcc
-RANLIB = ranlib
-AR = ar r
-RM = rm -f
-
-SASR = -DSASR
-######### Define SASR if >> is a signed arithmetic shift (-1 >> 1 == -1)
-
-MULHACK = -DUSE_FLOAT_MUL
-######### Define this if your host multiplies floats faster than integers,
-######### e.g. on a SPARCstation.
-
-FAST = -DFAST
-######### Define together with USE_FLOAT_MUL to enable the GSM library's
-######### approximation option for incorrect, but good-enough results.
-
-# LTP_CUT = -DLTP_CUT
-LTP_CUT =
-######### Define to enable the GSM library's long-term correlation
-######### approximation option---faster, but worse; works for
-######### both integer and floating point multiplications.
-######### This flag is still in the experimental stage.
-
-WAV49 = -DWAV49
-#WAV49 =
-######### Define to enable the GSM library's option to pack GSM frames
-######### in the style used by the WAV #49 format. If you want to write
-######### a tool that produces .WAV files which contain GSM-encoded data,
-######### define this, and read about the GSM_OPT_WAV49 option in the
-######### manual page on gsm_option(3).
-
-# Build macros.
-
-CFLAGS = -g -O2 -Wall -DOSS_PLAYER -DFAST_ULAW_CONVERSION -DFAST_ALAW_CONVERSION -DENABLE_GSM -DHAVE_CONFIG_H $(SASR) $(MULHAC) $(FAST) $(LTP_CUT) $(WAV49) -I$(top_srcdir)/gsm
-LDFLAGS =
-LIBS = -lm -logg -lvorbis -lvorbisfile -lvorbisenc -lgsm
-
-# Objects.
-
-GSM_OBJECTS = add.o \
- code.o \
- decode.o \
- long_term.o \
- lpc.o \
- preprocess.o \
- rpe.o \
- gsm_destroy.o \
- gsm_decode.o \
- gsm_encode.o \
- gsm_create.o \
- gsm_option.o \
- short_term.o \
- table.o
-
-
-LIBOBJS = $(GSM_OBJECTS)
-
-all: libgsm.a
-
-libgsm.a: $(LIBOBJS)
- $(AR) libgsm.a $(LIBOBJS)
- $(RANLIB) libgsm.a
-
-install-lib: libgsm.a
- $(top_srcdir)/mkinstalldirs $(libdir)
- $(top_srcdir)/mkinstalldirs $(mandir)/man3
- $(INSTALL) -c -m 644 libgsm.a $(libdir)
- $(RANLIB) $(libdir)/libgsm.a
- $(INSTALL) -c -m 644 gsm.3 $(mandir)/man3
- $(INSTALL) -c -m 644 gsm_option.3 $(mandir)/man3
-
-clean:
- $(RM) *.o
-
-distclean:
- $(RM) *~ *.o core
- $(RM) Makefile
--- a/src/gsm/Makefile.in
+++ /dev/null
@@ -1,97 +1,0 @@
-#
-# @configure_input@
-#
-
-VPATH = @srcdir@
-srcdir = @srcdir@
-top_srcdir = @top_srcdir@
-prefix = @prefix@
-exec_prefix = @exec_prefix@
-libdir = @libdir@
-mandir = @mandir@
-
-# Shell commands.
-
-CC = @CC@
-RANLIB = @RANLIB@
-INSTALL = @INSTALL@
-AR = ar r
-RM = rm -f
-
-SASR = -DSASR
-######### Define SASR if >> is a signed arithmetic shift (-1 >> 1 == -1)
-
-MULHACK = -DUSE_FLOAT_MUL
-######### Define this if your host multiplies floats faster than integers,
-######### e.g. on a SPARCstation.
-
-FAST = -DFAST
-######### Define together with USE_FLOAT_MUL to enable the GSM library's
-######### approximation option for incorrect, but good-enough results.
-
-# LTP_CUT = -DLTP_CUT
-LTP_CUT =
-######### Define to enable the GSM library's long-term correlation
-######### approximation option---faster, but worse; works for
-######### both integer and floating point multiplications.
-######### This flag is still in the experimental stage.
-
-WAV49 = -DWAV49
-#WAV49 =
-######### Define to enable the GSM library's option to pack GSM frames
-######### in the style used by the WAV #49 format. If you want to write
-######### a tool that produces .WAV files which contain GSM-encoded data,
-######### define this, and read about the GSM_OPT_WAV49 option in the
-######### manual page on gsm_option(3).
-
-# Build macros.
-
-CFLAGS = @CFLAGS@ @DEFS@ $(SASR) $(MULHAC) $(FAST) $(LTP_CUT) $(WAV49) -I$(top_srcdir)/gsm
-LDFLAGS = @LDFLAGS@
-LIBS = @LIBS@
-
-# Objects.
-
-GSM_OBJECTS = add.o \
- code.o \
- decode.o \
- long_term.o \
- lpc.o \
- preprocess.o \
- rpe.o \
- gsm_destroy.o \
- gsm_decode.o \
- gsm_encode.o \
- gsm_create.o \
- gsm_option.o \
- short_term.o \
- table.o
-
-
-LIBOBJS = $(GSM_OBJECTS)
-
-all: libgsm.a
-
-libgsm.a: $(LIBOBJS)
- $(AR) libgsm.a $(LIBOBJS)
- $(RANLIB) libgsm.a
-
-install-lib: libgsm.a
- $(top_srcdir)/mkinstalldirs $(libdir)
- $(top_srcdir)/mkinstalldirs $(mandir)/man3
- $(INSTALL) -c -m 644 libgsm.a $(libdir)
- $(RANLIB) $(libdir)/libgsm.a
- $(INSTALL) -c -m 644 gsm.3 $(mandir)/man3
- $(INSTALL) -c -m 644 gsm_option.3 $(mandir)/man3
-
-uninstall-lib:
- $(RM) $(libdir)/libgsm.a
- $(RM) $(mandir)/man3/gsm.3
- $(RM) $(mandir)/man3/gsm_option.3
-
-clean:
- $(RM) *.o libgsm.a
-
-distclean:
- $(RM) *~ *.o core libgsm.a
- $(RM) Makefile
--- a/src/gsm/add.c
+++ /dev/null
@@ -1,234 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/add.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-/*
- * See private.h for the more commonly used macro versions.
- */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-#include "gsm.h"
-
-#define saturate(x) \
- ((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
-
-word gsm_add (word a, word b)
-{
- longword sum = (longword)a + (longword)b;
- return saturate(sum);
-}
-
-word gsm_sub (word a, word b)
-{
- longword diff = (longword)a - (longword)b;
- return saturate(diff);
-}
-
-word gsm_mult (word a, word b)
-{
- if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
- else return SASR( (longword)a * (longword)b, 15 );
-}
-
-word gsm_mult_r (word a, word b)
-{
- if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
- else {
- longword prod = (longword)a * (longword)b + 16384;
- prod >>= 15;
- return prod & 0xFFFF;
- }
-}
-
-word gsm_abs (word a)
-{
- return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
-}
-
-longword gsm_L_mult (word a, word b)
-{
- assert( a != MIN_WORD || b != MIN_WORD );
- return ((longword)a * (longword)b) << 1;
-}
-
-longword gsm_L_add (longword a, longword b)
-{
- if (a < 0) {
- if (b >= 0) return a + b;
- else {
- ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
- return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
- }
- }
- else if (b <= 0) return a + b;
- else {
- ulongword A = (ulongword)a + (ulongword)b;
- return A > MAX_LONGWORD ? MAX_LONGWORD : A;
- }
-}
-
-longword gsm_L_sub (longword a, longword b)
-{
- if (a >= 0) {
- if (b >= 0) return a - b;
- else {
- /* a>=0, b<0 */
-
- ulongword A = (ulongword)a + -(b + 1);
- return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
- }
- }
- else if (b <= 0) return a - b;
- else {
- /* a<0, b>0 */
-
- ulongword A = (ulongword)-(a + 1) + b;
- return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
- }
-}
-
-static unsigned char const bitoff[ 256 ] = {
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-};
-
-word gsm_norm (longword a )
-/*
- * the number of left shifts needed to normalize the 32 bit
- * variable L_var1 for positive values on the interval
- *
- * with minimum of
- * minimum of 1073741824 (01000000000000000000000000000000) and
- * maximum of 2147483647 (01111111111111111111111111111111)
- *
- *
- * and for negative values on the interval with
- * minimum of -2147483648 (-10000000000000000000000000000000) and
- * maximum of -1073741824 ( -1000000000000000000000000000000).
- *
- * in order to normalize the result, the following
- * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
- *
- * (That's 'ffs', only from the left, not the right..)
- */
-{
- assert(a != 0);
-
- if (a < 0) {
- if (a <= -1073741824) return 0;
- a = ~a;
- }
-
- return a & 0xffff0000
- ? ( a & 0xff000000
- ? -1 + bitoff[ 0xFF & (a >> 24) ]
- : 7 + bitoff[ 0xFF & (a >> 16) ] )
- : ( a & 0xff00
- ? 15 + bitoff[ 0xFF & (a >> 8) ]
- : 23 + bitoff[ 0xFF & a ] );
-}
-
-longword gsm_L_asl (longword a, int n)
-{
- if (n >= 32) return 0;
- if (n <= -32) return -(a < 0);
- if (n < 0) return gsm_L_asr(a, -n);
- return a << n;
-}
-
-word gsm_asl (word a, int n)
-{
- if (n >= 16) return 0;
- if (n <= -16) return -(a < 0);
- if (n < 0) return gsm_asr(a, -n);
- return a << n;
-}
-
-longword gsm_L_asr (longword a, int n)
-{
- if (n >= 32) return -(a < 0);
- if (n <= -32) return 0;
- if (n < 0) return a << -n;
-
-# ifdef SASR
- return a >> n;
-# else
- if (a >= 0) return a >> n;
- else return -(longword)( -(ulongword)a >> n );
-# endif
-}
-
-word gsm_asr (word a, int n)
-{
- if (n >= 16) return -(a < 0);
- if (n <= -16) return 0;
- if (n < 0) return a << -n;
-
-# ifdef SASR
- return a >> n;
-# else
- if (a >= 0) return a >> n;
- else return -(word)( -(uword)a >> n );
-# endif
-}
-
-/*
- * (From p. 46, end of section 4.2.5)
- *
- * NOTE: The following lines gives [sic] one correct implementation
- * of the div(num, denum) arithmetic operation. Compute div
- * which is the integer division of num by denum: with denum
- * >= num > 0
- */
-
-word gsm_div (word num, word denum)
-{
- longword L_num = num;
- longword L_denum = denum;
- word div = 0;
- int k = 15;
-
- /* The parameter num sometimes becomes zero.
- * Although this is explicitly guarded against in 4.2.5,
- * we assume that the result should then be zero as well.
- */
-
- /* assert(num != 0); */
-
- assert(num >= 0 && denum >= num);
- if (num == 0)
- return 0;
-
- while (k--) {
- div <<= 1;
- L_num <<= 1;
-
- if (L_num >= L_denum) {
- L_num -= L_denum;
- div++;
- }
- }
-
- return div;
-}
--- a/src/gsm/code.c
+++ /dev/null
@@ -1,91 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/code.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include <stdlib.h>
-#include <string.h>
-
-#include "private.h"
-#include "gsm.h"
-
-/*
- * 4.2 FIXED POINT IMPLEMENTATION OF THE RPE-LTP CODER
- */
-
-void Gsm_Coder (
-
- struct gsm_state * S,
-
- word * s, /* [0..159] samples IN */
-
-/*
- * The RPE-LTD coder works on a frame by frame basis. The length of
- * the frame is equal to 160 samples. Some computations are done
- * once per frame to produce at the output of the coder the
- * LARc[1..8] parameters which are the coded LAR coefficients and
- * also to realize the inverse filtering operation for the entire
- * frame (160 samples of signal d[0..159]). These parts produce at
- * the output of the coder:
- */
-
- word * LARc, /* [0..7] LAR coefficients OUT */
-
-/*
- * Procedure 4.2.11 to 4.2.18 are to be executed four times per
- * frame. That means once for each sub-segment RPE-LTP analysis of
- * 40 samples. These parts produce at the output of the coder:
- */
-
- word * Nc, /* [0..3] LTP lag OUT */
- word * bc, /* [0..3] coded LTP gain OUT */
- word * Mc, /* [0..3] RPE grid selection OUT */
- word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
- word * xMc /* [13*4] normalized RPE samples OUT */
-)
-{
- int k;
- word * dp = S->dp0 + 120; /* [ -120...-1 ] */
- word * dpp = dp; /* [ 0...39 ] */
-
- static word e[50];
-
- word so[160];
-
- Gsm_Preprocess (S, s, so);
- Gsm_LPC_Analysis (S, so, LARc);
- Gsm_Short_Term_Analysis_Filter (S, LARc, so);
-
- for (k = 0; k <= 3; k++, xMc += 13) {
-
- Gsm_Long_Term_Predictor ( S,
- so+k*40, /* d [0..39] IN */
- dp, /* dp [-120..-1] IN */
- e + 5, /* e [0..39] OUT */
- dpp, /* dpp [0..39] OUT */
- Nc++,
- bc++);
-
- Gsm_RPE_Encoding ( S,
- e + 5, /* e ][0..39][ IN/OUT */
- xmaxc++, Mc++, xMc );
- /*
- * Gsm_Update_of_reconstructed_short_time_residual_signal
- * ( dpp, e + 5, dp );
- */
-
- { register int i;
- register longword ltmp;
- for (i = 0; i <= 39; i++)
- dp[ i ] = GSM_ADD( e[5 + i], dpp[i] );
- }
- dp += 40;
- dpp += 40;
-
- }
- (void)memcpy( (char *)S->dp0, (char *)(S->dp0 + 160),
- 120 * sizeof(*S->dp0) );
-}
--- a/src/gsm/decode.c
+++ /dev/null
@@ -1,62 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/decode.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include <stdio.h>
-
-#include "private.h"
-#include "gsm.h"
-
-/*
- * 4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER
- */
-
-static void Postprocessing (
- struct gsm_state * S,
- register word * s)
-{
- register int k;
- register word msr = S->msr;
- register longword ltmp; /* for GSM_ADD */
- register word tmp;
-
- for (k = 160; k--; s++) {
- tmp = GSM_MULT_R( msr, 28180 );
- msr = GSM_ADD(*s, tmp); /* Deemphasis */
- *s = GSM_ADD(msr, msr) & 0xFFF8; /* Truncation & Upscaling */
- }
- S->msr = msr;
-}
-
-void Gsm_Decoder (
- struct gsm_state * S,
-
- word * LARcr, /* [0..7] IN */
-
- word * Ncr, /* [0..3] IN */
- word * bcr, /* [0..3] IN */
- word * Mcr, /* [0..3] IN */
- word * xmaxcr, /* [0..3] IN */
- word * xMcr, /* [0..13*4] IN */
-
- word * s) /* [0..159] OUT */
-{
- int j, k;
- word erp[40], wt[160];
- word * drp = S->dp0 + 120;
-
- for (j=0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13) {
-
- Gsm_RPE_Decoding( S, *xmaxcr, *Mcr, xMcr, erp );
- Gsm_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp );
-
- for (k = 0; k <= 39; k++) wt[ j * 40 + k ] = drp[ k ];
- }
-
- Gsm_Short_Term_Synthesis_Filter( S, LARcr, wt, s );
- Postprocessing(S, s);
-}
--- a/src/gsm/gsm.3
+++ /dev/null
@@ -1,105 +1,0 @@
-.\"
-.\" Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
-.\" Universitaet Berlin. See the accompanying file "COPYRIGHT" for
-.\" details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
-.\"
-.PU
-.TH GSM 3
-.SH NAME
-gsm_create, gsm_destroy, gsm_encode, gsm_decode \(em GSM\ 06.10 lossy sound compression
-.SH SYNOPSIS
-.PP
-#include "gsm.h"
-.PP
-gsm gsm_create();
-.PP
-void gsm_encode(handle, src, dst)
-.br
-gsm handle;
-.br
-gsm_signal src[160];
-.br
-gsm_frame dst;
-.PP
-int gsm_decode(handle, src, dst)
-.br
-gsm handle;
-.br
-gsm_frame src;
-.br
-gsm_signal dst[160];
-.PP
-void gsm_destroy(handle)
-.br
-gsm handle;
-.br
-.SH "DESCRIPTION"
-Gsm is an implementation of the final draft GSM 06.10
-standard for full-rate speech transcoding.
-.PP
-gsm_create() initializes a gsm pass and returns a 'gsm' object
-which can be used as a handle in subsequent calls to gsm_decode(),
-gsm_encode() or gsm_destroy().
-.PP
-gsm_encode() encodes an array of 160 13-bit samples (given as
-gsm_signal's, signed integral values of at least 16 bits) into
-a gsm_frame of 33 bytes.
-(gsm_frame is a type defined as an array of 33 gsm_bytes in gsm.h.)
-.PP
-gsm_decode() decodes a gsm_frame into an array of 160 13-bit samples
-(given as gsm_signals), which sound rather like what you handed to
-gsm_encode() on the other side of the wire.
-.PP
-gsm_destroy() finishes a gsm pass and frees all storage associated
-with it.
-.SS "Sample format"
-The following scaling is assumed for input to the algorithm:
-.br
-.nf
- 0 1 11 12
- S..v..v..v..v..v..v..v..v..v..v..v..v..*..*..*
-.nf
-.br
-Only the top 13 bits are used as a signed input value.
-The output of gsm_decode() has the three lower bits set to zero.
-.\" .SH OPTIONS
-.SH "RETURN VALUE"
-gsm_create() returns an opaque handle object of type gsm, or 0 on error.
-gsm_decode() returns -1 if the passed frame is invalid, else 0.
-.SH EXAMPLE
-.nf
-#include "gsm.h"
-
-gsm handle;
-gsm_frame buf;
-gsm_signal sample[160];
-int cc, soundfd;
-
-play() { /* read compressed data from standard input, write to soundfd */
-
- if (!(handle = gsm_create())) error...
- while (cc = read(0, (char *)buf, sizeof buf)) {
- if (cc != sizeof buf) error...
- if (gsm_decode(handle, buf, sample) < 0) error...
- if (write(soundfd, sample, sizeof sample) != sizeof sample)
- error...
- }
- gsm_destroy(handle);
-}
-
-record() { /* read from soundfd, write compressed to standard output */
-
- if (!(handle = gsm_create())) error...
- while (cc = read(soundfd, sample, sizeof sample)) {
- if (cc != sizeof sample) error...
- gsm_encode(handle, sample, buf);
- if (write(1, (char *)buf, sizeof buf) != sizeof sample)
- error...
- }
- gsm_destroy(handle);
-}
-.nf
-.SH BUGS
-Please direct bug reports to jutta@cs.tu-berlin.de and cabo@cs.tu-berlin.de.
-.SH "SEE ALSO"
-toast(1), gsm_print(3), gsm_explode(3), gsm_option(3)
--- a/src/gsm/gsm.h
+++ /dev/null
@@ -1,67 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/*$Header: /cvsroot/sox/sox/src/gsm/Attic/gsm.h,v 1.2 2001/11/29 02:24:19 cbagwell Exp $*/
-
-#ifndef GSM_H
-#define GSM_H
-
-#ifdef __cplusplus
-# define NeedFunctionPrototypes 1
-#endif
-
-#if __STDC__
-# define NeedFunctionPrototypes 1
-#endif
-
-#ifdef _NO_PROTO
-# undef NeedFunctionPrototypes
-#endif
-
-#ifdef NeedFunctionPrototypes
-# include <stdio.h> /* for FILE * */
-#endif
-
-#undef GSM_P
-#if NeedFunctionPrototypes
-# define GSM_P( protos ) protos
-#else
-# define GSM_P( protos ) ( /* protos */ )
-#endif
-
-/*
- * Interface
- */
-
-typedef struct gsm_state * gsm;
-typedef short gsm_signal; /* signed 16 bit */
-typedef unsigned char gsm_byte;
-typedef gsm_byte gsm_frame[33]; /* 33 * 8 bits */
-
-#define GSM_MAGIC 0xD /* 13 kbit/s RPE-LTP */
-
-#define GSM_PATCHLEVEL 10
-#define GSM_MINOR 0
-#define GSM_MAJOR 1
-
-#define GSM_OPT_VERBOSE 1
-#define GSM_OPT_FAST 2
-#define GSM_OPT_LTP_CUT 3
-#define GSM_OPT_WAV49 4
-#define GSM_OPT_FRAME_INDEX 5
-#define GSM_OPT_FRAME_CHAIN 6
-
-extern gsm gsm_create GSM_P((void));
-extern void gsm_destroy GSM_P((gsm));
-
-extern int gsm_option GSM_P((gsm, int, int *));
-
-extern void gsm_encode GSM_P((gsm, gsm_signal *, gsm_byte *));
-extern int gsm_decode GSM_P((gsm, gsm_byte *, gsm_signal *));
-
-#undef GSM_P
-
-#endif /* GSM_H */
--- a/src/gsm/gsm_create.c
+++ /dev/null
@@ -1,27 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-static char const ident[] = "$Header: /cvsroot/sox/sox/src/gsm/Attic/gsm_create.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $";
-
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-
-#include "gsm.h"
-#include "private.h"
-
-gsm gsm_create ()
-{
- gsm r;
-
- r = (gsm)malloc(sizeof(struct gsm_state));
- if (!r) return r;
-
- memset((char *)r, 0, sizeof(*r));
- r->nrp = 40;
-
- return r;
-}
--- a/src/gsm/gsm_decode.c
+++ /dev/null
@@ -1,360 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/gsm_decode.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include "private.h"
-
-#include "gsm.h"
-
-int gsm_decode (gsm s, gsm_byte * c, gsm_signal * target)
-{
- word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
-
-#ifdef WAV49
- if (s->wav_fmt) {
-
- uword sr = 0;
-
- s->frame_index = !s->frame_index;
- if (s->frame_index) {
-
- sr = *c++;
- LARc[0] = sr & 0x3f; sr >>= 6;
- sr |= (uword)*c++ << 2;
- LARc[1] = sr & 0x3f; sr >>= 6;
- sr |= (uword)*c++ << 4;
- LARc[2] = sr & 0x1f; sr >>= 5;
- LARc[3] = sr & 0x1f; sr >>= 5;
- sr |= (uword)*c++ << 2;
- LARc[4] = sr & 0xf; sr >>= 4;
- LARc[5] = sr & 0xf; sr >>= 4;
- sr |= (uword)*c++ << 2; /* 5 */
- LARc[6] = sr & 0x7; sr >>= 3;
- LARc[7] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 4;
- Nc[0] = sr & 0x7f; sr >>= 7;
- bc[0] = sr & 0x3; sr >>= 2;
- Mc[0] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 1;
- xmaxc[0] = sr & 0x3f; sr >>= 6;
- xmc[0] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[1] = sr & 0x7; sr >>= 3;
- xmc[2] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[3] = sr & 0x7; sr >>= 3;
- xmc[4] = sr & 0x7; sr >>= 3;
- xmc[5] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1; /* 10 */
- xmc[6] = sr & 0x7; sr >>= 3;
- xmc[7] = sr & 0x7; sr >>= 3;
- xmc[8] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[9] = sr & 0x7; sr >>= 3;
- xmc[10] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[11] = sr & 0x7; sr >>= 3;
- xmc[12] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 4;
- Nc[1] = sr & 0x7f; sr >>= 7;
- bc[1] = sr & 0x3; sr >>= 2;
- Mc[1] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 1;
- xmaxc[1] = sr & 0x3f; sr >>= 6;
- xmc[13] = sr & 0x7; sr >>= 3;
- sr = *c++; /* 15 */
- xmc[14] = sr & 0x7; sr >>= 3;
- xmc[15] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[16] = sr & 0x7; sr >>= 3;
- xmc[17] = sr & 0x7; sr >>= 3;
- xmc[18] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[19] = sr & 0x7; sr >>= 3;
- xmc[20] = sr & 0x7; sr >>= 3;
- xmc[21] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[22] = sr & 0x7; sr >>= 3;
- xmc[23] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[24] = sr & 0x7; sr >>= 3;
- xmc[25] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 4; /* 20 */
- Nc[2] = sr & 0x7f; sr >>= 7;
- bc[2] = sr & 0x3; sr >>= 2;
- Mc[2] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 1;
- xmaxc[2] = sr & 0x3f; sr >>= 6;
- xmc[26] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[27] = sr & 0x7; sr >>= 3;
- xmc[28] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[29] = sr & 0x7; sr >>= 3;
- xmc[30] = sr & 0x7; sr >>= 3;
- xmc[31] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[32] = sr & 0x7; sr >>= 3;
- xmc[33] = sr & 0x7; sr >>= 3;
- xmc[34] = sr & 0x7; sr >>= 3;
- sr = *c++; /* 25 */
- xmc[35] = sr & 0x7; sr >>= 3;
- xmc[36] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[37] = sr & 0x7; sr >>= 3;
- xmc[38] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 4;
- Nc[3] = sr & 0x7f; sr >>= 7;
- bc[3] = sr & 0x3; sr >>= 2;
- Mc[3] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 1;
- xmaxc[3] = sr & 0x3f; sr >>= 6;
- xmc[39] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[40] = sr & 0x7; sr >>= 3;
- xmc[41] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2; /* 30 */
- xmc[42] = sr & 0x7; sr >>= 3;
- xmc[43] = sr & 0x7; sr >>= 3;
- xmc[44] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[45] = sr & 0x7; sr >>= 3;
- xmc[46] = sr & 0x7; sr >>= 3;
- xmc[47] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[48] = sr & 0x7; sr >>= 3;
- xmc[49] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[50] = sr & 0x7; sr >>= 3;
- xmc[51] = sr & 0x7; sr >>= 3;
-
- s->frame_chain = sr & 0xf;
- }
- else {
- sr = s->frame_chain;
- sr |= (uword)*c++ << 4; /* 1 */
- LARc[0] = sr & 0x3f; sr >>= 6;
- LARc[1] = sr & 0x3f; sr >>= 6;
- sr = *c++;
- LARc[2] = sr & 0x1f; sr >>= 5;
- sr |= (uword)*c++ << 3;
- LARc[3] = sr & 0x1f; sr >>= 5;
- LARc[4] = sr & 0xf; sr >>= 4;
- sr |= (uword)*c++ << 2;
- LARc[5] = sr & 0xf; sr >>= 4;
- LARc[6] = sr & 0x7; sr >>= 3;
- LARc[7] = sr & 0x7; sr >>= 3;
- sr = *c++; /* 5 */
- Nc[0] = sr & 0x7f; sr >>= 7;
- sr |= (uword)*c++ << 1;
- bc[0] = sr & 0x3; sr >>= 2;
- Mc[0] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 5;
- xmaxc[0] = sr & 0x3f; sr >>= 6;
- xmc[0] = sr & 0x7; sr >>= 3;
- xmc[1] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[2] = sr & 0x7; sr >>= 3;
- xmc[3] = sr & 0x7; sr >>= 3;
- xmc[4] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[5] = sr & 0x7; sr >>= 3;
- xmc[6] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2; /* 10 */
- xmc[7] = sr & 0x7; sr >>= 3;
- xmc[8] = sr & 0x7; sr >>= 3;
- xmc[9] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[10] = sr & 0x7; sr >>= 3;
- xmc[11] = sr & 0x7; sr >>= 3;
- xmc[12] = sr & 0x7; sr >>= 3;
- sr = *c++;
- Nc[1] = sr & 0x7f; sr >>= 7;
- sr |= (uword)*c++ << 1;
- bc[1] = sr & 0x3; sr >>= 2;
- Mc[1] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 5;
- xmaxc[1] = sr & 0x3f; sr >>= 6;
- xmc[13] = sr & 0x7; sr >>= 3;
- xmc[14] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1; /* 15 */
- xmc[15] = sr & 0x7; sr >>= 3;
- xmc[16] = sr & 0x7; sr >>= 3;
- xmc[17] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[18] = sr & 0x7; sr >>= 3;
- xmc[19] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[20] = sr & 0x7; sr >>= 3;
- xmc[21] = sr & 0x7; sr >>= 3;
- xmc[22] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[23] = sr & 0x7; sr >>= 3;
- xmc[24] = sr & 0x7; sr >>= 3;
- xmc[25] = sr & 0x7; sr >>= 3;
- sr = *c++;
- Nc[2] = sr & 0x7f; sr >>= 7;
- sr |= (uword)*c++ << 1; /* 20 */
- bc[2] = sr & 0x3; sr >>= 2;
- Mc[2] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 5;
- xmaxc[2] = sr & 0x3f; sr >>= 6;
- xmc[26] = sr & 0x7; sr >>= 3;
- xmc[27] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[28] = sr & 0x7; sr >>= 3;
- xmc[29] = sr & 0x7; sr >>= 3;
- xmc[30] = sr & 0x7; sr >>= 3;
- sr = *c++;
- xmc[31] = sr & 0x7; sr >>= 3;
- xmc[32] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[33] = sr & 0x7; sr >>= 3;
- xmc[34] = sr & 0x7; sr >>= 3;
- xmc[35] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1; /* 25 */
- xmc[36] = sr & 0x7; sr >>= 3;
- xmc[37] = sr & 0x7; sr >>= 3;
- xmc[38] = sr & 0x7; sr >>= 3;
- sr = *c++;
- Nc[3] = sr & 0x7f; sr >>= 7;
- sr |= (uword)*c++ << 1;
- bc[3] = sr & 0x3; sr >>= 2;
- Mc[3] = sr & 0x3; sr >>= 2;
- sr |= (uword)*c++ << 5;
- xmaxc[3] = sr & 0x3f; sr >>= 6;
- xmc[39] = sr & 0x7; sr >>= 3;
- xmc[40] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[41] = sr & 0x7; sr >>= 3;
- xmc[42] = sr & 0x7; sr >>= 3;
- xmc[43] = sr & 0x7; sr >>= 3;
- sr = *c++; /* 30 */
- xmc[44] = sr & 0x7; sr >>= 3;
- xmc[45] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 2;
- xmc[46] = sr & 0x7; sr >>= 3;
- xmc[47] = sr & 0x7; sr >>= 3;
- xmc[48] = sr & 0x7; sr >>= 3;
- sr |= (uword)*c++ << 1;
- xmc[49] = sr & 0x7; sr >>= 3;
- xmc[50] = sr & 0x7; sr >>= 3;
- xmc[51] = sr & 0x7; sr >>= 3;
- }
- }
- else
-#endif
- {
- /* GSM_MAGIC = (*c >> 4) & 0xF; */
-
- if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
-
- LARc[0] = (*c++ & 0xF) << 2; /* 1 */
- LARc[0] |= (*c >> 6) & 0x3;
- LARc[1] = *c++ & 0x3F;
- LARc[2] = (*c >> 3) & 0x1F;
- LARc[3] = (*c++ & 0x7) << 2;
- LARc[3] |= (*c >> 6) & 0x3;
- LARc[4] = (*c >> 2) & 0xF;
- LARc[5] = (*c++ & 0x3) << 2;
- LARc[5] |= (*c >> 6) & 0x3;
- LARc[6] = (*c >> 3) & 0x7;
- LARc[7] = *c++ & 0x7;
- Nc[0] = (*c >> 1) & 0x7F;
- bc[0] = (*c++ & 0x1) << 1;
- bc[0] |= (*c >> 7) & 0x1;
- Mc[0] = (*c >> 5) & 0x3;
- xmaxc[0] = (*c++ & 0x1F) << 1;
- xmaxc[0] |= (*c >> 7) & 0x1;
- xmc[0] = (*c >> 4) & 0x7;
- xmc[1] = (*c >> 1) & 0x7;
- xmc[2] = (*c++ & 0x1) << 2;
- xmc[2] |= (*c >> 6) & 0x3;
- xmc[3] = (*c >> 3) & 0x7;
- xmc[4] = *c++ & 0x7;
- xmc[5] = (*c >> 5) & 0x7;
- xmc[6] = (*c >> 2) & 0x7;
- xmc[7] = (*c++ & 0x3) << 1; /* 10 */
- xmc[7] |= (*c >> 7) & 0x1;
- xmc[8] = (*c >> 4) & 0x7;
- xmc[9] = (*c >> 1) & 0x7;
- xmc[10] = (*c++ & 0x1) << 2;
- xmc[10] |= (*c >> 6) & 0x3;
- xmc[11] = (*c >> 3) & 0x7;
- xmc[12] = *c++ & 0x7;
- Nc[1] = (*c >> 1) & 0x7F;
- bc[1] = (*c++ & 0x1) << 1;
- bc[1] |= (*c >> 7) & 0x1;
- Mc[1] = (*c >> 5) & 0x3;
- xmaxc[1] = (*c++ & 0x1F) << 1;
- xmaxc[1] |= (*c >> 7) & 0x1;
- xmc[13] = (*c >> 4) & 0x7;
- xmc[14] = (*c >> 1) & 0x7;
- xmc[15] = (*c++ & 0x1) << 2;
- xmc[15] |= (*c >> 6) & 0x3;
- xmc[16] = (*c >> 3) & 0x7;
- xmc[17] = *c++ & 0x7;
- xmc[18] = (*c >> 5) & 0x7;
- xmc[19] = (*c >> 2) & 0x7;
- xmc[20] = (*c++ & 0x3) << 1;
- xmc[20] |= (*c >> 7) & 0x1;
- xmc[21] = (*c >> 4) & 0x7;
- xmc[22] = (*c >> 1) & 0x7;
- xmc[23] = (*c++ & 0x1) << 2;
- xmc[23] |= (*c >> 6) & 0x3;
- xmc[24] = (*c >> 3) & 0x7;
- xmc[25] = *c++ & 0x7;
- Nc[2] = (*c >> 1) & 0x7F;
- bc[2] = (*c++ & 0x1) << 1; /* 20 */
- bc[2] |= (*c >> 7) & 0x1;
- Mc[2] = (*c >> 5) & 0x3;
- xmaxc[2] = (*c++ & 0x1F) << 1;
- xmaxc[2] |= (*c >> 7) & 0x1;
- xmc[26] = (*c >> 4) & 0x7;
- xmc[27] = (*c >> 1) & 0x7;
- xmc[28] = (*c++ & 0x1) << 2;
- xmc[28] |= (*c >> 6) & 0x3;
- xmc[29] = (*c >> 3) & 0x7;
- xmc[30] = *c++ & 0x7;
- xmc[31] = (*c >> 5) & 0x7;
- xmc[32] = (*c >> 2) & 0x7;
- xmc[33] = (*c++ & 0x3) << 1;
- xmc[33] |= (*c >> 7) & 0x1;
- xmc[34] = (*c >> 4) & 0x7;
- xmc[35] = (*c >> 1) & 0x7;
- xmc[36] = (*c++ & 0x1) << 2;
- xmc[36] |= (*c >> 6) & 0x3;
- xmc[37] = (*c >> 3) & 0x7;
- xmc[38] = *c++ & 0x7;
- Nc[3] = (*c >> 1) & 0x7F;
- bc[3] = (*c++ & 0x1) << 1;
- bc[3] |= (*c >> 7) & 0x1;
- Mc[3] = (*c >> 5) & 0x3;
- xmaxc[3] = (*c++ & 0x1F) << 1;
- xmaxc[3] |= (*c >> 7) & 0x1;
- xmc[39] = (*c >> 4) & 0x7;
- xmc[40] = (*c >> 1) & 0x7;
- xmc[41] = (*c++ & 0x1) << 2;
- xmc[41] |= (*c >> 6) & 0x3;
- xmc[42] = (*c >> 3) & 0x7;
- xmc[43] = *c++ & 0x7; /* 30 */
- xmc[44] = (*c >> 5) & 0x7;
- xmc[45] = (*c >> 2) & 0x7;
- xmc[46] = (*c++ & 0x3) << 1;
- xmc[46] |= (*c >> 7) & 0x1;
- xmc[47] = (*c >> 4) & 0x7;
- xmc[48] = (*c >> 1) & 0x7;
- xmc[49] = (*c++ & 0x1) << 2;
- xmc[49] |= (*c >> 6) & 0x3;
- xmc[50] = (*c >> 3) & 0x7;
- xmc[51] = *c & 0x7; /* 33 */
- }
-
- Gsm_Decoder(s, LARc, Nc, bc, Mc, xmaxc, xmc, target);
-
- return 0;
-}
--- a/src/gsm/gsm_destroy.c
+++ /dev/null
@@ -1,16 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/gsm_destroy.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include "gsm.h"
-
-# include <stdlib.h>
-
-void gsm_destroy (gsm S)
-{
- if (S) free((char *)S);
-}
--- a/src/gsm/gsm_encode.c
+++ /dev/null
@@ -1,450 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/gsm_encode.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include "private.h"
-#include "gsm.h"
-
-void gsm_encode (gsm s, gsm_signal * source, gsm_byte * c)
-{
- word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
-
- Gsm_Coder(s, source, LARc, Nc, bc, Mc, xmaxc, xmc);
-
-
- /* variable size
-
- GSM_MAGIC 4
-
- LARc[0] 6
- LARc[1] 6
- LARc[2] 5
- LARc[3] 5
- LARc[4] 4
- LARc[5] 4
- LARc[6] 3
- LARc[7] 3
-
- Nc[0] 7
- bc[0] 2
- Mc[0] 2
- xmaxc[0] 6
- xmc[0] 3
- xmc[1] 3
- xmc[2] 3
- xmc[3] 3
- xmc[4] 3
- xmc[5] 3
- xmc[6] 3
- xmc[7] 3
- xmc[8] 3
- xmc[9] 3
- xmc[10] 3
- xmc[11] 3
- xmc[12] 3
-
- Nc[1] 7
- bc[1] 2
- Mc[1] 2
- xmaxc[1] 6
- xmc[13] 3
- xmc[14] 3
- xmc[15] 3
- xmc[16] 3
- xmc[17] 3
- xmc[18] 3
- xmc[19] 3
- xmc[20] 3
- xmc[21] 3
- xmc[22] 3
- xmc[23] 3
- xmc[24] 3
- xmc[25] 3
-
- Nc[2] 7
- bc[2] 2
- Mc[2] 2
- xmaxc[2] 6
- xmc[26] 3
- xmc[27] 3
- xmc[28] 3
- xmc[29] 3
- xmc[30] 3
- xmc[31] 3
- xmc[32] 3
- xmc[33] 3
- xmc[34] 3
- xmc[35] 3
- xmc[36] 3
- xmc[37] 3
- xmc[38] 3
-
- Nc[3] 7
- bc[3] 2
- Mc[3] 2
- xmaxc[3] 6
- xmc[39] 3
- xmc[40] 3
- xmc[41] 3
- xmc[42] 3
- xmc[43] 3
- xmc[44] 3
- xmc[45] 3
- xmc[46] 3
- xmc[47] 3
- xmc[48] 3
- xmc[49] 3
- xmc[50] 3
- xmc[51] 3
- */
-
-#ifdef WAV49
-
- if (s->wav_fmt) {
- s->frame_index = !s->frame_index;
- if (s->frame_index) {
-
- uword sr;
-
- sr = 0;
- sr = sr >> 6 | LARc[0] << 10;
- sr = sr >> 6 | LARc[1] << 10;
- *c++ = sr >> 4;
- sr = sr >> 5 | LARc[2] << 11;
- *c++ = sr >> 7;
- sr = sr >> 5 | LARc[3] << 11;
- sr = sr >> 4 | LARc[4] << 12;
- *c++ = sr >> 6;
- sr = sr >> 4 | LARc[5] << 12;
- sr = sr >> 3 | LARc[6] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | LARc[7] << 13;
- sr = sr >> 7 | Nc[0] << 9;
- *c++ = sr >> 5;
- sr = sr >> 2 | bc[0] << 14;
- sr = sr >> 2 | Mc[0] << 14;
- sr = sr >> 6 | xmaxc[0] << 10;
- *c++ = sr >> 3;
- sr = sr >> 3 | xmc[0] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[1] << 13;
- sr = sr >> 3 | xmc[2] << 13;
- sr = sr >> 3 | xmc[3] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[4] << 13;
- sr = sr >> 3 | xmc[5] << 13;
- sr = sr >> 3 | xmc[6] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[7] << 13;
- sr = sr >> 3 | xmc[8] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[9] << 13;
- sr = sr >> 3 | xmc[10] << 13;
- sr = sr >> 3 | xmc[11] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[12] << 13;
- sr = sr >> 7 | Nc[1] << 9;
- *c++ = sr >> 5;
- sr = sr >> 2 | bc[1] << 14;
- sr = sr >> 2 | Mc[1] << 14;
- sr = sr >> 6 | xmaxc[1] << 10;
- *c++ = sr >> 3;
- sr = sr >> 3 | xmc[13] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[14] << 13;
- sr = sr >> 3 | xmc[15] << 13;
- sr = sr >> 3 | xmc[16] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[17] << 13;
- sr = sr >> 3 | xmc[18] << 13;
- sr = sr >> 3 | xmc[19] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[20] << 13;
- sr = sr >> 3 | xmc[21] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[22] << 13;
- sr = sr >> 3 | xmc[23] << 13;
- sr = sr >> 3 | xmc[24] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[25] << 13;
- sr = sr >> 7 | Nc[2] << 9;
- *c++ = sr >> 5;
- sr = sr >> 2 | bc[2] << 14;
- sr = sr >> 2 | Mc[2] << 14;
- sr = sr >> 6 | xmaxc[2] << 10;
- *c++ = sr >> 3;
- sr = sr >> 3 | xmc[26] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[27] << 13;
- sr = sr >> 3 | xmc[28] << 13;
- sr = sr >> 3 | xmc[29] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[30] << 13;
- sr = sr >> 3 | xmc[31] << 13;
- sr = sr >> 3 | xmc[32] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[33] << 13;
- sr = sr >> 3 | xmc[34] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[35] << 13;
- sr = sr >> 3 | xmc[36] << 13;
- sr = sr >> 3 | xmc[37] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[38] << 13;
- sr = sr >> 7 | Nc[3] << 9;
- *c++ = sr >> 5;
- sr = sr >> 2 | bc[3] << 14;
- sr = sr >> 2 | Mc[3] << 14;
- sr = sr >> 6 | xmaxc[3] << 10;
- *c++ = sr >> 3;
- sr = sr >> 3 | xmc[39] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[40] << 13;
- sr = sr >> 3 | xmc[41] << 13;
- sr = sr >> 3 | xmc[42] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[43] << 13;
- sr = sr >> 3 | xmc[44] << 13;
- sr = sr >> 3 | xmc[45] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[46] << 13;
- sr = sr >> 3 | xmc[47] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[48] << 13;
- sr = sr >> 3 | xmc[49] << 13;
- sr = sr >> 3 | xmc[50] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[51] << 13;
- sr = sr >> 4;
- *c = sr >> 8;
- s->frame_chain = *c;
- }
- else {
- uword sr;
-
- sr = 0;
- sr = sr >> 4 | s->frame_chain << 12;
- sr = sr >> 6 | LARc[0] << 10;
- *c++ = sr >> 6;
- sr = sr >> 6 | LARc[1] << 10;
- *c++ = sr >> 8;
- sr = sr >> 5 | LARc[2] << 11;
- sr = sr >> 5 | LARc[3] << 11;
- *c++ = sr >> 6;
- sr = sr >> 4 | LARc[4] << 12;
- sr = sr >> 4 | LARc[5] << 12;
- *c++ = sr >> 6;
- sr = sr >> 3 | LARc[6] << 13;
- sr = sr >> 3 | LARc[7] << 13;
- *c++ = sr >> 8;
- sr = sr >> 7 | Nc[0] << 9;
- sr = sr >> 2 | bc[0] << 14;
- *c++ = sr >> 7;
- sr = sr >> 2 | Mc[0] << 14;
- sr = sr >> 6 | xmaxc[0] << 10;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[0] << 13;
- sr = sr >> 3 | xmc[1] << 13;
- sr = sr >> 3 | xmc[2] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[3] << 13;
- sr = sr >> 3 | xmc[4] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[5] << 13;
- sr = sr >> 3 | xmc[6] << 13;
- sr = sr >> 3 | xmc[7] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[8] << 13;
- sr = sr >> 3 | xmc[9] << 13;
- sr = sr >> 3 | xmc[10] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[11] << 13;
- sr = sr >> 3 | xmc[12] << 13;
- *c++ = sr >> 8;
- sr = sr >> 7 | Nc[1] << 9;
- sr = sr >> 2 | bc[1] << 14;
- *c++ = sr >> 7;
- sr = sr >> 2 | Mc[1] << 14;
- sr = sr >> 6 | xmaxc[1] << 10;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[13] << 13;
- sr = sr >> 3 | xmc[14] << 13;
- sr = sr >> 3 | xmc[15] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[16] << 13;
- sr = sr >> 3 | xmc[17] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[18] << 13;
- sr = sr >> 3 | xmc[19] << 13;
- sr = sr >> 3 | xmc[20] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[21] << 13;
- sr = sr >> 3 | xmc[22] << 13;
- sr = sr >> 3 | xmc[23] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[24] << 13;
- sr = sr >> 3 | xmc[25] << 13;
- *c++ = sr >> 8;
- sr = sr >> 7 | Nc[2] << 9;
- sr = sr >> 2 | bc[2] << 14;
- *c++ = sr >> 7;
- sr = sr >> 2 | Mc[2] << 14;
- sr = sr >> 6 | xmaxc[2] << 10;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[26] << 13;
- sr = sr >> 3 | xmc[27] << 13;
- sr = sr >> 3 | xmc[28] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[29] << 13;
- sr = sr >> 3 | xmc[30] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[31] << 13;
- sr = sr >> 3 | xmc[32] << 13;
- sr = sr >> 3 | xmc[33] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[34] << 13;
- sr = sr >> 3 | xmc[35] << 13;
- sr = sr >> 3 | xmc[36] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[37] << 13;
- sr = sr >> 3 | xmc[38] << 13;
- *c++ = sr >> 8;
- sr = sr >> 7 | Nc[3] << 9;
- sr = sr >> 2 | bc[3] << 14;
- *c++ = sr >> 7;
- sr = sr >> 2 | Mc[3] << 14;
- sr = sr >> 6 | xmaxc[3] << 10;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[39] << 13;
- sr = sr >> 3 | xmc[40] << 13;
- sr = sr >> 3 | xmc[41] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[42] << 13;
- sr = sr >> 3 | xmc[43] << 13;
- *c++ = sr >> 8;
- sr = sr >> 3 | xmc[44] << 13;
- sr = sr >> 3 | xmc[45] << 13;
- sr = sr >> 3 | xmc[46] << 13;
- *c++ = sr >> 7;
- sr = sr >> 3 | xmc[47] << 13;
- sr = sr >> 3 | xmc[48] << 13;
- sr = sr >> 3 | xmc[49] << 13;
- *c++ = sr >> 6;
- sr = sr >> 3 | xmc[50] << 13;
- sr = sr >> 3 | xmc[51] << 13;
- *c++ = sr >> 8;
- }
- }
-
- else
-
-#endif /* WAV49 */
- {
-
- *c++ = ((GSM_MAGIC & 0xF) << 4) /* 1 */
- | ((LARc[0] >> 2) & 0xF);
- *c++ = ((LARc[0] & 0x3) << 6)
- | (LARc[1] & 0x3F);
- *c++ = ((LARc[2] & 0x1F) << 3)
- | ((LARc[3] >> 2) & 0x7);
- *c++ = ((LARc[3] & 0x3) << 6)
- | ((LARc[4] & 0xF) << 2)
- | ((LARc[5] >> 2) & 0x3);
- *c++ = ((LARc[5] & 0x3) << 6)
- | ((LARc[6] & 0x7) << 3)
- | (LARc[7] & 0x7);
- *c++ = ((Nc[0] & 0x7F) << 1)
- | ((bc[0] >> 1) & 0x1);
- *c++ = ((bc[0] & 0x1) << 7)
- | ((Mc[0] & 0x3) << 5)
- | ((xmaxc[0] >> 1) & 0x1F);
- *c++ = ((xmaxc[0] & 0x1) << 7)
- | ((xmc[0] & 0x7) << 4)
- | ((xmc[1] & 0x7) << 1)
- | ((xmc[2] >> 2) & 0x1);
- *c++ = ((xmc[2] & 0x3) << 6)
- | ((xmc[3] & 0x7) << 3)
- | (xmc[4] & 0x7);
- *c++ = ((xmc[5] & 0x7) << 5) /* 10 */
- | ((xmc[6] & 0x7) << 2)
- | ((xmc[7] >> 1) & 0x3);
- *c++ = ((xmc[7] & 0x1) << 7)
- | ((xmc[8] & 0x7) << 4)
- | ((xmc[9] & 0x7) << 1)
- | ((xmc[10] >> 2) & 0x1);
- *c++ = ((xmc[10] & 0x3) << 6)
- | ((xmc[11] & 0x7) << 3)
- | (xmc[12] & 0x7);
- *c++ = ((Nc[1] & 0x7F) << 1)
- | ((bc[1] >> 1) & 0x1);
- *c++ = ((bc[1] & 0x1) << 7)
- | ((Mc[1] & 0x3) << 5)
- | ((xmaxc[1] >> 1) & 0x1F);
- *c++ = ((xmaxc[1] & 0x1) << 7)
- | ((xmc[13] & 0x7) << 4)
- | ((xmc[14] & 0x7) << 1)
- | ((xmc[15] >> 2) & 0x1);
- *c++ = ((xmc[15] & 0x3) << 6)
- | ((xmc[16] & 0x7) << 3)
- | (xmc[17] & 0x7);
- *c++ = ((xmc[18] & 0x7) << 5)
- | ((xmc[19] & 0x7) << 2)
- | ((xmc[20] >> 1) & 0x3);
- *c++ = ((xmc[20] & 0x1) << 7)
- | ((xmc[21] & 0x7) << 4)
- | ((xmc[22] & 0x7) << 1)
- | ((xmc[23] >> 2) & 0x1);
- *c++ = ((xmc[23] & 0x3) << 6)
- | ((xmc[24] & 0x7) << 3)
- | (xmc[25] & 0x7);
- *c++ = ((Nc[2] & 0x7F) << 1) /* 20 */
- | ((bc[2] >> 1) & 0x1);
- *c++ = ((bc[2] & 0x1) << 7)
- | ((Mc[2] & 0x3) << 5)
- | ((xmaxc[2] >> 1) & 0x1F);
- *c++ = ((xmaxc[2] & 0x1) << 7)
- | ((xmc[26] & 0x7) << 4)
- | ((xmc[27] & 0x7) << 1)
- | ((xmc[28] >> 2) & 0x1);
- *c++ = ((xmc[28] & 0x3) << 6)
- | ((xmc[29] & 0x7) << 3)
- | (xmc[30] & 0x7);
- *c++ = ((xmc[31] & 0x7) << 5)
- | ((xmc[32] & 0x7) << 2)
- | ((xmc[33] >> 1) & 0x3);
- *c++ = ((xmc[33] & 0x1) << 7)
- | ((xmc[34] & 0x7) << 4)
- | ((xmc[35] & 0x7) << 1)
- | ((xmc[36] >> 2) & 0x1);
- *c++ = ((xmc[36] & 0x3) << 6)
- | ((xmc[37] & 0x7) << 3)
- | (xmc[38] & 0x7);
- *c++ = ((Nc[3] & 0x7F) << 1)
- | ((bc[3] >> 1) & 0x1);
- *c++ = ((bc[3] & 0x1) << 7)
- | ((Mc[3] & 0x3) << 5)
- | ((xmaxc[3] >> 1) & 0x1F);
- *c++ = ((xmaxc[3] & 0x1) << 7)
- | ((xmc[39] & 0x7) << 4)
- | ((xmc[40] & 0x7) << 1)
- | ((xmc[41] >> 2) & 0x1);
- *c++ = ((xmc[41] & 0x3) << 6) /* 30 */
- | ((xmc[42] & 0x7) << 3)
- | (xmc[43] & 0x7);
- *c++ = ((xmc[44] & 0x7) << 5)
- | ((xmc[45] & 0x7) << 2)
- | ((xmc[46] >> 1) & 0x3);
- *c++ = ((xmc[46] & 0x1) << 7)
- | ((xmc[47] & 0x7) << 4)
- | ((xmc[48] & 0x7) << 1)
- | ((xmc[49] >> 2) & 0x1);
- *c++ = ((xmc[49] & 0x3) << 6)
- | ((xmc[50] & 0x7) << 3)
- | (xmc[51] & 0x7);
-
- }
-}
--- a/src/gsm/gsm_option.3
+++ /dev/null
@@ -1,183 +1,0 @@
-.\"
-.\" Copyright 1992-1995 by Jutta Degener and Carsten Bormann, Technische
-.\" Universitaet Berlin. See the accompanying file "COPYRIGHT" for
-.\" details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
-.\"
-.PU
-.TH GSM_OPTION 3
-.SH NAME
-gsm_option \(em customizing the GSM 06.10 implementation
-.SH SYNOPSIS
-#include "gsm.h"
-.PP
-int gsm_option(handle, option, valueP);
-.br
-gsm handle;
-.br
-int option;
-.br
-int * valueP;
-.SH "DESCRIPTION"
-The gsm library is an implementation of the final draft GSM 06.10
-standard for full-rate speech transcoding, a lossy
-speech compression algorithm.
-.PP
-The gsm_option() function can be used to set and query various
-options or flags that are not needed for regular GSM 06.10 encoding
-or decoding, but might be of interest in special cases.
-.PP
-The second argument to gsm_option specifies what parameter
-should be changed or queried.
-The third argument is either a null pointer, in which case
-the current value of that parameter is returned;
-or it is a pointer to an integer containing the value
-you want to set, in which case the previous value will
-be returned.
-.PP
-The following options are defined:
-.PP
-.I GSM_OPT_VERBOSE
-Verbosity level.
-.br
-.in+5
-This option is only supported if the library was compiled
-with debugging turned on, and may be used by developers of
-compression algorithms to aid debugging.
-.br
-The verbosity level can be changed at any time during encoding or decoding.
-.in-5
-.sp
-.PP
-.I GSM_OPT_FAST
-Faster compression algorithm.
-.br
-.in+5
-This implementation offers a not strictly standard-compliant, but
-faster compression algorithm that is compatible with the regular
-method and does not noticably degrade audio quality.
-.br
-The value passed to
-.br
-.nf
- gsm_option(handle, GSM_OPT_FAST, & value)
-.fi
-.br
-functions as a boolean flag; if it is zero, the regular algorithm
-will be used, if not, the faster version will be used.
-.br
-The availability of this option depends on the hardware used;
-if it is not available, gsm_option will return -1 on an attempt
-to set or query it.
-.br
-This option can be set any time during encoding or decoding.
-.in-5
-.ne 5
-.sp
-.PP
-.I GSM_OPT_LTP_CUT
-Enable, disable, or query the LTP cut-off optimization.
-.br
-.in+5
-During encoding, the search for the long-term correlation
-lag forms the bottleneck of the algorithm.
-The ltp-cut option enables an approximation that disregards most
-of the samples for purposes of finding that correlation,
-and hence speeds up the encoding at a noticable loss in quality.
-.br
-The value passed to
-.br
-.nf
- gsm_option(handle, GSM_OPT_LTP_CUT, & value)
-.fi
-.br
-turns the optimization on if nonzero, and off if zero.
-.br
-This option can be set any time during encoding
-or decoding; it will only affect the encoding pass, not
-the decoding.
-.sp
-.PP
-.I GSM_OPT_WAV49
-WAV-style byte ordering.
-.br
-.in+5
-A WAV file of type #49 contains GSM 06.10-encoded frames.
-Unfortunately, the framing and code ordering of the WAV version
-are incompatible with the native ones of this GSM 06.10 library.
-The GSM_OPT_WAV49 option turns on a different packing
-algorithm that produces alternating frames of 32 and 33 bytes
-(or makes it consume alternating frames of 33 and 32 bytes, note
-the opposite order of the two numbers) which, when concatenated,
-can be used in the body of a WAV #49 frame.
-It is up to the user program to write a WAV header, if any;
-neither the library itself nor the toast program produce
-complete WAV files.
-.br
-The value passed to
-.br
-.nf
- gsm_option(handle, GSM_OPT_WAV49, & value)
-.fi
-.br
-functions as a boolean flag; if it is zero, the library's native
-framing algorithm will be used, if nonzero, WAV-type packing is in effect.
-.br
-This option should be used before any frames are encoded.
-Whether or not it is supported at all depends on a
-compile-time switch, WAV49.
-Both option and compile time switch are new to the library
-as of patchlevel 9, and are considerably less tested than the
-well-worn rest of the it.
-.br
-Thanks to Jeff Chilton for the detective work and first free
-implementation of this version of the GSM 06.10 encoding.
-.sp
-.PP
-.I GSM_OPT_FRAME_CHAIN
-Query or set the chaining byte.
-.br
-.in+5
-Between the two frames of a WAV-style encoding, the GSM 06.10 library
-must keep track of one half-byte that is technically part of the first
-frame, but will be written as the first four bits of the second.
-This half-byte are the lowest four bits of the value returned by,
-and optionally set by,
-.br
-.nf
- gsm_option(handle, GSM_OPT_FRAME_CHAIN, & value)
-.fi
-.br
-This option can be queried and set at any time.
-.sp
-.PP
-.I GSM_OPT_FRAME_INDEX
-Query or set the current frame's index in a format's
-alternating list of frames.
-.br
-.in+5
-The WAV #49 framing uses two alternating types of frames.
-Which type the next GSM-coded frame belongs to can be queried, or,
-when decoding, announced, using
-.br
-.nf
- gsm_option(handle, GSM_OPT_FRAME_INDEX, & value)
-.fi
-.br
-For WAV-style framing, the value should be 0 or 1; the first frame
-of an encoding has an index of 0.
-At library initialization, the index is set to zero.
-.br
-The frame index can be queried and set at any time.
-Used in combination with the
-.IR GSM_OPT_FRAME_CHAIN ,
-option, it can be used to position on arbitrary GSM frames
-within a format like WAV #49 (not accounting for the lost
-internal GSM state).
-.in-5
-.SH "RETURN VALUE"
-gsm_option() returns -1 if an option is not supported, the
-previous value of the option otherwise.
-.SH BUGS
-Please direct bug reports to jutta@cs.tu-berlin.de and cabo@cs.tu-berlin.de.
-.SH "SEE ALSO"
-toast(1), gsm(3), gsm_explode(3), gsm_print(3)
--- a/src/gsm/gsm_option.c
+++ /dev/null
@@ -1,68 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/gsm_option.c,v 1.1 2001/11/14 03:44:46 cbagwell Exp $ */
-
-#include "private.h"
-
-#include "gsm.h"
-
-int gsm_option (gsm r, int opt, int * val)
-{
- int result = -1;
-
- switch (opt) {
- case GSM_OPT_LTP_CUT:
-#ifdef LTP_CUT
- result = r->ltp_cut;
- if (val) r->ltp_cut = *val;
-#endif
- break;
-
- case GSM_OPT_VERBOSE:
-#ifndef NDEBUG
- result = r->verbose;
- if (val) r->verbose = *val;
-#endif
- break;
-
- case GSM_OPT_FAST:
-
-#if defined(FAST) && defined(USE_FLOAT_MUL)
- result = r->fast;
- if (val) r->fast = !!*val;
-#endif
- break;
-
- case GSM_OPT_FRAME_CHAIN:
-
-#ifdef WAV49
- result = r->frame_chain;
- if (val) r->frame_chain = *val;
-#endif
- break;
-
- case GSM_OPT_FRAME_INDEX:
-
-#ifdef WAV49
- result = r->frame_index;
- if (val) r->frame_index = *val;
-#endif
- break;
-
- case GSM_OPT_WAV49:
-
-#ifdef WAV49
- result = r->wav_fmt;
- if (val) r->wav_fmt = !!*val;
-#endif
- break;
-
- default:
- break;
- }
- return result;
-}
--- a/src/gsm/long_term.c
+++ /dev/null
@@ -1,947 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/long_term.c,v 1.1 2001/11/14 16:57:20 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/*
- * 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION
- */
-
-
-/*
- * This module computes the LTP gain (bc) and the LTP lag (Nc)
- * for the long term analysis filter. This is done by calculating a
- * maximum of the cross-correlation function between the current
- * sub-segment short term residual signal d[0..39] (output of
- * the short term analysis filter; for simplification the index
- * of this array begins at 0 and ends at 39 for each sub-segment of the
- * RPE-LTP analysis) and the previous reconstructed short term
- * residual signal dp[ -120 .. -1 ]. A dynamic scaling must be
- * performed to avoid overflow.
- */
-
- /* The next procedure exists in six versions. First two integer
- * version (if USE_FLOAT_MUL is not defined); then four floating
- * point versions, twice with proper scaling (USE_FLOAT_MUL defined),
- * once without (USE_FLOAT_MUL and FAST defined, and fast run-time
- * option used). Every pair has first a Cut version (see the -C
- * option to toast or the LTP_CUT option to gsm_option()), then the
- * uncut one. (For a detailed explanation of why this is altogether
- * a bad idea, see Henry Spencer and Geoff Collyer, ``#ifdef Considered
- * Harmful''.)
- */
-
-#ifndef USE_FLOAT_MUL
-
-#ifdef LTP_CUT
-
-static void Cut_Calculation_of_the_LTP_parameters (
-
- struct gsm_state * st,
-
- register word * d, /* [0..39] IN */
- register word * dp, /* [-120..-1] IN */
- word * bc_out, /* OUT */
- word * Nc_out /* OUT */
-)
-{
- register int k, lambda;
- word Nc, bc;
- word wt[40];
-
- longword L_result;
- longword L_max, L_power;
- word R, S, dmax, scal, best_k;
- word ltp_cut;
-
- register word temp, wt_k;
-
- /* Search of the optimum scaling of d[0..39].
- */
- dmax = 0;
- for (k = 0; k <= 39; k++) {
- temp = d[k];
- temp = GSM_ABS( temp );
- if (temp > dmax) {
- dmax = temp;
- best_k = k;
- }
- }
- temp = 0;
- if (dmax == 0) scal = 0;
- else {
- assert(dmax > 0);
- temp = gsm_norm( (longword)dmax << 16 );
- }
- if (temp > 6) scal = 0;
- else scal = 6 - temp;
- assert(scal >= 0);
-
- /* Search for the maximum cross-correlation and coding of the LTP lag
- */
- L_max = 0;
- Nc = 40; /* index for the maximum cross-correlation */
- wt_k = SASR(d[best_k], scal);
-
- for (lambda = 40; lambda <= 120; lambda++) {
- L_result = (longword)wt_k * dp[best_k - lambda];
- if (L_result > L_max) {
- Nc = lambda;
- L_max = L_result;
- }
- }
- *Nc_out = Nc;
- L_max <<= 1;
-
- /* Rescaling of L_max
- */
- assert(scal <= 100 && scal >= -100);
- L_max = L_max >> (6 - scal); /* sub(6, scal) */
-
- assert( Nc <= 120 && Nc >= 40);
-
- /* Compute the power of the reconstructed short term residual
- * signal dp[..]
- */
- L_power = 0;
- for (k = 0; k <= 39; k++) {
-
- register longword L_temp;
-
- L_temp = SASR( dp[k - Nc], 3 );
- L_power += L_temp * L_temp;
- }
- L_power <<= 1; /* from L_MULT */
-
- /* Normalization of L_max and L_power
- */
-
- if (L_max <= 0) {
- *bc_out = 0;
- return;
- }
- if (L_max >= L_power) {
- *bc_out = 3;
- return;
- }
-
- temp = gsm_norm( L_power );
-
- R = SASR( L_max << temp, 16 );
- S = SASR( L_power << temp, 16 );
-
- /* Coding of the LTP gain
- */
-
- /* Table 4.3a must be used to obtain the level DLB[i] for the
- * quantization of the LTP gain b to get the coded version bc.
- */
- for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
- *bc_out = bc;
-}
-
-#endif /* LTP_CUT */
-
-static void Calculation_of_the_LTP_parameters (
- register word * d, /* [0..39] IN */
- register word * dp, /* [-120..-1] IN */
- word * bc_out, /* OUT */
- word * Nc_out /* OUT */
-)
-{
- register int k, lambda;
- word Nc, bc;
- word wt[40];
-
- longword L_max, L_power;
- word R, S, dmax, scal;
- register word temp;
-
- /* Search of the optimum scaling of d[0..39].
- */
- dmax = 0;
-
- for (k = 0; k <= 39; k++) {
- temp = d[k];
- temp = GSM_ABS( temp );
- if (temp > dmax) dmax = temp;
- }
-
- temp = 0;
- if (dmax == 0) scal = 0;
- else {
- assert(dmax > 0);
- temp = gsm_norm( (longword)dmax << 16 );
- }
-
- if (temp > 6) scal = 0;
- else scal = 6 - temp;
-
- assert(scal >= 0);
-
- /* Initialization of a working array wt
- */
-
- for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal );
-
- /* Search for the maximum cross-correlation and coding of the LTP lag
- */
- L_max = 0;
- Nc = 40; /* index for the maximum cross-correlation */
-
- for (lambda = 40; lambda <= 120; lambda++) {
-
-# undef STEP
-# define STEP(k) (longword)wt[k] * dp[k - lambda]
-
- register longword L_result;
-
- L_result = STEP(0) ; L_result += STEP(1) ;
- L_result += STEP(2) ; L_result += STEP(3) ;
- L_result += STEP(4) ; L_result += STEP(5) ;
- L_result += STEP(6) ; L_result += STEP(7) ;
- L_result += STEP(8) ; L_result += STEP(9) ;
- L_result += STEP(10) ; L_result += STEP(11) ;
- L_result += STEP(12) ; L_result += STEP(13) ;
- L_result += STEP(14) ; L_result += STEP(15) ;
- L_result += STEP(16) ; L_result += STEP(17) ;
- L_result += STEP(18) ; L_result += STEP(19) ;
- L_result += STEP(20) ; L_result += STEP(21) ;
- L_result += STEP(22) ; L_result += STEP(23) ;
- L_result += STEP(24) ; L_result += STEP(25) ;
- L_result += STEP(26) ; L_result += STEP(27) ;
- L_result += STEP(28) ; L_result += STEP(29) ;
- L_result += STEP(30) ; L_result += STEP(31) ;
- L_result += STEP(32) ; L_result += STEP(33) ;
- L_result += STEP(34) ; L_result += STEP(35) ;
- L_result += STEP(36) ; L_result += STEP(37) ;
- L_result += STEP(38) ; L_result += STEP(39) ;
-
- if (L_result > L_max) {
-
- Nc = lambda;
- L_max = L_result;
- }
- }
-
- *Nc_out = Nc;
-
- L_max <<= 1;
-
- /* Rescaling of L_max
- */
- assert(scal <= 100 && scal >= -100);
- L_max = L_max >> (6 - scal); /* sub(6, scal) */
-
- assert( Nc <= 120 && Nc >= 40);
-
- /* Compute the power of the reconstructed short term residual
- * signal dp[..]
- */
- L_power = 0;
- for (k = 0; k <= 39; k++) {
-
- register longword L_temp;
-
- L_temp = SASR( dp[k - Nc], 3 );
- L_power += L_temp * L_temp;
- }
- L_power <<= 1; /* from L_MULT */
-
- /* Normalization of L_max and L_power
- */
-
- if (L_max <= 0) {
- *bc_out = 0;
- return;
- }
- if (L_max >= L_power) {
- *bc_out = 3;
- return;
- }
-
- temp = gsm_norm( L_power );
-
- R = SASR( L_max << temp, 16 );
- S = SASR( L_power << temp, 16 );
-
- /* Coding of the LTP gain
- */
-
- /* Table 4.3a must be used to obtain the level DLB[i] for the
- * quantization of the LTP gain b to get the coded version bc.
- */
- for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
- *bc_out = bc;
-}
-
-#else /* USE_FLOAT_MUL */
-
-#ifdef LTP_CUT
-
-static void Cut_Calculation_of_the_LTP_parameters (
- struct gsm_state * st, /* IN */
- register word * d, /* [0..39] IN */
- register word * dp, /* [-120..-1] IN */
- word * bc_out, /* OUT */
- word * Nc_out /* OUT */
-)
-{
- register int k, lambda;
- word Nc, bc;
- word ltp_cut;
-
- float wt_float[40];
- float dp_float_base[120], * dp_float = dp_float_base + 120;
-
- longword L_max, L_power;
- word R, S, dmax, scal;
- register word temp;
-
- /* Search of the optimum scaling of d[0..39].
- */
- dmax = 0;
-
- for (k = 0; k <= 39; k++) {
- temp = d[k];
- temp = GSM_ABS( temp );
- if (temp > dmax) dmax = temp;
- }
-
- temp = 0;
- if (dmax == 0) scal = 0;
- else {
- assert(dmax > 0);
- temp = gsm_norm( (longword)dmax << 16 );
- }
-
- if (temp > 6) scal = 0;
- else scal = 6 - temp;
-
- assert(scal >= 0);
- ltp_cut = (longword)SASR(dmax, scal) * st->ltp_cut / 100;
-
-
- /* Initialization of a working array wt
- */
-
- for (k = 0; k < 40; k++) {
- register word w = SASR( d[k], scal );
- if (w < 0 ? w > -ltp_cut : w < ltp_cut) {
- wt_float[k] = 0.0;
- }
- else {
- wt_float[k] = w;
- }
- }
- for (k = -120; k < 0; k++) dp_float[k] = dp[k];
-
- /* Search for the maximum cross-correlation and coding of the LTP lag
- */
- L_max = 0;
- Nc = 40; /* index for the maximum cross-correlation */
-
- for (lambda = 40; lambda <= 120; lambda += 9) {
-
- /* Calculate L_result for l = lambda .. lambda + 9.
- */
- register float *lp = dp_float - lambda;
-
- register float W;
- register float a = lp[-8], b = lp[-7], c = lp[-6],
- d = lp[-5], e = lp[-4], f = lp[-3],
- g = lp[-2], h = lp[-1];
- register float E;
- register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
- S5 = 0, S6 = 0, S7 = 0, S8 = 0;
-
-# undef STEP
-# define STEP(K, a, b, c, d, e, f, g, h) \
- if ((W = wt_float[K]) != 0.0) { \
- E = W * a; S8 += E; \
- E = W * b; S7 += E; \
- E = W * c; S6 += E; \
- E = W * d; S5 += E; \
- E = W * e; S4 += E; \
- E = W * f; S3 += E; \
- E = W * g; S2 += E; \
- E = W * h; S1 += E; \
- a = lp[K]; \
- E = W * a; S0 += E; } else (a = lp[K])
-
-# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
-# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
-# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
-# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
-# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
-# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
-# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
-# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
-
- STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
- STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
-
- STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
- STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
-
- STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
- STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
-
- STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
- STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
-
- STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
- STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
-
- if (S0 > L_max) { L_max = S0; Nc = lambda; }
- if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
- if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
- if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
- if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
- if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
- if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
- if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
- if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
-
- }
- *Nc_out = Nc;
-
- L_max <<= 1;
-
- /* Rescaling of L_max
- */
- assert(scal <= 100 && scal >= -100);
- L_max = L_max >> (6 - scal); /* sub(6, scal) */
-
- assert( Nc <= 120 && Nc >= 40);
-
- /* Compute the power of the reconstructed short term residual
- * signal dp[..]
- */
- L_power = 0;
- for (k = 0; k <= 39; k++) {
-
- register longword L_temp;
-
- L_temp = SASR( dp[k - Nc], 3 );
- L_power += L_temp * L_temp;
- }
- L_power <<= 1; /* from L_MULT */
-
- /* Normalization of L_max and L_power
- */
-
- if (L_max <= 0) {
- *bc_out = 0;
- return;
- }
- if (L_max >= L_power) {
- *bc_out = 3;
- return;
- }
-
- temp = gsm_norm( L_power );
-
- R = SASR( L_max << temp, 16 );
- S = SASR( L_power << temp, 16 );
-
- /* Coding of the LTP gain
- */
-
- /* Table 4.3a must be used to obtain the level DLB[i] for the
- * quantization of the LTP gain b to get the coded version bc.
- */
- for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
- *bc_out = bc;
-}
-
-#endif /* LTP_CUT */
-
-static void Calculation_of_the_LTP_parameters (
- register word * d, /* [0..39] IN */
- register word * dp, /* [-120..-1] IN */
- word * bc_out, /* OUT */
- word * Nc_out /* OUT */
-)
-{
- register int k, lambda;
- word Nc, bc;
-
- float wt_float[40];
- float dp_float_base[120], * dp_float = dp_float_base + 120;
-
- longword L_max, L_power;
- word R, S, dmax, scal;
- register word temp;
-
- /* Search of the optimum scaling of d[0..39].
- */
- dmax = 0;
-
- for (k = 0; k <= 39; k++) {
- temp = d[k];
- temp = GSM_ABS( temp );
- if (temp > dmax) dmax = temp;
- }
-
- temp = 0;
- if (dmax == 0) scal = 0;
- else {
- assert(dmax > 0);
- temp = gsm_norm( (longword)dmax << 16 );
- }
-
- if (temp > 6) scal = 0;
- else scal = 6 - temp;
-
- assert(scal >= 0);
-
- /* Initialization of a working array wt
- */
-
- for (k = 0; k < 40; k++) wt_float[k] = SASR( d[k], scal );
- for (k = -120; k < 0; k++) dp_float[k] = dp[k];
-
- /* Search for the maximum cross-correlation and coding of the LTP lag
- */
- L_max = 0;
- Nc = 40; /* index for the maximum cross-correlation */
-
- for (lambda = 40; lambda <= 120; lambda += 9) {
-
- /* Calculate L_result for l = lambda .. lambda + 9.
- */
- register float *lp = dp_float - lambda;
-
- register float W;
- register float a = lp[-8], b = lp[-7], c = lp[-6],
- d = lp[-5], e = lp[-4], f = lp[-3],
- g = lp[-2], h = lp[-1];
- register float E;
- register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
- S5 = 0, S6 = 0, S7 = 0, S8 = 0;
-
-# undef STEP
-# define STEP(K, a, b, c, d, e, f, g, h) \
- W = wt_float[K]; \
- E = W * a; S8 += E; \
- E = W * b; S7 += E; \
- E = W * c; S6 += E; \
- E = W * d; S5 += E; \
- E = W * e; S4 += E; \
- E = W * f; S3 += E; \
- E = W * g; S2 += E; \
- E = W * h; S1 += E; \
- a = lp[K]; \
- E = W * a; S0 += E
-
-# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
-# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
-# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
-# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
-# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
-# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
-# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
-# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
-
- STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
- STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
-
- STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
- STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
-
- STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
- STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
-
- STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
- STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
-
- STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
- STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
-
- if (S0 > L_max) { L_max = S0; Nc = lambda; }
- if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
- if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
- if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
- if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
- if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
- if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
- if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
- if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
- }
- *Nc_out = Nc;
-
- L_max <<= 1;
-
- /* Rescaling of L_max
- */
- assert(scal <= 100 && scal >= -100);
- L_max = L_max >> (6 - scal); /* sub(6, scal) */
-
- assert( Nc <= 120 && Nc >= 40);
-
- /* Compute the power of the reconstructed short term residual
- * signal dp[..]
- */
- L_power = 0;
- for (k = 0; k <= 39; k++) {
-
- register longword L_temp;
-
- L_temp = SASR( dp[k - Nc], 3 );
- L_power += L_temp * L_temp;
- }
- L_power <<= 1; /* from L_MULT */
-
- /* Normalization of L_max and L_power
- */
-
- if (L_max <= 0) {
- *bc_out = 0;
- return;
- }
- if (L_max >= L_power) {
- *bc_out = 3;
- return;
- }
-
- temp = gsm_norm( L_power );
-
- R = SASR( L_max << temp, 16 );
- S = SASR( L_power << temp, 16 );
-
- /* Coding of the LTP gain
- */
-
- /* Table 4.3a must be used to obtain the level DLB[i] for the
- * quantization of the LTP gain b to get the coded version bc.
- */
- for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
- *bc_out = bc;
-}
-
-#ifdef FAST
-#ifdef LTP_CUT
-
-static void Cut_Fast_Calculation_of_the_LTP_parameters (
- struct gsm_state * st, /* IN */
- register word * d, /* [0..39] IN */
- register word * dp, /* [-120..-1] IN */
- word * bc_out, /* OUT */
- word * Nc_out /* OUT */
-)
-{
- register int k, lambda;
- register float wt_float;
- word Nc, bc;
- word wt_max, best_k, ltp_cut;
-
- float dp_float_base[120], * dp_float = dp_float_base + 120;
-
- register float L_result, L_max, L_power;
-
- wt_max = 0;
-
- for (k = 0; k < 40; ++k) {
- if ( d[k] > wt_max) wt_max = d[best_k = k];
- else if (-d[k] > wt_max) wt_max = -d[best_k = k];
- }
-
- assert(wt_max >= 0);
- wt_float = (float)wt_max;
-
- for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
-
- /* Search for the maximum cross-correlation and coding of the LTP lag
- */
- L_max = 0;
- Nc = 40; /* index for the maximum cross-correlation */
-
- for (lambda = 40; lambda <= 120; lambda++) {
- L_result = wt_float * dp_float[best_k - lambda];
- if (L_result > L_max) {
- Nc = lambda;
- L_max = L_result;
- }
- }
-
- *Nc_out = Nc;
- if (L_max <= 0.) {
- *bc_out = 0;
- return;
- }
-
- /* Compute the power of the reconstructed short term residual
- * signal dp[..]
- */
- dp_float -= Nc;
- L_power = 0;
- for (k = 0; k < 40; ++k) {
- register float f = dp_float[k];
- L_power += f * f;
- }
-
- if (L_max >= L_power) {
- *bc_out = 3;
- return;
- }
-
- /* Coding of the LTP gain
- * Table 4.3a must be used to obtain the level DLB[i] for the
- * quantization of the LTP gain b to get the coded version bc.
- */
- lambda = L_max / L_power * 32768.;
- for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
- *bc_out = bc;
-}
-
-#endif /* LTP_CUT */
-
-static void Fast_Calculation_of_the_LTP_parameters (
- register word * d, /* [0..39] IN */
- register word * dp, /* [-120..-1] IN */
- word * bc_out, /* OUT */
- word * Nc_out /* OUT */
-)
-{
- register int k, lambda;
- word Nc, bc;
-
- float wt_float[40];
- float dp_float_base[120], * dp_float = dp_float_base + 120;
-
- register float L_max, L_power;
-
- for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k];
- for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
-
- /* Search for the maximum cross-correlation and coding of the LTP lag
- */
- L_max = 0;
- Nc = 40; /* index for the maximum cross-correlation */
-
- for (lambda = 40; lambda <= 120; lambda += 9) {
-
- /* Calculate L_result for l = lambda .. lambda + 9.
- */
- register float *lp = dp_float - lambda;
-
- register float W;
- register float a = lp[-8], b = lp[-7], c = lp[-6],
- d = lp[-5], e = lp[-4], f = lp[-3],
- g = lp[-2], h = lp[-1];
- register float E;
- register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
- S5 = 0, S6 = 0, S7 = 0, S8 = 0;
-
-# undef STEP
-# define STEP(K, a, b, c, d, e, f, g, h) \
- W = wt_float[K]; \
- E = W * a; S8 += E; \
- E = W * b; S7 += E; \
- E = W * c; S6 += E; \
- E = W * d; S5 += E; \
- E = W * e; S4 += E; \
- E = W * f; S3 += E; \
- E = W * g; S2 += E; \
- E = W * h; S1 += E; \
- a = lp[K]; \
- E = W * a; S0 += E
-
-# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
-# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
-# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
-# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
-# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
-# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
-# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
-# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
-
- STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
- STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
-
- STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
- STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
-
- STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
- STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
-
- STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
- STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
-
- STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
- STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
-
- if (S0 > L_max) { L_max = S0; Nc = lambda; }
- if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
- if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
- if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
- if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
- if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
- if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
- if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
- if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
- }
- *Nc_out = Nc;
-
- if (L_max <= 0.) {
- *bc_out = 0;
- return;
- }
-
- /* Compute the power of the reconstructed short term residual
- * signal dp[..]
- */
- dp_float -= Nc;
- L_power = 0;
- for (k = 0; k < 40; ++k) {
- register float f = dp_float[k];
- L_power += f * f;
- }
-
- if (L_max >= L_power) {
- *bc_out = 3;
- return;
- }
-
- /* Coding of the LTP gain
- * Table 4.3a must be used to obtain the level DLB[i] for the
- * quantization of the LTP gain b to get the coded version bc.
- */
- lambda = L_max / L_power * 32768.;
- for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
- *bc_out = bc;
-}
-
-#endif /* FAST */
-#endif /* USE_FLOAT_MUL */
-
-
-/* 4.2.12 */
-
-static void Long_term_analysis_filtering (
- word bc, /* IN */
- word Nc, /* IN */
- register word * dp, /* previous d [-120..-1] IN */
- register word * d, /* d [0..39] IN */
- register word * dpp, /* estimate [0..39] OUT */
- register word * e /* long term res. signal [0..39] OUT */
-)
-/*
- * In this part, we have to decode the bc parameter to compute
- * the samples of the estimate dpp[0..39]. The decoding of bc needs the
- * use of table 4.3b. The long term residual signal e[0..39]
- * is then calculated to be fed to the RPE encoding section.
- */
-{
- register int k;
- register longword ltmp;
-
-# undef STEP
-# define STEP(BP) \
- for (k = 0; k <= 39; k++) { \
- dpp[k] = GSM_MULT_R( BP, dp[k - Nc]); \
- e[k] = GSM_SUB( d[k], dpp[k] ); \
- }
-
- switch (bc) {
- case 0: STEP( 3277 ); break;
- case 1: STEP( 11469 ); break;
- case 2: STEP( 21299 ); break;
- case 3: STEP( 32767 ); break;
- }
-}
-
-void Gsm_Long_Term_Predictor ( /* 4x for 160 samples */
-
- struct gsm_state * S,
-
- word * d, /* [0..39] residual signal IN */
- word * dp, /* [-120..-1] d' IN */
-
- word * e, /* [0..39] OUT */
- word * dpp, /* [0..39] OUT */
- word * Nc, /* correlation lag OUT */
- word * bc /* gain factor OUT */
-)
-{
- assert( d ); assert( dp ); assert( e );
- assert( dpp); assert( Nc ); assert( bc );
-
-#if defined(FAST) && defined(USE_FLOAT_MUL)
- if (S->fast)
-#if defined (LTP_CUT)
- if (S->ltp_cut)
- Cut_Fast_Calculation_of_the_LTP_parameters(S,
- d, dp, bc, Nc);
- else
-#endif /* LTP_CUT */
- Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc );
- else
-#endif /* FAST & USE_FLOAT_MUL */
-#ifdef LTP_CUT
- if (S->ltp_cut)
- Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc);
- else
-#endif
- Calculation_of_the_LTP_parameters(d, dp, bc, Nc);
-
- Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );
-}
-
-/* 4.3.2 */
-void Gsm_Long_Term_Synthesis_Filtering (
- struct gsm_state * S,
-
- word Ncr,
- word bcr,
- register word * erp, /* [0..39] IN */
- register word * drp /* [-120..-1] IN, [-120..40] OUT */
-)
-/*
- * This procedure uses the bcr and Ncr parameter to realize the
- * long term synthesis filtering. The decoding of bcr needs
- * table 4.3b.
- */
-{
- register longword ltmp; /* for ADD */
- register int k;
- word brp, drpp, Nr;
-
- /* Check the limits of Nr.
- */
- Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
- S->nrp = Nr;
- assert(Nr >= 40 && Nr <= 120);
-
- /* Decoding of the LTP gain bcr
- */
- brp = gsm_QLB[ bcr ];
-
- /* Computation of the reconstructed short term residual
- * signal drp[0..39]
- */
- assert(brp != MIN_WORD);
-
- for (k = 0; k <= 39; k++) {
- drpp = GSM_MULT_R( brp, drp[ k - Nr ] );
- drp[k] = GSM_ADD( erp[k], drpp );
- }
-
- /*
- * Update of the reconstructed short term residual signal
- * drp[ -1..-120 ]
- */
-
- for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
-}
--- a/src/gsm/lpc.c
+++ /dev/null
@@ -1,338 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/lpc.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/*
- * 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
- */
-
-/* 4.2.4 */
-
-
-static void Autocorrelation (
- word * s, /* [0..159] IN/OUT */
- longword * L_ACF) /* [0..8] OUT */
-/*
- * The goal is to compute the array L_ACF[k]. The signal s[i] must
- * be scaled in order to avoid an overflow situation.
- */
-{
- register int k, i;
-
- word temp, smax, scalauto;
-
-#ifdef USE_FLOAT_MUL
- float float_s[160];
-#endif
-
- /* Dynamic scaling of the array s[0..159]
- */
-
- /* Search for the maximum.
- */
- smax = 0;
- for (k = 0; k <= 159; k++) {
- temp = GSM_ABS( s[k] );
- if (temp > smax) smax = temp;
- }
-
- /* Computation of the scaling factor.
- */
- if (smax == 0) scalauto = 0;
- else {
- assert(smax > 0);
- scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
- }
-
- /* Scaling of the array s[0...159]
- */
-
- if (scalauto > 0) {
-
-# ifdef USE_FLOAT_MUL
-# define SCALE(n) \
- case n: for (k = 0; k <= 159; k++) \
- float_s[k] = (float) \
- (s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\
- break;
-# else
-# define SCALE(n) \
- case n: for (k = 0; k <= 159; k++) \
- s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
- break;
-# endif /* USE_FLOAT_MUL */
-
- switch (scalauto) {
- SCALE(1)
- SCALE(2)
- SCALE(3)
- SCALE(4)
- }
-# undef SCALE
- }
-# ifdef USE_FLOAT_MUL
- else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k];
-# endif
-
- /* Compute the L_ACF[..].
- */
- {
-# ifdef USE_FLOAT_MUL
- register float * sp = float_s;
- register float sl = *sp;
-
-# define STEP(k) L_ACF[k] += (longword)(sl * sp[ -(k) ]);
-# else
- word * sp = s;
- word sl = *sp;
-
-# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]);
-# endif
-
-# define NEXTI sl = *++sp
-
-
- for (k = 9; k--; L_ACF[k] = 0) ;
-
- STEP (0);
- NEXTI;
- STEP(0); STEP(1);
- NEXTI;
- STEP(0); STEP(1); STEP(2);
- NEXTI;
- STEP(0); STEP(1); STEP(2); STEP(3);
- NEXTI;
- STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
- NEXTI;
- STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
- NEXTI;
- STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
- NEXTI;
- STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
-
- for (i = 8; i <= 159; i++) {
-
- NEXTI;
-
- STEP(0);
- STEP(1); STEP(2); STEP(3); STEP(4);
- STEP(5); STEP(6); STEP(7); STEP(8);
- }
-
- for (k = 9; k--; L_ACF[k] <<= 1) ;
-
- }
- /* Rescaling of the array s[0..159]
- */
- if (scalauto > 0) {
- assert(scalauto <= 4);
- for (k = 160; k--; *s++ <<= scalauto) ;
- }
-}
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
-
-static void Fast_Autocorrelation (
- word * s, /* [0..159] IN/OUT */
- longword * L_ACF) /* [0..8] OUT */
-{
- register int k, i;
- float f_L_ACF[9];
- float scale;
-
- float s_f[160];
- register float *sf = s_f;
-
- for (i = 0; i < 160; ++i) sf[i] = s[i];
- for (k = 0; k <= 8; k++) {
- register float L_temp2 = 0;
- register float *sfl = sf - k;
- for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i];
- f_L_ACF[k] = L_temp2;
- }
- scale = MAX_LONGWORD / f_L_ACF[0];
-
- for (k = 0; k <= 8; k++) {
- L_ACF[k] = f_L_ACF[k] * scale;
- }
-}
-#endif /* defined (USE_FLOAT_MUL) && defined (FAST) */
-
-/* 4.2.5 */
-
-static void Reflection_coefficients (
- longword * L_ACF, /* 0...8 IN */
- register word * r /* 0...7 OUT */
-)
-{
- register int i, m, n;
- register word temp;
- register longword ltmp;
- word ACF[9]; /* 0..8 */
- word P[ 9]; /* 0..8 */
- word K[ 9]; /* 2..8 */
-
- /* Schur recursion with 16 bits arithmetic.
- */
-
- if (L_ACF[0] == 0) {
- for (i = 8; i--; *r++ = 0) ;
- return;
- }
-
- assert( L_ACF[0] != 0 );
- temp = gsm_norm( L_ACF[0] );
-
- assert(temp >= 0 && temp < 32);
-
- /* ? overflow ? */
- for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
-
- /* Initialize array P[..] and K[..] for the recursion.
- */
-
- for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
- for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
-
- /* Compute reflection coefficients
- */
- for (n = 1; n <= 8; n++, r++) {
-
- temp = P[1];
- temp = GSM_ABS(temp);
- if (P[0] < temp) {
- for (i = n; i <= 8; i++) *r++ = 0;
- return;
- }
-
- *r = gsm_div( temp, P[0] );
-
- assert(*r >= 0);
- if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */
- assert (*r != MIN_WORD);
- if (n == 8) return;
-
- /* Schur recursion
- */
- temp = GSM_MULT_R( P[1], *r );
- P[0] = GSM_ADD( P[0], temp );
-
- for (m = 1; m <= 8 - n; m++) {
- temp = GSM_MULT_R( K[ m ], *r );
- P[m] = GSM_ADD( P[ m+1 ], temp );
-
- temp = GSM_MULT_R( P[ m+1 ], *r );
- K[m] = GSM_ADD( K[ m ], temp );
- }
- }
-}
-
-/* 4.2.6 */
-
-static void Transformation_to_Log_Area_Ratios (
- register word * r /* 0..7 IN/OUT */
-)
-/*
- * The following scaling for r[..] and LAR[..] has been used:
- *
- * r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1.
- * LAR[..] = integer( real_LAR[..] * 16384 );
- * with -1.625 <= real_LAR <= 1.625
- */
-{
- register word temp;
- register int i;
-
-
- /* Computation of the LAR[0..7] from the r[0..7]
- */
- for (i = 1; i <= 8; i++, r++) {
-
- temp = *r;
- temp = GSM_ABS(temp);
- assert(temp >= 0);
-
- if (temp < 22118) {
- temp >>= 1;
- } else if (temp < 31130) {
- assert( temp >= 11059 );
- temp -= 11059;
- } else {
- assert( temp >= 26112 );
- temp -= 26112;
- temp <<= 2;
- }
-
- *r = *r < 0 ? -temp : temp;
- assert( *r != MIN_WORD );
- }
-}
-
-/* 4.2.7 */
-
-static void Quantization_and_coding (
- register word * LAR /* [0..7] IN/OUT */
-)
-{
- register word temp;
- longword ltmp;
-
-
- /* This procedure needs four tables; the following equations
- * give the optimum scaling for the constants:
- *
- * A[0..7] = integer( real_A[0..7] * 1024 )
- * B[0..7] = integer( real_B[0..7] * 512 )
- * MAC[0..7] = maximum of the LARc[0..7]
- * MIC[0..7] = minimum of the LARc[0..7]
- */
-
-# undef STEP
-# define STEP( A, B, MAC, MIC ) \
- temp = GSM_MULT( A, *LAR ); \
- temp = GSM_ADD( temp, B ); \
- temp = GSM_ADD( temp, 256 ); \
- temp = SASR( temp, 9 ); \
- *LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
- LAR++;
-
- STEP( 20480, 0, 31, -32 );
- STEP( 20480, 0, 31, -32 );
- STEP( 20480, 2048, 15, -16 );
- STEP( 20480, -2560, 15, -16 );
-
- STEP( 13964, 94, 7, -8 );
- STEP( 15360, -1792, 7, -8 );
- STEP( 8534, -341, 3, -4 );
- STEP( 9036, -1144, 3, -4 );
-
-# undef STEP
-}
-
-void Gsm_LPC_Analysis (
- struct gsm_state *S,
- word * s, /* 0..159 signals IN/OUT */
- word * LARc) /* 0..7 LARc's OUT */
-{
- longword L_ACF[9];
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
- if (S->fast) Fast_Autocorrelation (s, L_ACF );
- else
-#endif
- Autocorrelation (s, L_ACF );
- Reflection_coefficients (L_ACF, LARc );
- Transformation_to_Log_Area_Ratios (LARc);
- Quantization_and_coding (LARc);
-}
--- a/src/gsm/preprocess.c
+++ /dev/null
@@ -1,112 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/preprocess.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/* 4.2.0 .. 4.2.3 PREPROCESSING SECTION
- *
- * After A-law to linear conversion (or directly from the
- * Ato D converter) the following scaling is assumed for
- * input to the RPE-LTP algorithm:
- *
- * in: 0.1.....................12
- * S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
- *
- * Where S is the sign bit, v a valid bit, and * a "don't care" bit.
- * The original signal is called sop[..]
- *
- * out: 0.1................... 12
- * S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
- */
-
-
-void Gsm_Preprocess (
- struct gsm_state * S,
- word * s,
- word * so ) /* [0..159] IN/OUT */
-{
-
- word z1 = S->z1;
- longword L_z2 = S->L_z2;
- word mp = S->mp;
-
- word s1;
- longword L_s2;
-
- longword L_temp;
-
- word msp, lsp;
- word SO;
-
- longword ltmp; /* for ADD */
- ulongword utmp; /* for L_ADD */
-
- register int k = 160;
-
- while (k--) {
-
- /* 4.2.1 Downscaling of the input signal
- */
- SO = SASR( *s, 3 ) << 2;
- s++;
-
- assert (SO >= -0x4000); /* downscaled by */
- assert (SO <= 0x3FFC); /* previous routine. */
-
-
- /* 4.2.2 Offset compensation
- *
- * This part implements a high-pass filter and requires extended
- * arithmetic precision for the recursive part of this filter.
- * The input of this procedure is the array so[0...159] and the
- * output the array sof[ 0...159 ].
- */
- /* Compute the non-recursive part
- */
-
- s1 = SO - z1; /* s1 = gsm_sub( *so, z1 ); */
- z1 = SO;
-
- assert(s1 != MIN_WORD);
-
- /* Compute the recursive part
- */
- L_s2 = s1;
- L_s2 <<= 15;
-
- /* Execution of a 31 bv 16 bits multiplication
- */
-
- msp = SASR( L_z2, 15 );
- lsp = L_z2-((longword)msp<<15); /* gsm_L_sub(L_z2,(msp<<15)); */
-
- L_s2 += GSM_MULT_R( lsp, 32735 );
- L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
- L_z2 = GSM_L_ADD( L_temp, L_s2 );
-
- /* Compute sof[k] with rounding
- */
- L_temp = GSM_L_ADD( L_z2, 16384 );
-
- /* 4.2.3 Preemphasis
- */
-
- msp = GSM_MULT_R( mp, -28180 );
- mp = SASR( L_temp, 15 );
- *so++ = GSM_ADD( mp, msp );
- }
-
- S->z1 = z1;
- S->L_z2 = L_z2;
- S->mp = mp;
-}
--- a/src/gsm/private.h
+++ /dev/null
@@ -1,264 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/*$Header: /cvsroot/sox/sox/src/gsm/Attic/private.h,v 1.1 2001/11/14 03:31:26 cbagwell Exp $*/
-
-#ifndef PRIVATE_H
-#define PRIVATE_H
-
-typedef short word; /* 16 bit signed int */
-typedef long longword; /* 32 bit signed int */
-
-typedef unsigned short uword; /* unsigned word */
-typedef unsigned long ulongword; /* unsigned longword */
-
-struct gsm_state {
-
- word dp0[ 280 ];
-
- word z1; /* preprocessing.c, Offset_com. */
- longword L_z2; /* Offset_com. */
- int mp; /* Preemphasis */
-
- word u[8]; /* short_term_aly_filter.c */
- word LARpp[2][8]; /* */
- word j; /* */
-
- word ltp_cut; /* long_term.c, LTP crosscorr. */
- word nrp; /* 40 */ /* long_term.c, synthesis */
- word v[9]; /* short_term.c, synthesis */
- word msr; /* decoder.c, Postprocessing */
-
- char verbose; /* only used if !NDEBUG */
- char fast; /* only used if FAST */
-
- char wav_fmt; /* only used if WAV49 defined */
- unsigned char frame_index; /* odd/even chaining */
- unsigned char frame_chain; /* half-byte to carry forward */
-};
-
-
-#define MIN_WORD (-32767 - 1)
-#define MAX_WORD 32767
-
-#define MIN_LONGWORD (-2147483647 - 1)
-#define MAX_LONGWORD 2147483647
-
-#ifdef SASR /* flag: >> is a signed arithmetic shift right */
-#undef SASR
-#define SASR(x, by) ((x) >> (by))
-#else
-#define SASR(x, by) ((x) >= 0 ? (x) >> (by) : (~(-((x) + 1) >> (by))))
-#endif /* SASR */
-
-/*
- * Prototypes from add.c
- */
-extern word gsm_mult (word a, word b);
-extern longword gsm_L_mult (word a, word b);
-extern word gsm_mult_r (word a, word b);
-
-extern word gsm_div (word num, word denum);
-
-extern word gsm_add ( word a, word b );
-extern longword gsm_L_add ( longword a, longword b );
-
-extern word gsm_sub (word a, word b);
-extern longword gsm_L_sub (longword a, longword b);
-
-extern word gsm_abs (word a);
-
-extern word gsm_norm ( longword a );
-
-extern longword gsm_L_asl (longword a, int n);
-extern word gsm_asl (word a, int n);
-
-extern longword gsm_L_asr (longword a, int n);
-extern word gsm_asr (word a, int n);
-
-/*
- * Inlined functions from add.h
- */
-
-/*
- * #define GSM_MULT_R(a, b) (* word a, word b, !(a == b == MIN_WORD) *) \
- * (0x0FFFF & SASR(((longword)(a) * (longword)(b) + 16384), 15))
- */
-#define GSM_MULT_R(a, b) /* word a, word b, !(a == b == MIN_WORD) */ \
- (SASR( ((longword)(a) * (longword)(b) + 16384), 15 ))
-
-# define GSM_MULT(a,b) /* word a, word b, !(a == b == MIN_WORD) */ \
- (SASR( ((longword)(a) * (longword)(b)), 15 ))
-
-# define GSM_L_MULT(a, b) /* word a, word b */ \
- (((longword)(a) * (longword)(b)) << 1)
-
-# define GSM_L_ADD(a, b) \
- ( (a) < 0 ? ( (b) >= 0 ? (a) + (b) \
- : (utmp = (ulongword)-((a) + 1) + (ulongword)-((b) + 1)) \
- >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)utmp-2 ) \
- : ((b) <= 0 ? (a) + (b) \
- : (utmp = (ulongword)(a) + (ulongword)(b)) >= MAX_LONGWORD \
- ? MAX_LONGWORD : utmp))
-
-/*
- * # define GSM_ADD(a, b) \
- * ((ltmp = (longword)(a) + (longword)(b)) >= MAX_WORD \
- * ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
- */
-/* Nonportable, but faster: */
-
-#define GSM_ADD(a, b) \
- ((ulongword)((ltmp = (longword)(a) + (longword)(b)) - MIN_WORD) > \
- MAX_WORD - MIN_WORD ? (ltmp > 0 ? MAX_WORD : MIN_WORD) : ltmp)
-
-# define GSM_SUB(a, b) \
- ((ltmp = (longword)(a) - (longword)(b)) >= MAX_WORD \
- ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
-
-# define GSM_ABS(a) ((a) < 0 ? ((a) == MIN_WORD ? MAX_WORD : -(a)) : (a))
-
-/* Use these if necessary:
-
-# define GSM_MULT_R(a, b) gsm_mult_r(a, b)
-# define GSM_MULT(a, b) gsm_mult(a, b)
-# define GSM_L_MULT(a, b) gsm_L_mult(a, b)
-
-# define GSM_L_ADD(a, b) gsm_L_add(a, b)
-# define GSM_ADD(a, b) gsm_add(a, b)
-# define GSM_SUB(a, b) gsm_sub(a, b)
-
-# define GSM_ABS(a) gsm_abs(a)
-
-*/
-
-/*
- * More prototypes from implementations..
- */
-extern void Gsm_Coder (
- struct gsm_state * S,
- word * s, /* [0..159] samples IN */
- word * LARc, /* [0..7] LAR coefficients OUT */
- word * Nc, /* [0..3] LTP lag OUT */
- word * bc, /* [0..3] coded LTP gain OUT */
- word * Mc, /* [0..3] RPE grid selection OUT */
- word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
- word * xMc /* [13*4] normalized RPE samples OUT */);
-
-extern void Gsm_Long_Term_Predictor ( /* 4x for 160 samples */
- struct gsm_state * S,
- word * d, /* [0..39] residual signal IN */
- word * dp, /* [-120..-1] d' IN */
- word * e, /* [0..40] OUT */
- word * dpp, /* [0..40] OUT */
- word * Nc, /* correlation lag OUT */
- word * bc /* gain factor OUT */);
-
-extern void Gsm_LPC_Analysis (
- struct gsm_state * S,
- word * s, /* 0..159 signals IN/OUT */
- word * LARc); /* 0..7 LARc's OUT */
-
-extern void Gsm_Preprocess (
- struct gsm_state * S,
- word * s, word * so);
-
-extern void Gsm_Encoding (
- struct gsm_state * S,
- word * e,
- word * ep,
- word * xmaxc,
- word * Mc,
- word * xMc);
-
-extern void Gsm_Short_Term_Analysis_Filter (
- struct gsm_state * S,
- word * LARc, /* coded log area ratio [0..7] IN */
- word * d /* st res. signal [0..159] IN/OUT */);
-
-extern void Gsm_Decoder (
- struct gsm_state * S,
- word * LARcr, /* [0..7] IN */
- word * Ncr, /* [0..3] IN */
- word * bcr, /* [0..3] IN */
- word * Mcr, /* [0..3] IN */
- word * xmaxcr, /* [0..3] IN */
- word * xMcr, /* [0..13*4] IN */
- word * s); /* [0..159] OUT */
-
-extern void Gsm_Decoding (
- struct gsm_state * S,
- word xmaxcr,
- word Mcr,
- word * xMcr, /* [0..12] IN */
- word * erp); /* [0..39] OUT */
-
-extern void Gsm_Long_Term_Synthesis_Filtering (
- struct gsm_state* S,
- word Ncr,
- word bcr,
- word * erp, /* [0..39] IN */
- word * drp); /* [-120..-1] IN, [0..40] OUT */
-
-void Gsm_RPE_Decoding (
- struct gsm_state *S,
- word xmaxcr,
- word Mcr,
- word * xMcr, /* [0..12], 3 bits IN */
- word * erp); /* [0..39] OUT */
-
-void Gsm_RPE_Encoding (
- struct gsm_state * S,
- word * e, /* -5..-1][0..39][40..44 IN/OUT */
- word * xmaxc, /* OUT */
- word * Mc, /* OUT */
- word * xMc); /* [0..12] OUT */
-
-extern void Gsm_Short_Term_Synthesis_Filter (
- struct gsm_state * S,
- word * LARcr, /* log area ratios [0..7] IN */
- word * drp, /* received d [0...39] IN */
- word * s); /* signal s [0..159] OUT */
-
-extern void Gsm_Update_of_reconstructed_short_time_residual_signal (
- word * dpp, /* [0...39] IN */
- word * ep, /* [0...39] IN */
- word * dp); /* [-120...-1] IN/OUT */
-
-/*
- * Tables from table.c
- */
-#ifndef GSM_TABLE_C
-
-extern word gsm_A[8], gsm_B[8], gsm_MIC[8], gsm_MAC[8];
-extern word gsm_INVA[8];
-extern word gsm_DLB[4], gsm_QLB[4];
-extern word gsm_H[11];
-extern word gsm_NRFAC[8];
-extern word gsm_FAC[8];
-
-#endif /* GSM_TABLE_C */
-
-/*
- * Debugging
- */
-#ifdef NDEBUG
-
-# define gsm_debug_words(a, b, c, d) /* nil */
-# define gsm_debug_longwords(a, b, c, d) /* nil */
-# define gsm_debug_word(a, b) /* nil */
-# define gsm_debug_longword(a, b) /* nil */
-
-#else /* !NDEBUG => DEBUG */
-
- extern void gsm_debug_words (char * name, int, int, word *);
- extern void gsm_debug_longwords (char * name, int, int, longword *);
- extern void gsm_debug_longword (char * name, longword);
- extern void gsm_debug_word (char * name, word);
-
-#endif /* !NDEBUG */
-
-#endif /* PRIVATE_H */
--- a/src/gsm/rpe.c
+++ /dev/null
@@ -1,487 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/rpe.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
- */
-
-/* 4.2.13 */
-
-static void Weighting_filter (
- register word * e, /* signal [-5..0.39.44] IN */
- word * x /* signal [0..39] OUT */
-)
-/*
- * The coefficients of the weighting filter are stored in a table
- * (see table 4.4). The following scaling is used:
- *
- * H[0..10] = integer( real_H[ 0..10] * 8192 );
- */
-{
- /* word wt[ 50 ]; */
-
- register longword L_result;
- register int k /* , i */ ;
-
- /* Initialization of a temporary working array wt[0...49]
- */
-
- /* for (k = 0; k <= 4; k++) wt[k] = 0;
- * for (k = 5; k <= 44; k++) wt[k] = *e++;
- * for (k = 45; k <= 49; k++) wt[k] = 0;
- *
- * (e[-5..-1] and e[40..44] are allocated by the caller,
- * are initially zero and are not written anywhere.)
- */
- e -= 5;
-
- /* Compute the signal x[0..39]
- */
- for (k = 0; k <= 39; k++) {
-
- L_result = 8192 >> 1;
-
- /* for (i = 0; i <= 10; i++) {
- * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
- * L_result = GSM_L_ADD( L_result, L_temp );
- * }
- */
-
-#undef STEP
-#define STEP( i, H ) (e[ k + i ] * (longword)H)
-
- /* Every one of these multiplications is done twice --
- * but I don't see an elegant way to optimize this.
- * Do you?
- */
-
-#ifdef STUPID_COMPILER
- L_result += STEP( 0, -134 ) ;
- L_result += STEP( 1, -374 ) ;
- /* + STEP( 2, 0 ) */
- L_result += STEP( 3, 2054 ) ;
- L_result += STEP( 4, 5741 ) ;
- L_result += STEP( 5, 8192 ) ;
- L_result += STEP( 6, 5741 ) ;
- L_result += STEP( 7, 2054 ) ;
- /* + STEP( 8, 0 ) */
- L_result += STEP( 9, -374 ) ;
- L_result += STEP( 10, -134 ) ;
-#else
- L_result +=
- STEP( 0, -134 )
- + STEP( 1, -374 )
- /* + STEP( 2, 0 ) */
- + STEP( 3, 2054 )
- + STEP( 4, 5741 )
- + STEP( 5, 8192 )
- + STEP( 6, 5741 )
- + STEP( 7, 2054 )
- /* + STEP( 8, 0 ) */
- + STEP( 9, -374 )
- + STEP(10, -134 )
- ;
-#endif
-
- /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
- * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
- *
- * x[k] = SASR( L_result, 16 );
- */
-
- /* 2 adds vs. >>16 => 14, minus one shift to compensate for
- * those we lost when replacing L_MULT by '*'.
- */
-
- L_result = SASR( L_result, 13 );
- x[k] = ( L_result < MIN_WORD ? MIN_WORD
- : (L_result > MAX_WORD ? MAX_WORD : L_result ));
- }
-}
-
-/* 4.2.14 */
-
-static void RPE_grid_selection (
- word * x, /* [0..39] IN */
- word * xM, /* [0..12] OUT */
- word * Mc_out /* OUT */
-)
-/*
- * The signal x[0..39] is used to select the RPE grid which is
- * represented by Mc.
- */
-{
- /* register word temp1; */
- register int /* m, */ i;
- register longword L_result, L_temp;
- longword EM; /* xxx should be L_EM? */
- word Mc;
-
- longword L_common_0_3;
-
- EM = 0;
- Mc = 0;
-
- /* for (m = 0; m <= 3; m++) {
- * L_result = 0;
- *
- *
- * for (i = 0; i <= 12; i++) {
- *
- * temp1 = SASR( x[m + 3*i], 2 );
- *
- * assert(temp1 != MIN_WORD);
- *
- * L_temp = GSM_L_MULT( temp1, temp1 );
- * L_result = GSM_L_ADD( L_temp, L_result );
- * }
- *
- * if (L_result > EM) {
- * Mc = m;
- * EM = L_result;
- * }
- * }
- */
-
-#undef STEP
-#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
- L_result += L_temp * L_temp;
-
- /* common part of 0 and 3 */
-
- L_result = 0;
- STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
- STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
- STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
- L_common_0_3 = L_result;
-
- /* i = 0 */
-
- STEP( 0, 0 );
- L_result <<= 1; /* implicit in L_MULT */
- EM = L_result;
-
- /* i = 1 */
-
- L_result = 0;
- STEP( 1, 0 );
- STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
- STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
- STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
- L_result <<= 1;
- if (L_result > EM) {
- Mc = 1;
- EM = L_result;
- }
-
- /* i = 2 */
-
- L_result = 0;
- STEP( 2, 0 );
- STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
- STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
- STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
- L_result <<= 1;
- if (L_result > EM) {
- Mc = 2;
- EM = L_result;
- }
-
- /* i = 3 */
-
- L_result = L_common_0_3;
- STEP( 3, 12 );
- L_result <<= 1;
- if (L_result > EM) {
- Mc = 3;
- EM = L_result;
- }
-
- /**/
-
- /* Down-sampling by a factor 3 to get the selected xM[0..12]
- * RPE sequence.
- */
- for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
- *Mc_out = Mc;
-}
-
-/* 4.12.15 */
-
-static void APCM_quantization_xmaxc_to_exp_mant (
- word xmaxc, /* IN */
- word * exp_out, /* OUT */
- word * mant_out ) /* OUT */
-{
- word exp, mant;
-
- /* Compute exponent and mantissa of the decoded version of xmaxc
- */
-
- exp = 0;
- if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
- mant = xmaxc - (exp << 3);
-
- if (mant == 0) {
- exp = -4;
- mant = 7;
- }
- else {
- while (mant <= 7) {
- mant = mant << 1 | 1;
- exp--;
- }
- mant -= 8;
- }
-
- assert( exp >= -4 && exp <= 6 );
- assert( mant >= 0 && mant <= 7 );
-
- *exp_out = exp;
- *mant_out = mant;
-}
-
-static void APCM_quantization (
- word * xM, /* [0..12] IN */
-
- word * xMc, /* [0..12] OUT */
- word * mant_out, /* OUT */
- word * exp_out, /* OUT */
- word * xmaxc_out /* OUT */
-)
-{
- int i, itest;
-
- word xmax, xmaxc, temp, temp1, temp2;
- word exp, mant;
-
-
- /* Find the maximum absolute value xmax of xM[0..12].
- */
-
- xmax = 0;
- for (i = 0; i <= 12; i++) {
- temp = xM[i];
- temp = GSM_ABS(temp);
- if (temp > xmax) xmax = temp;
- }
-
- /* Qantizing and coding of xmax to get xmaxc.
- */
-
- exp = 0;
- temp = SASR( xmax, 9 );
- itest = 0;
-
- for (i = 0; i <= 5; i++) {
-
- itest |= (temp <= 0);
- temp = SASR( temp, 1 );
-
- assert(exp <= 5);
- if (itest == 0) exp++; /* exp = add (exp, 1) */
- }
-
- assert(exp <= 6 && exp >= 0);
- temp = exp + 5;
-
- assert(temp <= 11 && temp >= 0);
- xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
-
- /* Quantizing and coding of the xM[0..12] RPE sequence
- * to get the xMc[0..12]
- */
-
- APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
-
- /* This computation uses the fact that the decoded version of xmaxc
- * can be calculated by using the exponent and the mantissa part of
- * xmaxc (logarithmic table).
- * So, this method avoids any division and uses only a scaling
- * of the RPE samples by a function of the exponent. A direct
- * multiplication by the inverse of the mantissa (NRFAC[0..7]
- * found in table 4.5) gives the 3 bit coded version xMc[0..12]
- * of the RPE samples.
- */
-
-
- /* Direct computation of xMc[0..12] using table 4.5
- */
-
- assert( exp <= 4096 && exp >= -4096);
- assert( mant >= 0 && mant <= 7 );
-
- temp1 = 6 - exp; /* normalization by the exponent */
- temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
-
- for (i = 0; i <= 12; i++) {
-
- assert(temp1 >= 0 && temp1 < 16);
-
- temp = xM[i] << temp1;
- temp = GSM_MULT( temp, temp2 );
- temp = SASR(temp, 12);
- xMc[i] = temp + 4; /* see note below */
- }
-
- /* NOTE: This equation is used to make all the xMc[i] positive.
- */
-
- *mant_out = mant;
- *exp_out = exp;
- *xmaxc_out = xmaxc;
-}
-
-/* 4.2.16 */
-
-static void APCM_inverse_quantization (
- register word * xMc, /* [0..12] IN */
- word mant,
- word exp,
- register word * xMp) /* [0..12] OUT */
-/*
- * This part is for decoding the RPE sequence of coded xMc[0..12]
- * samples to obtain the xMp[0..12] array. Table 4.6 is used to get
- * the mantissa of xmaxc (FAC[0..7]).
- */
-{
- int i;
- word temp, temp1, temp2, temp3;
- longword ltmp;
-
- assert( mant >= 0 && mant <= 7 );
-
- temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
- temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
- temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
-
- for (i = 13; i--;) {
-
- assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
-
- /* temp = gsm_sub( *xMc++ << 1, 7 ); */
- temp = (*xMc++ << 1) - 7; /* restore sign */
- assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
-
- temp <<= 12; /* 16 bit signed */
- temp = GSM_MULT_R( temp1, temp );
- temp = GSM_ADD( temp, temp3 );
- *xMp++ = gsm_asr( temp, temp2 );
- }
-}
-
-/* 4.2.17 */
-
-static void RPE_grid_positioning (
- word Mc, /* grid position IN */
- register word * xMp, /* [0..12] IN */
- register word * ep /* [0..39] OUT */
-)
-/*
- * This procedure computes the reconstructed long term residual signal
- * ep[0..39] for the LTP analysis filter. The inputs are the Mc
- * which is the grid position selection and the xMp[0..12] decoded
- * RPE samples which are upsampled by a factor of 3 by inserting zero
- * values.
- */
-{
- int i = 13;
-
- assert(0 <= Mc && Mc <= 3);
-
- switch (Mc) {
- case 3: *ep++ = 0;
- case 2: do {
- *ep++ = 0;
- case 1: *ep++ = 0;
- case 0: *ep++ = *xMp++;
- } while (--i);
- }
- while (++Mc < 4) *ep++ = 0;
-
- /*
-
- int i, k;
- for (k = 0; k <= 39; k++) ep[k] = 0;
- for (i = 0; i <= 12; i++) {
- ep[ Mc + (3*i) ] = xMp[i];
- }
- */
-}
-
-/* 4.2.18 */
-
-/* This procedure adds the reconstructed long term residual signal
- * ep[0..39] to the estimated signal dpp[0..39] from the long term
- * analysis filter to compute the reconstructed short term residual
- * signal dp[-40..-1]; also the reconstructed short term residual
- * array dp[-120..-41] is updated.
- */
-
-#if 0 /* Has been inlined in code.c */
-void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
- word * dpp, /* [0...39] IN */
- word * ep, /* [0...39] IN */
- word * dp) /* [-120...-1] IN/OUT */
-{
- int k;
-
- for (k = 0; k <= 79; k++)
- dp[ -120 + k ] = dp[ -80 + k ];
-
- for (k = 0; k <= 39; k++)
- dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
-}
-#endif /* Has been inlined in code.c */
-
-void Gsm_RPE_Encoding (
-
- struct gsm_state * S,
-
- word * e, /* -5..-1][0..39][40..44 IN/OUT */
- word * xmaxc, /* OUT */
- word * Mc, /* OUT */
- word * xMc) /* [0..12] OUT */
-{
- word x[40];
- word xM[13], xMp[13];
- word mant, exp;
-
- Weighting_filter(e, x);
- RPE_grid_selection(x, xM, Mc);
-
- APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
- APCM_inverse_quantization( xMc, mant, exp, xMp);
-
- RPE_grid_positioning( *Mc, xMp, e );
-
-}
-
-void Gsm_RPE_Decoding (
- struct gsm_state * S,
-
- word xmaxcr,
- word Mcr,
- word * xMcr, /* [0..12], 3 bits IN */
- word * erp /* [0..39] OUT */
-)
-{
- word exp, mant;
- word xMp[ 13 ];
-
- APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
- APCM_inverse_quantization( xMcr, mant, exp, xMp );
- RPE_grid_positioning( Mcr, xMp, erp );
-
-}
--- a/src/gsm/short_term.c
+++ /dev/null
@@ -1,428 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/short_term.c,v 1.1 2001/11/14 03:31:26 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/*
- * SHORT TERM ANALYSIS FILTERING SECTION
- */
-
-/* 4.2.8 */
-
-static void Decoding_of_the_coded_Log_Area_Ratios (
- word * LARc, /* coded log area ratio [0..7] IN */
- word * LARpp) /* out: decoded .. */
-{
- register word temp1 /* , temp2 */;
- register long ltmp; /* for GSM_ADD */
-
- /* This procedure requires for efficient implementation
- * two tables.
- *
- * INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
- * MIC[1..8] = minimum value of the LARc[1..8]
- */
-
- /* Compute the LARpp[1..8]
- */
-
- /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
- *
- * temp1 = GSM_ADD( *LARc, *MIC ) << 10;
- * temp2 = *B << 1;
- * temp1 = GSM_SUB( temp1, temp2 );
- *
- * assert(*INVA != MIN_WORD);
- *
- * temp1 = GSM_MULT_R( *INVA, temp1 );
- * *LARpp = GSM_ADD( temp1, temp1 );
- * }
- */
-
-#undef STEP
-#define STEP( B, MIC, INVA ) \
- temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
- temp1 = GSM_SUB( temp1, B << 1 ); \
- temp1 = GSM_MULT_R( INVA, temp1 ); \
- *LARpp++ = GSM_ADD( temp1, temp1 );
-
- STEP( 0, -32, 13107 );
- STEP( 0, -32, 13107 );
- STEP( 2048, -16, 13107 );
- STEP( -2560, -16, 13107 );
-
- STEP( 94, -8, 19223 );
- STEP( -1792, -8, 17476 );
- STEP( -341, -4, 31454 );
- STEP( -1144, -4, 29708 );
-
- /* NOTE: the addition of *MIC is used to restore
- * the sign of *LARc.
- */
-}
-
-/* 4.2.9 */
-/* Computation of the quantized reflection coefficients
- */
-
-/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
- */
-
-/*
- * Within each frame of 160 analyzed speech samples the short term
- * analysis and synthesis filters operate with four different sets of
- * coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
- * and the actual set of decoded LARs (LARpp(j))
- *
- * (Initial value: LARpp(j-1)[1..8] = 0.)
- */
-
-static void Coefficients_0_12 (
- register word * LARpp_j_1,
- register word * LARpp_j,
- register word * LARp)
-{
- register int i;
- register longword ltmp;
-
- for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
- *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
- *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
- }
-}
-
-static void Coefficients_13_26 (
- register word * LARpp_j_1,
- register word * LARpp_j,
- register word * LARp)
-{
- register int i;
- register longword ltmp;
- for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
- *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
- }
-}
-
-static void Coefficients_27_39 (
- register word * LARpp_j_1,
- register word * LARpp_j,
- register word * LARp)
-{
- register int i;
- register longword ltmp;
-
- for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
- *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
- *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
- }
-}
-
-
-static void Coefficients_40_159 (
- register word * LARpp_j,
- register word * LARp)
-{
- register int i;
-
- for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
- *LARp = *LARpp_j;
-}
-
-/* 4.2.9.2 */
-
-static void LARp_to_rp (
- register word * LARp) /* [0..7] IN/OUT */
-/*
- * The input of this procedure is the interpolated LARp[0..7] array.
- * The reflection coefficients, rp[i], are used in the analysis
- * filter and in the synthesis filter.
- */
-{
- register int i;
- register word temp;
- register longword ltmp;
-
- for (i = 1; i <= 8; i++, LARp++) {
-
- /* temp = GSM_ABS( *LARp );
- *
- * if (temp < 11059) temp <<= 1;
- * else if (temp < 20070) temp += 11059;
- * else temp = GSM_ADD( temp >> 2, 26112 );
- *
- * *LARp = *LARp < 0 ? -temp : temp;
- */
-
- if (*LARp < 0) {
- temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
- *LARp = - ((temp < 11059) ? temp << 1
- : ((temp < 20070) ? temp + 11059
- : GSM_ADD( temp >> 2, 26112 )));
- } else {
- temp = *LARp;
- *LARp = (temp < 11059) ? temp << 1
- : ((temp < 20070) ? temp + 11059
- : GSM_ADD( temp >> 2, 26112 ));
- }
- }
-}
-
-
-/* 4.2.10 */
-static void Short_term_analysis_filtering (
- struct gsm_state * S,
- register word * rp, /* [0..7] IN */
- register int k_n, /* k_end - k_start */
- register word * s /* [0..n-1] IN/OUT */
-)
-/*
- * This procedure computes the short term residual signal d[..] to be fed
- * to the RPE-LTP loop from the s[..] signal and from the local rp[..]
- * array (quantized reflection coefficients). As the call of this
- * procedure can be done in many ways (see the interpolation of the LAR
- * coefficient), it is assumed that the computation begins with index
- * k_start (for arrays d[..] and s[..]) and stops with index k_end
- * (k_start and k_end are defined in 4.2.9.1). This procedure also
- * needs to keep the array u[0..7] in memory for each call.
- */
-{
- register word * u = S->u;
- register int i;
- register word di, zzz, ui, sav, rpi;
- register longword ltmp;
-
- for (; k_n--; s++) {
-
- di = sav = *s;
-
- for (i = 0; i < 8; i++) { /* YYY */
-
- ui = u[i];
- rpi = rp[i];
- u[i] = sav;
-
- zzz = GSM_MULT_R(rpi, di);
- sav = GSM_ADD( ui, zzz);
-
- zzz = GSM_MULT_R(rpi, ui);
- di = GSM_ADD( di, zzz );
- }
-
- *s = di;
- }
-}
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
-
-static void Fast_Short_term_analysis_filtering (
- struct gsm_state * S,
- register word * rp, /* [0..7] IN */
- register int k_n, /* k_end - k_start */
- register word * s /* [0..n-1] IN/OUT */
-)
-{
- register word * u = S->u;
- register int i;
-
- float uf[8],
- rpf[8];
-
- register float scalef = 3.0517578125e-5;
- register float sav, di, temp;
-
- for (i = 0; i < 8; ++i) {
- uf[i] = u[i];
- rpf[i] = rp[i] * scalef;
- }
- for (; k_n--; s++) {
- sav = di = *s;
- for (i = 0; i < 8; ++i) {
- register float rpfi = rpf[i];
- register float ufi = uf[i];
-
- uf[i] = sav;
- temp = rpfi * di + ufi;
- di += rpfi * ufi;
- sav = temp;
- }
- *s = di;
- }
- for (i = 0; i < 8; ++i) u[i] = uf[i];
-}
-#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
-
-static void Short_term_synthesis_filtering (
- struct gsm_state * S,
- register word * rrp, /* [0..7] IN */
- register int k, /* k_end - k_start */
- register word * wt, /* [0..k-1] IN */
- register word * sr /* [0..k-1] OUT */
-)
-{
- register word * v = S->v;
- register int i;
- register word sri, tmp1, tmp2;
- register longword ltmp; /* for GSM_ADD & GSM_SUB */
-
- while (k--) {
- sri = *wt++;
- for (i = 8; i--;) {
-
- /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
- */
- tmp1 = rrp[i];
- tmp2 = v[i];
- tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
- ? MAX_WORD
- : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
- + 16384) >> 15)) ;
-
- sri = GSM_SUB( sri, tmp2 );
-
- /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
- */
- tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
- ? MAX_WORD
- : 0x0FFFF & (( (longword)tmp1 * (longword)sri
- + 16384) >> 15)) ;
-
- v[i+1] = GSM_ADD( v[i], tmp1);
- }
- *sr++ = v[0] = sri;
- }
-}
-
-
-#if defined(FAST) && defined(USE_FLOAT_MUL)
-
-static void Fast_Short_term_synthesis_filtering (
- struct gsm_state * S,
- register word * rrp, /* [0..7] IN */
- register int k, /* k_end - k_start */
- register word * wt, /* [0..k-1] IN */
- register word * sr /* [0..k-1] OUT */
-)
-{
- register word * v = S->v;
- register int i;
-
- float va[9], rrpa[8];
- register float scalef = 3.0517578125e-5, temp;
-
- for (i = 0; i < 8; ++i) {
- va[i] = v[i];
- rrpa[i] = (float)rrp[i] * scalef;
- }
- while (k--) {
- register float sri = *wt++;
- for (i = 8; i--;) {
- sri -= rrpa[i] * va[i];
- if (sri < -32768.) sri = -32768.;
- else if (sri > 32767.) sri = 32767.;
-
- temp = va[i] + rrpa[i] * sri;
- if (temp < -32768.) temp = -32768.;
- else if (temp > 32767.) temp = 32767.;
- va[i+1] = temp;
- }
- *sr++ = va[0] = sri;
- }
- for (i = 0; i < 9; ++i) v[i] = va[i];
-}
-
-#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
-
-void Gsm_Short_Term_Analysis_Filter (
-
- struct gsm_state * S,
-
- word * LARc, /* coded log area ratio [0..7] IN */
- word * s /* signal [0..159] IN/OUT */
-)
-{
- word * LARpp_j = S->LARpp[ S->j ];
- word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
-
- word LARp[8];
-
-#undef FILTER
-#if defined(FAST) && defined(USE_FLOAT_MUL)
-# define FILTER (* (S->fast \
- ? Fast_Short_term_analysis_filtering \
- : Short_term_analysis_filtering ))
-
-#else
-# define FILTER Short_term_analysis_filtering
-#endif
-
- Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
-
- Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, s);
-
- Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 14, s + 13);
-
- Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, s + 27);
-
- Coefficients_40_159( LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 120, s + 40);
-}
-
-void Gsm_Short_Term_Synthesis_Filter (
- struct gsm_state * S,
-
- word * LARcr, /* received log area ratios [0..7] IN */
- word * wt, /* received d [0..159] IN */
-
- word * s /* signal s [0..159] OUT */
-)
-{
- word * LARpp_j = S->LARpp[ S->j ];
- word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
-
- word LARp[8];
-
-#undef FILTER
-#if defined(FAST) && defined(USE_FLOAT_MUL)
-
-# define FILTER (* (S->fast \
- ? Fast_Short_term_synthesis_filtering \
- : Short_term_synthesis_filtering ))
-#else
-# define FILTER Short_term_synthesis_filtering
-#endif
-
- Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
-
- Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, wt, s );
-
- Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 14, wt + 13, s + 13 );
-
- Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
- LARp_to_rp( LARp );
- FILTER( S, LARp, 13, wt + 27, s + 27 );
-
- Coefficients_40_159( LARpp_j, LARp );
- LARp_to_rp( LARp );
- FILTER(S, LARp, 120, wt + 40, s + 40);
-}
--- a/src/gsm/table.c
+++ /dev/null
@@ -1,63 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
- * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/gsm/Attic/table.c,v 1.1 2001/11/14 16:57:20 cbagwell Exp $ */
-
-/* Most of these tables are inlined at their point of use.
- */
-
-/* 4.4 TABLES USED IN THE FIXED POINT IMPLEMENTATION OF THE RPE-LTP
- * CODER AND DECODER
- *
- * (Most of them inlined, so watch out.)
- */
-
-#define GSM_TABLE_C
-#include "private.h"
-#include "gsm.h"
-
-/* Table 4.1 Quantization of the Log.-Area Ratios
- */
-/* i 1 2 3 4 5 6 7 8 */
-word gsm_A[8] = {20480, 20480, 20480, 20480, 13964, 15360, 8534, 9036};
-word gsm_B[8] = { 0, 0, 2048, -2560, 94, -1792, -341, -1144};
-word gsm_MIC[8] = { -32, -32, -16, -16, -8, -8, -4, -4 };
-word gsm_MAC[8] = { 31, 31, 15, 15, 7, 7, 3, 3 };
-
-
-/* Table 4.2 Tabulation of 1/A[1..8]
- */
-word gsm_INVA[8]={ 13107, 13107, 13107, 13107, 19223, 17476, 31454, 29708 };
-
-
-/* Table 4.3a Decision level of the LTP gain quantizer
- */
-/* bc 0 1 2 3 */
-word gsm_DLB[4] = { 6554, 16384, 26214, 32767 };
-
-
-/* Table 4.3b Quantization levels of the LTP gain quantizer
- */
-/* bc 0 1 2 3 */
-word gsm_QLB[4] = { 3277, 11469, 21299, 32767 };
-
-
-/* Table 4.4 Coefficients of the weighting filter
- */
-/* i 0 1 2 3 4 5 6 7 8 9 10 */
-word gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 };
-
-
-/* Table 4.5 Normalized inverse mantissa used to compute xM/xmax
- */
-/* i 0 1 2 3 4 5 6 7 */
-word gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 };
-
-
-/* Table 4.6 Normalized direct mantissa used to compute xM/xmax
- */
-/* i 0 1 2 3 4 5 6 7 */
-word gsm_FAC[8] = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };
--- /dev/null
+++ b/src/libgsm/Makefile.gcc
@@ -1,0 +1,95 @@
+#
+# Makefile.in
+#
+# Processed by configure into a Makefile. We assume the environment in
+# which we are running is a POSIX'y environment. Thus, all of the standard
+# POSIX tools are available.
+#
+
+
+srcdir = .
+top_srcdir = ..
+prefix = /usr/local
+exec_prefix = ${prefix}
+libdir = ${exec_prefix}/lib
+mandir = ${prefix}/man
+
+# Shell commands.
+
+CC = gcc
+RANLIB = ranlib
+AR = ar r
+RM = rm -f
+
+SASR = -DSASR
+######### Define SASR if >> is a signed arithmetic shift (-1 >> 1 == -1)
+
+MULHACK = -DUSE_FLOAT_MUL
+######### Define this if your host multiplies floats faster than integers,
+######### e.g. on a SPARCstation.
+
+FAST = -DFAST
+######### Define together with USE_FLOAT_MUL to enable the GSM library's
+######### approximation option for incorrect, but good-enough results.
+
+# LTP_CUT = -DLTP_CUT
+LTP_CUT =
+######### Define to enable the GSM library's long-term correlation
+######### approximation option---faster, but worse; works for
+######### both integer and floating point multiplications.
+######### This flag is still in the experimental stage.
+
+WAV49 = -DWAV49
+#WAV49 =
+######### Define to enable the GSM library's option to pack GSM frames
+######### in the style used by the WAV #49 format. If you want to write
+######### a tool that produces .WAV files which contain GSM-encoded data,
+######### define this, and read about the GSM_OPT_WAV49 option in the
+######### manual page on gsm_option(3).
+
+# Build macros.
+
+CFLAGS = -g -O2 -Wall -DOSS_PLAYER -DFAST_ULAW_CONVERSION -DFAST_ALAW_CONVERSION -DENABLE_GSM -DHAVE_CONFIG_H $(SASR) $(MULHAC) $(FAST) $(LTP_CUT) $(WAV49) -I$(top_srcdir)/gsm
+LDFLAGS =
+LIBS = -lm -logg -lvorbis -lvorbisfile -lvorbisenc -lgsm
+
+# Objects.
+
+GSM_OBJECTS = add.o \
+ code.o \
+ decode.o \
+ long_term.o \
+ lpc.o \
+ preprocess.o \
+ rpe.o \
+ gsm_destroy.o \
+ gsm_decode.o \
+ gsm_encode.o \
+ gsm_create.o \
+ gsm_option.o \
+ short_term.o \
+ table.o
+
+
+LIBOBJS = $(GSM_OBJECTS)
+
+all: libgsm.a
+
+libgsm.a: $(LIBOBJS)
+ $(AR) libgsm.a $(LIBOBJS)
+ $(RANLIB) libgsm.a
+
+install-lib: libgsm.a
+ $(top_srcdir)/mkinstalldirs $(libdir)
+ $(top_srcdir)/mkinstalldirs $(mandir)/man3
+ $(INSTALL) -c -m 644 libgsm.a $(libdir)
+ $(RANLIB) $(libdir)/libgsm.a
+ $(INSTALL) -c -m 644 gsm.3 $(mandir)/man3
+ $(INSTALL) -c -m 644 gsm_option.3 $(mandir)/man3
+
+clean:
+ $(RM) *.o
+
+distclean:
+ $(RM) *~ *.o core
+ $(RM) Makefile
--- /dev/null
+++ b/src/libgsm/Makefile.in
@@ -1,0 +1,97 @@
+#
+# @configure_input@
+#
+
+VPATH = @srcdir@
+srcdir = @srcdir@
+top_srcdir = @top_srcdir@
+prefix = @prefix@
+exec_prefix = @exec_prefix@
+libdir = @libdir@
+mandir = @mandir@
+
+# Shell commands.
+
+CC = @CC@
+RANLIB = @RANLIB@
+INSTALL = @INSTALL@
+AR = ar r
+RM = rm -f
+
+SASR = -DSASR
+######### Define SASR if >> is a signed arithmetic shift (-1 >> 1 == -1)
+
+MULHACK = -DUSE_FLOAT_MUL
+######### Define this if your host multiplies floats faster than integers,
+######### e.g. on a SPARCstation.
+
+FAST = -DFAST
+######### Define together with USE_FLOAT_MUL to enable the GSM library's
+######### approximation option for incorrect, but good-enough results.
+
+# LTP_CUT = -DLTP_CUT
+LTP_CUT =
+######### Define to enable the GSM library's long-term correlation
+######### approximation option---faster, but worse; works for
+######### both integer and floating point multiplications.
+######### This flag is still in the experimental stage.
+
+WAV49 = -DWAV49
+#WAV49 =
+######### Define to enable the GSM library's option to pack GSM frames
+######### in the style used by the WAV #49 format. If you want to write
+######### a tool that produces .WAV files which contain GSM-encoded data,
+######### define this, and read about the GSM_OPT_WAV49 option in the
+######### manual page on gsm_option(3).
+
+# Build macros.
+
+CFLAGS = @CFLAGS@ @DEFS@ $(SASR) $(MULHAC) $(FAST) $(LTP_CUT) $(WAV49) -I$(top_srcdir)/gsm
+LDFLAGS = @LDFLAGS@
+LIBS = @LIBS@
+
+# Objects.
+
+GSM_OBJECTS = add.o \
+ code.o \
+ decode.o \
+ long_term.o \
+ lpc.o \
+ preprocess.o \
+ rpe.o \
+ gsm_destroy.o \
+ gsm_decode.o \
+ gsm_encode.o \
+ gsm_create.o \
+ gsm_option.o \
+ short_term.o \
+ table.o
+
+
+LIBOBJS = $(GSM_OBJECTS)
+
+all: libgsm.a
+
+libgsm.a: $(LIBOBJS)
+ $(AR) libgsm.a $(LIBOBJS)
+ $(RANLIB) libgsm.a
+
+install-lib: libgsm.a
+ $(top_srcdir)/mkinstalldirs $(libdir)
+ $(top_srcdir)/mkinstalldirs $(mandir)/man3
+ $(INSTALL) -c -m 644 libgsm.a $(libdir)
+ $(RANLIB) $(libdir)/libgsm.a
+ $(INSTALL) -c -m 644 gsm.3 $(mandir)/man3
+ $(INSTALL) -c -m 644 gsm_option.3 $(mandir)/man3
+
+uninstall-lib:
+ $(RM) $(libdir)/libgsm.a
+ $(RM) $(mandir)/man3/gsm.3
+ $(RM) $(mandir)/man3/gsm_option.3
+
+clean:
+ $(RM) *.o libgsm.a
+
+distclean:
+ $(RM) *~ *.o core libgsm.a
+ $(RM) Makefile
--- /dev/null
+++ b/src/libgsm/add.c
@@ -1,0 +1,234 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/add.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+/*
+ * See private.h for the more commonly used macro versions.
+ */
+
+#include <stdio.h>
+#include <assert.h>
+
+#include "private.h"
+#include "gsm.h"
+
+#define saturate(x) \
+ ((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
+
+word gsm_add (word a, word b)
+{
+ longword sum = (longword)a + (longword)b;
+ return saturate(sum);
+}
+
+word gsm_sub (word a, word b)
+{
+ longword diff = (longword)a - (longword)b;
+ return saturate(diff);
+}
+
+word gsm_mult (word a, word b)
+{
+ if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
+ else return SASR( (longword)a * (longword)b, 15 );
+}
+
+word gsm_mult_r (word a, word b)
+{
+ if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
+ else {
+ longword prod = (longword)a * (longword)b + 16384;
+ prod >>= 15;
+ return prod & 0xFFFF;
+ }
+}
+
+word gsm_abs (word a)
+{
+ return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
+}
+
+longword gsm_L_mult (word a, word b)
+{
+ assert( a != MIN_WORD || b != MIN_WORD );
+ return ((longword)a * (longword)b) << 1;
+}
+
+longword gsm_L_add (longword a, longword b)
+{
+ if (a < 0) {
+ if (b >= 0) return a + b;
+ else {
+ ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
+ return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
+ }
+ }
+ else if (b <= 0) return a + b;
+ else {
+ ulongword A = (ulongword)a + (ulongword)b;
+ return A > MAX_LONGWORD ? MAX_LONGWORD : A;
+ }
+}
+
+longword gsm_L_sub (longword a, longword b)
+{
+ if (a >= 0) {
+ if (b >= 0) return a - b;
+ else {
+ /* a>=0, b<0 */
+
+ ulongword A = (ulongword)a + -(b + 1);
+ return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
+ }
+ }
+ else if (b <= 0) return a - b;
+ else {
+ /* a<0, b>0 */
+
+ ulongword A = (ulongword)-(a + 1) + b;
+ return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
+ }
+}
+
+static unsigned char const bitoff[ 256 ] = {
+ 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+word gsm_norm (longword a )
+/*
+ * the number of left shifts needed to normalize the 32 bit
+ * variable L_var1 for positive values on the interval
+ *
+ * with minimum of
+ * minimum of 1073741824 (01000000000000000000000000000000) and
+ * maximum of 2147483647 (01111111111111111111111111111111)
+ *
+ *
+ * and for negative values on the interval with
+ * minimum of -2147483648 (-10000000000000000000000000000000) and
+ * maximum of -1073741824 ( -1000000000000000000000000000000).
+ *
+ * in order to normalize the result, the following
+ * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
+ *
+ * (That's 'ffs', only from the left, not the right..)
+ */
+{
+ assert(a != 0);
+
+ if (a < 0) {
+ if (a <= -1073741824) return 0;
+ a = ~a;
+ }
+
+ return a & 0xffff0000
+ ? ( a & 0xff000000
+ ? -1 + bitoff[ 0xFF & (a >> 24) ]
+ : 7 + bitoff[ 0xFF & (a >> 16) ] )
+ : ( a & 0xff00
+ ? 15 + bitoff[ 0xFF & (a >> 8) ]
+ : 23 + bitoff[ 0xFF & a ] );
+}
+
+longword gsm_L_asl (longword a, int n)
+{
+ if (n >= 32) return 0;
+ if (n <= -32) return -(a < 0);
+ if (n < 0) return gsm_L_asr(a, -n);
+ return a << n;
+}
+
+word gsm_asl (word a, int n)
+{
+ if (n >= 16) return 0;
+ if (n <= -16) return -(a < 0);
+ if (n < 0) return gsm_asr(a, -n);
+ return a << n;
+}
+
+longword gsm_L_asr (longword a, int n)
+{
+ if (n >= 32) return -(a < 0);
+ if (n <= -32) return 0;
+ if (n < 0) return a << -n;
+
+# ifdef SASR
+ return a >> n;
+# else
+ if (a >= 0) return a >> n;
+ else return -(longword)( -(ulongword)a >> n );
+# endif
+}
+
+word gsm_asr (word a, int n)
+{
+ if (n >= 16) return -(a < 0);
+ if (n <= -16) return 0;
+ if (n < 0) return a << -n;
+
+# ifdef SASR
+ return a >> n;
+# else
+ if (a >= 0) return a >> n;
+ else return -(word)( -(uword)a >> n );
+# endif
+}
+
+/*
+ * (From p. 46, end of section 4.2.5)
+ *
+ * NOTE: The following lines gives [sic] one correct implementation
+ * of the div(num, denum) arithmetic operation. Compute div
+ * which is the integer division of num by denum: with denum
+ * >= num > 0
+ */
+
+word gsm_div (word num, word denum)
+{
+ longword L_num = num;
+ longword L_denum = denum;
+ word div = 0;
+ int k = 15;
+
+ /* The parameter num sometimes becomes zero.
+ * Although this is explicitly guarded against in 4.2.5,
+ * we assume that the result should then be zero as well.
+ */
+
+ /* assert(num != 0); */
+
+ assert(num >= 0 && denum >= num);
+ if (num == 0)
+ return 0;
+
+ while (k--) {
+ div <<= 1;
+ L_num <<= 1;
+
+ if (L_num >= L_denum) {
+ L_num -= L_denum;
+ div++;
+ }
+ }
+
+ return div;
+}
--- /dev/null
+++ b/src/libgsm/code.c
@@ -1,0 +1,91 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/code.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include <stdlib.h>
+#include <string.h>
+
+#include "private.h"
+#include "gsm.h"
+
+/*
+ * 4.2 FIXED POINT IMPLEMENTATION OF THE RPE-LTP CODER
+ */
+
+void Gsm_Coder (
+
+ struct gsm_state * S,
+
+ word * s, /* [0..159] samples IN */
+
+/*
+ * The RPE-LTD coder works on a frame by frame basis. The length of
+ * the frame is equal to 160 samples. Some computations are done
+ * once per frame to produce at the output of the coder the
+ * LARc[1..8] parameters which are the coded LAR coefficients and
+ * also to realize the inverse filtering operation for the entire
+ * frame (160 samples of signal d[0..159]). These parts produce at
+ * the output of the coder:
+ */
+
+ word * LARc, /* [0..7] LAR coefficients OUT */
+
+/*
+ * Procedure 4.2.11 to 4.2.18 are to be executed four times per
+ * frame. That means once for each sub-segment RPE-LTP analysis of
+ * 40 samples. These parts produce at the output of the coder:
+ */
+
+ word * Nc, /* [0..3] LTP lag OUT */
+ word * bc, /* [0..3] coded LTP gain OUT */
+ word * Mc, /* [0..3] RPE grid selection OUT */
+ word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
+ word * xMc /* [13*4] normalized RPE samples OUT */
+)
+{
+ int k;
+ word * dp = S->dp0 + 120; /* [ -120...-1 ] */
+ word * dpp = dp; /* [ 0...39 ] */
+
+ static word e[50];
+
+ word so[160];
+
+ Gsm_Preprocess (S, s, so);
+ Gsm_LPC_Analysis (S, so, LARc);
+ Gsm_Short_Term_Analysis_Filter (S, LARc, so);
+
+ for (k = 0; k <= 3; k++, xMc += 13) {
+
+ Gsm_Long_Term_Predictor ( S,
+ so+k*40, /* d [0..39] IN */
+ dp, /* dp [-120..-1] IN */
+ e + 5, /* e [0..39] OUT */
+ dpp, /* dpp [0..39] OUT */
+ Nc++,
+ bc++);
+
+ Gsm_RPE_Encoding ( S,
+ e + 5, /* e ][0..39][ IN/OUT */
+ xmaxc++, Mc++, xMc );
+ /*
+ * Gsm_Update_of_reconstructed_short_time_residual_signal
+ * ( dpp, e + 5, dp );
+ */
+
+ { register int i;
+ register longword ltmp;
+ for (i = 0; i <= 39; i++)
+ dp[ i ] = GSM_ADD( e[5 + i], dpp[i] );
+ }
+ dp += 40;
+ dpp += 40;
+
+ }
+ (void)memcpy( (char *)S->dp0, (char *)(S->dp0 + 160),
+ 120 * sizeof(*S->dp0) );
+}
--- /dev/null
+++ b/src/libgsm/decode.c
@@ -1,0 +1,62 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/decode.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include <stdio.h>
+
+#include "private.h"
+#include "gsm.h"
+
+/*
+ * 4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER
+ */
+
+static void Postprocessing (
+ struct gsm_state * S,
+ register word * s)
+{
+ register int k;
+ register word msr = S->msr;
+ register longword ltmp; /* for GSM_ADD */
+ register word tmp;
+
+ for (k = 160; k--; s++) {
+ tmp = GSM_MULT_R( msr, 28180 );
+ msr = GSM_ADD(*s, tmp); /* Deemphasis */
+ *s = GSM_ADD(msr, msr) & 0xFFF8; /* Truncation & Upscaling */
+ }
+ S->msr = msr;
+}
+
+void Gsm_Decoder (
+ struct gsm_state * S,
+
+ word * LARcr, /* [0..7] IN */
+
+ word * Ncr, /* [0..3] IN */
+ word * bcr, /* [0..3] IN */
+ word * Mcr, /* [0..3] IN */
+ word * xmaxcr, /* [0..3] IN */
+ word * xMcr, /* [0..13*4] IN */
+
+ word * s) /* [0..159] OUT */
+{
+ int j, k;
+ word erp[40], wt[160];
+ word * drp = S->dp0 + 120;
+
+ for (j=0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13) {
+
+ Gsm_RPE_Decoding( S, *xmaxcr, *Mcr, xMcr, erp );
+ Gsm_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp );
+
+ for (k = 0; k <= 39; k++) wt[ j * 40 + k ] = drp[ k ];
+ }
+
+ Gsm_Short_Term_Synthesis_Filter( S, LARcr, wt, s );
+ Postprocessing(S, s);
+}
--- /dev/null
+++ b/src/libgsm/gsm.3
@@ -1,0 +1,105 @@
+.\"
+.\" Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+.\" Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+.\" details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+.\"
+.PU
+.TH GSM 3
+.SH NAME
+gsm_create, gsm_destroy, gsm_encode, gsm_decode \(em GSM\ 06.10 lossy sound compression
+.SH SYNOPSIS
+.PP
+#include "gsm.h"
+.PP
+gsm gsm_create();
+.PP
+void gsm_encode(handle, src, dst)
+.br
+gsm handle;
+.br
+gsm_signal src[160];
+.br
+gsm_frame dst;
+.PP
+int gsm_decode(handle, src, dst)
+.br
+gsm handle;
+.br
+gsm_frame src;
+.br
+gsm_signal dst[160];
+.PP
+void gsm_destroy(handle)
+.br
+gsm handle;
+.br
+.SH "DESCRIPTION"
+Gsm is an implementation of the final draft GSM 06.10
+standard for full-rate speech transcoding.
+.PP
+gsm_create() initializes a gsm pass and returns a 'gsm' object
+which can be used as a handle in subsequent calls to gsm_decode(),
+gsm_encode() or gsm_destroy().
+.PP
+gsm_encode() encodes an array of 160 13-bit samples (given as
+gsm_signal's, signed integral values of at least 16 bits) into
+a gsm_frame of 33 bytes.
+(gsm_frame is a type defined as an array of 33 gsm_bytes in gsm.h.)
+.PP
+gsm_decode() decodes a gsm_frame into an array of 160 13-bit samples
+(given as gsm_signals), which sound rather like what you handed to
+gsm_encode() on the other side of the wire.
+.PP
+gsm_destroy() finishes a gsm pass and frees all storage associated
+with it.
+.SS "Sample format"
+The following scaling is assumed for input to the algorithm:
+.br
+.nf
+ 0 1 11 12
+ S..v..v..v..v..v..v..v..v..v..v..v..v..*..*..*
+.nf
+.br
+Only the top 13 bits are used as a signed input value.
+The output of gsm_decode() has the three lower bits set to zero.
+.\" .SH OPTIONS
+.SH "RETURN VALUE"
+gsm_create() returns an opaque handle object of type gsm, or 0 on error.
+gsm_decode() returns -1 if the passed frame is invalid, else 0.
+.SH EXAMPLE
+.nf
+#include "gsm.h"
+
+gsm handle;
+gsm_frame buf;
+gsm_signal sample[160];
+int cc, soundfd;
+
+play() { /* read compressed data from standard input, write to soundfd */
+
+ if (!(handle = gsm_create())) error...
+ while (cc = read(0, (char *)buf, sizeof buf)) {
+ if (cc != sizeof buf) error...
+ if (gsm_decode(handle, buf, sample) < 0) error...
+ if (write(soundfd, sample, sizeof sample) != sizeof sample)
+ error...
+ }
+ gsm_destroy(handle);
+}
+
+record() { /* read from soundfd, write compressed to standard output */
+
+ if (!(handle = gsm_create())) error...
+ while (cc = read(soundfd, sample, sizeof sample)) {
+ if (cc != sizeof sample) error...
+ gsm_encode(handle, sample, buf);
+ if (write(1, (char *)buf, sizeof buf) != sizeof sample)
+ error...
+ }
+ gsm_destroy(handle);
+}
+.nf
+.SH BUGS
+Please direct bug reports to jutta@cs.tu-berlin.de and cabo@cs.tu-berlin.de.
+.SH "SEE ALSO"
+toast(1), gsm_print(3), gsm_explode(3), gsm_option(3)
--- /dev/null
+++ b/src/libgsm/gsm.h
@@ -1,0 +1,67 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/*$Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm.h,v 1.1 2006/08/27 23:04:56 cbagwell Exp $*/
+
+#ifndef GSM_H
+#define GSM_H
+
+#ifdef __cplusplus
+# define NeedFunctionPrototypes 1
+#endif
+
+#if __STDC__
+# define NeedFunctionPrototypes 1
+#endif
+
+#ifdef _NO_PROTO
+# undef NeedFunctionPrototypes
+#endif
+
+#ifdef NeedFunctionPrototypes
+# include <stdio.h> /* for FILE * */
+#endif
+
+#undef GSM_P
+#if NeedFunctionPrototypes
+# define GSM_P( protos ) protos
+#else
+# define GSM_P( protos ) ( /* protos */ )
+#endif
+
+/*
+ * Interface
+ */
+
+typedef struct gsm_state * gsm;
+typedef short gsm_signal; /* signed 16 bit */
+typedef unsigned char gsm_byte;
+typedef gsm_byte gsm_frame[33]; /* 33 * 8 bits */
+
+#define GSM_MAGIC 0xD /* 13 kbit/s RPE-LTP */
+
+#define GSM_PATCHLEVEL 10
+#define GSM_MINOR 0
+#define GSM_MAJOR 1
+
+#define GSM_OPT_VERBOSE 1
+#define GSM_OPT_FAST 2
+#define GSM_OPT_LTP_CUT 3
+#define GSM_OPT_WAV49 4
+#define GSM_OPT_FRAME_INDEX 5
+#define GSM_OPT_FRAME_CHAIN 6
+
+extern gsm gsm_create GSM_P((void));
+extern void gsm_destroy GSM_P((gsm));
+
+extern int gsm_option GSM_P((gsm, int, int *));
+
+extern void gsm_encode GSM_P((gsm, gsm_signal *, gsm_byte *));
+extern int gsm_decode GSM_P((gsm, gsm_byte *, gsm_signal *));
+
+#undef GSM_P
+
+#endif /* GSM_H */
--- /dev/null
+++ b/src/libgsm/gsm_create.c
@@ -1,0 +1,27 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+static char const ident[] = "$Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_create.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $";
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+#include "gsm.h"
+#include "private.h"
+
+gsm gsm_create ()
+{
+ gsm r;
+
+ r = (gsm)malloc(sizeof(struct gsm_state));
+ if (!r) return r;
+
+ memset((char *)r, 0, sizeof(*r));
+ r->nrp = 40;
+
+ return r;
+}
--- /dev/null
+++ b/src/libgsm/gsm_decode.c
@@ -1,0 +1,360 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_decode.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include "private.h"
+
+#include "gsm.h"
+
+int gsm_decode (gsm s, gsm_byte * c, gsm_signal * target)
+{
+ word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
+
+#ifdef WAV49
+ if (s->wav_fmt) {
+
+ uword sr = 0;
+
+ s->frame_index = !s->frame_index;
+ if (s->frame_index) {
+
+ sr = *c++;
+ LARc[0] = sr & 0x3f; sr >>= 6;
+ sr |= (uword)*c++ << 2;
+ LARc[1] = sr & 0x3f; sr >>= 6;
+ sr |= (uword)*c++ << 4;
+ LARc[2] = sr & 0x1f; sr >>= 5;
+ LARc[3] = sr & 0x1f; sr >>= 5;
+ sr |= (uword)*c++ << 2;
+ LARc[4] = sr & 0xf; sr >>= 4;
+ LARc[5] = sr & 0xf; sr >>= 4;
+ sr |= (uword)*c++ << 2; /* 5 */
+ LARc[6] = sr & 0x7; sr >>= 3;
+ LARc[7] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 4;
+ Nc[0] = sr & 0x7f; sr >>= 7;
+ bc[0] = sr & 0x3; sr >>= 2;
+ Mc[0] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 1;
+ xmaxc[0] = sr & 0x3f; sr >>= 6;
+ xmc[0] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[1] = sr & 0x7; sr >>= 3;
+ xmc[2] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[3] = sr & 0x7; sr >>= 3;
+ xmc[4] = sr & 0x7; sr >>= 3;
+ xmc[5] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1; /* 10 */
+ xmc[6] = sr & 0x7; sr >>= 3;
+ xmc[7] = sr & 0x7; sr >>= 3;
+ xmc[8] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[9] = sr & 0x7; sr >>= 3;
+ xmc[10] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[11] = sr & 0x7; sr >>= 3;
+ xmc[12] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 4;
+ Nc[1] = sr & 0x7f; sr >>= 7;
+ bc[1] = sr & 0x3; sr >>= 2;
+ Mc[1] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 1;
+ xmaxc[1] = sr & 0x3f; sr >>= 6;
+ xmc[13] = sr & 0x7; sr >>= 3;
+ sr = *c++; /* 15 */
+ xmc[14] = sr & 0x7; sr >>= 3;
+ xmc[15] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[16] = sr & 0x7; sr >>= 3;
+ xmc[17] = sr & 0x7; sr >>= 3;
+ xmc[18] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[19] = sr & 0x7; sr >>= 3;
+ xmc[20] = sr & 0x7; sr >>= 3;
+ xmc[21] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[22] = sr & 0x7; sr >>= 3;
+ xmc[23] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[24] = sr & 0x7; sr >>= 3;
+ xmc[25] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 4; /* 20 */
+ Nc[2] = sr & 0x7f; sr >>= 7;
+ bc[2] = sr & 0x3; sr >>= 2;
+ Mc[2] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 1;
+ xmaxc[2] = sr & 0x3f; sr >>= 6;
+ xmc[26] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[27] = sr & 0x7; sr >>= 3;
+ xmc[28] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[29] = sr & 0x7; sr >>= 3;
+ xmc[30] = sr & 0x7; sr >>= 3;
+ xmc[31] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[32] = sr & 0x7; sr >>= 3;
+ xmc[33] = sr & 0x7; sr >>= 3;
+ xmc[34] = sr & 0x7; sr >>= 3;
+ sr = *c++; /* 25 */
+ xmc[35] = sr & 0x7; sr >>= 3;
+ xmc[36] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[37] = sr & 0x7; sr >>= 3;
+ xmc[38] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 4;
+ Nc[3] = sr & 0x7f; sr >>= 7;
+ bc[3] = sr & 0x3; sr >>= 2;
+ Mc[3] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 1;
+ xmaxc[3] = sr & 0x3f; sr >>= 6;
+ xmc[39] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[40] = sr & 0x7; sr >>= 3;
+ xmc[41] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2; /* 30 */
+ xmc[42] = sr & 0x7; sr >>= 3;
+ xmc[43] = sr & 0x7; sr >>= 3;
+ xmc[44] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[45] = sr & 0x7; sr >>= 3;
+ xmc[46] = sr & 0x7; sr >>= 3;
+ xmc[47] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[48] = sr & 0x7; sr >>= 3;
+ xmc[49] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[50] = sr & 0x7; sr >>= 3;
+ xmc[51] = sr & 0x7; sr >>= 3;
+
+ s->frame_chain = sr & 0xf;
+ }
+ else {
+ sr = s->frame_chain;
+ sr |= (uword)*c++ << 4; /* 1 */
+ LARc[0] = sr & 0x3f; sr >>= 6;
+ LARc[1] = sr & 0x3f; sr >>= 6;
+ sr = *c++;
+ LARc[2] = sr & 0x1f; sr >>= 5;
+ sr |= (uword)*c++ << 3;
+ LARc[3] = sr & 0x1f; sr >>= 5;
+ LARc[4] = sr & 0xf; sr >>= 4;
+ sr |= (uword)*c++ << 2;
+ LARc[5] = sr & 0xf; sr >>= 4;
+ LARc[6] = sr & 0x7; sr >>= 3;
+ LARc[7] = sr & 0x7; sr >>= 3;
+ sr = *c++; /* 5 */
+ Nc[0] = sr & 0x7f; sr >>= 7;
+ sr |= (uword)*c++ << 1;
+ bc[0] = sr & 0x3; sr >>= 2;
+ Mc[0] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 5;
+ xmaxc[0] = sr & 0x3f; sr >>= 6;
+ xmc[0] = sr & 0x7; sr >>= 3;
+ xmc[1] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[2] = sr & 0x7; sr >>= 3;
+ xmc[3] = sr & 0x7; sr >>= 3;
+ xmc[4] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[5] = sr & 0x7; sr >>= 3;
+ xmc[6] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2; /* 10 */
+ xmc[7] = sr & 0x7; sr >>= 3;
+ xmc[8] = sr & 0x7; sr >>= 3;
+ xmc[9] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[10] = sr & 0x7; sr >>= 3;
+ xmc[11] = sr & 0x7; sr >>= 3;
+ xmc[12] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ Nc[1] = sr & 0x7f; sr >>= 7;
+ sr |= (uword)*c++ << 1;
+ bc[1] = sr & 0x3; sr >>= 2;
+ Mc[1] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 5;
+ xmaxc[1] = sr & 0x3f; sr >>= 6;
+ xmc[13] = sr & 0x7; sr >>= 3;
+ xmc[14] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1; /* 15 */
+ xmc[15] = sr & 0x7; sr >>= 3;
+ xmc[16] = sr & 0x7; sr >>= 3;
+ xmc[17] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[18] = sr & 0x7; sr >>= 3;
+ xmc[19] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[20] = sr & 0x7; sr >>= 3;
+ xmc[21] = sr & 0x7; sr >>= 3;
+ xmc[22] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[23] = sr & 0x7; sr >>= 3;
+ xmc[24] = sr & 0x7; sr >>= 3;
+ xmc[25] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ Nc[2] = sr & 0x7f; sr >>= 7;
+ sr |= (uword)*c++ << 1; /* 20 */
+ bc[2] = sr & 0x3; sr >>= 2;
+ Mc[2] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 5;
+ xmaxc[2] = sr & 0x3f; sr >>= 6;
+ xmc[26] = sr & 0x7; sr >>= 3;
+ xmc[27] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[28] = sr & 0x7; sr >>= 3;
+ xmc[29] = sr & 0x7; sr >>= 3;
+ xmc[30] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ xmc[31] = sr & 0x7; sr >>= 3;
+ xmc[32] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[33] = sr & 0x7; sr >>= 3;
+ xmc[34] = sr & 0x7; sr >>= 3;
+ xmc[35] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1; /* 25 */
+ xmc[36] = sr & 0x7; sr >>= 3;
+ xmc[37] = sr & 0x7; sr >>= 3;
+ xmc[38] = sr & 0x7; sr >>= 3;
+ sr = *c++;
+ Nc[3] = sr & 0x7f; sr >>= 7;
+ sr |= (uword)*c++ << 1;
+ bc[3] = sr & 0x3; sr >>= 2;
+ Mc[3] = sr & 0x3; sr >>= 2;
+ sr |= (uword)*c++ << 5;
+ xmaxc[3] = sr & 0x3f; sr >>= 6;
+ xmc[39] = sr & 0x7; sr >>= 3;
+ xmc[40] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[41] = sr & 0x7; sr >>= 3;
+ xmc[42] = sr & 0x7; sr >>= 3;
+ xmc[43] = sr & 0x7; sr >>= 3;
+ sr = *c++; /* 30 */
+ xmc[44] = sr & 0x7; sr >>= 3;
+ xmc[45] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 2;
+ xmc[46] = sr & 0x7; sr >>= 3;
+ xmc[47] = sr & 0x7; sr >>= 3;
+ xmc[48] = sr & 0x7; sr >>= 3;
+ sr |= (uword)*c++ << 1;
+ xmc[49] = sr & 0x7; sr >>= 3;
+ xmc[50] = sr & 0x7; sr >>= 3;
+ xmc[51] = sr & 0x7; sr >>= 3;
+ }
+ }
+ else
+#endif
+ {
+ /* GSM_MAGIC = (*c >> 4) & 0xF; */
+
+ if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
+
+ LARc[0] = (*c++ & 0xF) << 2; /* 1 */
+ LARc[0] |= (*c >> 6) & 0x3;
+ LARc[1] = *c++ & 0x3F;
+ LARc[2] = (*c >> 3) & 0x1F;
+ LARc[3] = (*c++ & 0x7) << 2;
+ LARc[3] |= (*c >> 6) & 0x3;
+ LARc[4] = (*c >> 2) & 0xF;
+ LARc[5] = (*c++ & 0x3) << 2;
+ LARc[5] |= (*c >> 6) & 0x3;
+ LARc[6] = (*c >> 3) & 0x7;
+ LARc[7] = *c++ & 0x7;
+ Nc[0] = (*c >> 1) & 0x7F;
+ bc[0] = (*c++ & 0x1) << 1;
+ bc[0] |= (*c >> 7) & 0x1;
+ Mc[0] = (*c >> 5) & 0x3;
+ xmaxc[0] = (*c++ & 0x1F) << 1;
+ xmaxc[0] |= (*c >> 7) & 0x1;
+ xmc[0] = (*c >> 4) & 0x7;
+ xmc[1] = (*c >> 1) & 0x7;
+ xmc[2] = (*c++ & 0x1) << 2;
+ xmc[2] |= (*c >> 6) & 0x3;
+ xmc[3] = (*c >> 3) & 0x7;
+ xmc[4] = *c++ & 0x7;
+ xmc[5] = (*c >> 5) & 0x7;
+ xmc[6] = (*c >> 2) & 0x7;
+ xmc[7] = (*c++ & 0x3) << 1; /* 10 */
+ xmc[7] |= (*c >> 7) & 0x1;
+ xmc[8] = (*c >> 4) & 0x7;
+ xmc[9] = (*c >> 1) & 0x7;
+ xmc[10] = (*c++ & 0x1) << 2;
+ xmc[10] |= (*c >> 6) & 0x3;
+ xmc[11] = (*c >> 3) & 0x7;
+ xmc[12] = *c++ & 0x7;
+ Nc[1] = (*c >> 1) & 0x7F;
+ bc[1] = (*c++ & 0x1) << 1;
+ bc[1] |= (*c >> 7) & 0x1;
+ Mc[1] = (*c >> 5) & 0x3;
+ xmaxc[1] = (*c++ & 0x1F) << 1;
+ xmaxc[1] |= (*c >> 7) & 0x1;
+ xmc[13] = (*c >> 4) & 0x7;
+ xmc[14] = (*c >> 1) & 0x7;
+ xmc[15] = (*c++ & 0x1) << 2;
+ xmc[15] |= (*c >> 6) & 0x3;
+ xmc[16] = (*c >> 3) & 0x7;
+ xmc[17] = *c++ & 0x7;
+ xmc[18] = (*c >> 5) & 0x7;
+ xmc[19] = (*c >> 2) & 0x7;
+ xmc[20] = (*c++ & 0x3) << 1;
+ xmc[20] |= (*c >> 7) & 0x1;
+ xmc[21] = (*c >> 4) & 0x7;
+ xmc[22] = (*c >> 1) & 0x7;
+ xmc[23] = (*c++ & 0x1) << 2;
+ xmc[23] |= (*c >> 6) & 0x3;
+ xmc[24] = (*c >> 3) & 0x7;
+ xmc[25] = *c++ & 0x7;
+ Nc[2] = (*c >> 1) & 0x7F;
+ bc[2] = (*c++ & 0x1) << 1; /* 20 */
+ bc[2] |= (*c >> 7) & 0x1;
+ Mc[2] = (*c >> 5) & 0x3;
+ xmaxc[2] = (*c++ & 0x1F) << 1;
+ xmaxc[2] |= (*c >> 7) & 0x1;
+ xmc[26] = (*c >> 4) & 0x7;
+ xmc[27] = (*c >> 1) & 0x7;
+ xmc[28] = (*c++ & 0x1) << 2;
+ xmc[28] |= (*c >> 6) & 0x3;
+ xmc[29] = (*c >> 3) & 0x7;
+ xmc[30] = *c++ & 0x7;
+ xmc[31] = (*c >> 5) & 0x7;
+ xmc[32] = (*c >> 2) & 0x7;
+ xmc[33] = (*c++ & 0x3) << 1;
+ xmc[33] |= (*c >> 7) & 0x1;
+ xmc[34] = (*c >> 4) & 0x7;
+ xmc[35] = (*c >> 1) & 0x7;
+ xmc[36] = (*c++ & 0x1) << 2;
+ xmc[36] |= (*c >> 6) & 0x3;
+ xmc[37] = (*c >> 3) & 0x7;
+ xmc[38] = *c++ & 0x7;
+ Nc[3] = (*c >> 1) & 0x7F;
+ bc[3] = (*c++ & 0x1) << 1;
+ bc[3] |= (*c >> 7) & 0x1;
+ Mc[3] = (*c >> 5) & 0x3;
+ xmaxc[3] = (*c++ & 0x1F) << 1;
+ xmaxc[3] |= (*c >> 7) & 0x1;
+ xmc[39] = (*c >> 4) & 0x7;
+ xmc[40] = (*c >> 1) & 0x7;
+ xmc[41] = (*c++ & 0x1) << 2;
+ xmc[41] |= (*c >> 6) & 0x3;
+ xmc[42] = (*c >> 3) & 0x7;
+ xmc[43] = *c++ & 0x7; /* 30 */
+ xmc[44] = (*c >> 5) & 0x7;
+ xmc[45] = (*c >> 2) & 0x7;
+ xmc[46] = (*c++ & 0x3) << 1;
+ xmc[46] |= (*c >> 7) & 0x1;
+ xmc[47] = (*c >> 4) & 0x7;
+ xmc[48] = (*c >> 1) & 0x7;
+ xmc[49] = (*c++ & 0x1) << 2;
+ xmc[49] |= (*c >> 6) & 0x3;
+ xmc[50] = (*c >> 3) & 0x7;
+ xmc[51] = *c & 0x7; /* 33 */
+ }
+
+ Gsm_Decoder(s, LARc, Nc, bc, Mc, xmaxc, xmc, target);
+
+ return 0;
+}
--- /dev/null
+++ b/src/libgsm/gsm_destroy.c
@@ -1,0 +1,16 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_destroy.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include "gsm.h"
+
+# include <stdlib.h>
+
+void gsm_destroy (gsm S)
+{
+ if (S) free((char *)S);
+}
--- /dev/null
+++ b/src/libgsm/gsm_encode.c
@@ -1,0 +1,450 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_encode.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include "private.h"
+#include "gsm.h"
+
+void gsm_encode (gsm s, gsm_signal * source, gsm_byte * c)
+{
+ word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
+
+ Gsm_Coder(s, source, LARc, Nc, bc, Mc, xmaxc, xmc);
+
+
+ /* variable size
+
+ GSM_MAGIC 4
+
+ LARc[0] 6
+ LARc[1] 6
+ LARc[2] 5
+ LARc[3] 5
+ LARc[4] 4
+ LARc[5] 4
+ LARc[6] 3
+ LARc[7] 3
+
+ Nc[0] 7
+ bc[0] 2
+ Mc[0] 2
+ xmaxc[0] 6
+ xmc[0] 3
+ xmc[1] 3
+ xmc[2] 3
+ xmc[3] 3
+ xmc[4] 3
+ xmc[5] 3
+ xmc[6] 3
+ xmc[7] 3
+ xmc[8] 3
+ xmc[9] 3
+ xmc[10] 3
+ xmc[11] 3
+ xmc[12] 3
+
+ Nc[1] 7
+ bc[1] 2
+ Mc[1] 2
+ xmaxc[1] 6
+ xmc[13] 3
+ xmc[14] 3
+ xmc[15] 3
+ xmc[16] 3
+ xmc[17] 3
+ xmc[18] 3
+ xmc[19] 3
+ xmc[20] 3
+ xmc[21] 3
+ xmc[22] 3
+ xmc[23] 3
+ xmc[24] 3
+ xmc[25] 3
+
+ Nc[2] 7
+ bc[2] 2
+ Mc[2] 2
+ xmaxc[2] 6
+ xmc[26] 3
+ xmc[27] 3
+ xmc[28] 3
+ xmc[29] 3
+ xmc[30] 3
+ xmc[31] 3
+ xmc[32] 3
+ xmc[33] 3
+ xmc[34] 3
+ xmc[35] 3
+ xmc[36] 3
+ xmc[37] 3
+ xmc[38] 3
+
+ Nc[3] 7
+ bc[3] 2
+ Mc[3] 2
+ xmaxc[3] 6
+ xmc[39] 3
+ xmc[40] 3
+ xmc[41] 3
+ xmc[42] 3
+ xmc[43] 3
+ xmc[44] 3
+ xmc[45] 3
+ xmc[46] 3
+ xmc[47] 3
+ xmc[48] 3
+ xmc[49] 3
+ xmc[50] 3
+ xmc[51] 3
+ */
+
+#ifdef WAV49
+
+ if (s->wav_fmt) {
+ s->frame_index = !s->frame_index;
+ if (s->frame_index) {
+
+ uword sr;
+
+ sr = 0;
+ sr = sr >> 6 | LARc[0] << 10;
+ sr = sr >> 6 | LARc[1] << 10;
+ *c++ = sr >> 4;
+ sr = sr >> 5 | LARc[2] << 11;
+ *c++ = sr >> 7;
+ sr = sr >> 5 | LARc[3] << 11;
+ sr = sr >> 4 | LARc[4] << 12;
+ *c++ = sr >> 6;
+ sr = sr >> 4 | LARc[5] << 12;
+ sr = sr >> 3 | LARc[6] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | LARc[7] << 13;
+ sr = sr >> 7 | Nc[0] << 9;
+ *c++ = sr >> 5;
+ sr = sr >> 2 | bc[0] << 14;
+ sr = sr >> 2 | Mc[0] << 14;
+ sr = sr >> 6 | xmaxc[0] << 10;
+ *c++ = sr >> 3;
+ sr = sr >> 3 | xmc[0] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[1] << 13;
+ sr = sr >> 3 | xmc[2] << 13;
+ sr = sr >> 3 | xmc[3] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[4] << 13;
+ sr = sr >> 3 | xmc[5] << 13;
+ sr = sr >> 3 | xmc[6] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[7] << 13;
+ sr = sr >> 3 | xmc[8] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[9] << 13;
+ sr = sr >> 3 | xmc[10] << 13;
+ sr = sr >> 3 | xmc[11] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[12] << 13;
+ sr = sr >> 7 | Nc[1] << 9;
+ *c++ = sr >> 5;
+ sr = sr >> 2 | bc[1] << 14;
+ sr = sr >> 2 | Mc[1] << 14;
+ sr = sr >> 6 | xmaxc[1] << 10;
+ *c++ = sr >> 3;
+ sr = sr >> 3 | xmc[13] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[14] << 13;
+ sr = sr >> 3 | xmc[15] << 13;
+ sr = sr >> 3 | xmc[16] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[17] << 13;
+ sr = sr >> 3 | xmc[18] << 13;
+ sr = sr >> 3 | xmc[19] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[20] << 13;
+ sr = sr >> 3 | xmc[21] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[22] << 13;
+ sr = sr >> 3 | xmc[23] << 13;
+ sr = sr >> 3 | xmc[24] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[25] << 13;
+ sr = sr >> 7 | Nc[2] << 9;
+ *c++ = sr >> 5;
+ sr = sr >> 2 | bc[2] << 14;
+ sr = sr >> 2 | Mc[2] << 14;
+ sr = sr >> 6 | xmaxc[2] << 10;
+ *c++ = sr >> 3;
+ sr = sr >> 3 | xmc[26] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[27] << 13;
+ sr = sr >> 3 | xmc[28] << 13;
+ sr = sr >> 3 | xmc[29] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[30] << 13;
+ sr = sr >> 3 | xmc[31] << 13;
+ sr = sr >> 3 | xmc[32] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[33] << 13;
+ sr = sr >> 3 | xmc[34] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[35] << 13;
+ sr = sr >> 3 | xmc[36] << 13;
+ sr = sr >> 3 | xmc[37] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[38] << 13;
+ sr = sr >> 7 | Nc[3] << 9;
+ *c++ = sr >> 5;
+ sr = sr >> 2 | bc[3] << 14;
+ sr = sr >> 2 | Mc[3] << 14;
+ sr = sr >> 6 | xmaxc[3] << 10;
+ *c++ = sr >> 3;
+ sr = sr >> 3 | xmc[39] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[40] << 13;
+ sr = sr >> 3 | xmc[41] << 13;
+ sr = sr >> 3 | xmc[42] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[43] << 13;
+ sr = sr >> 3 | xmc[44] << 13;
+ sr = sr >> 3 | xmc[45] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[46] << 13;
+ sr = sr >> 3 | xmc[47] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[48] << 13;
+ sr = sr >> 3 | xmc[49] << 13;
+ sr = sr >> 3 | xmc[50] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[51] << 13;
+ sr = sr >> 4;
+ *c = sr >> 8;
+ s->frame_chain = *c;
+ }
+ else {
+ uword sr;
+
+ sr = 0;
+ sr = sr >> 4 | s->frame_chain << 12;
+ sr = sr >> 6 | LARc[0] << 10;
+ *c++ = sr >> 6;
+ sr = sr >> 6 | LARc[1] << 10;
+ *c++ = sr >> 8;
+ sr = sr >> 5 | LARc[2] << 11;
+ sr = sr >> 5 | LARc[3] << 11;
+ *c++ = sr >> 6;
+ sr = sr >> 4 | LARc[4] << 12;
+ sr = sr >> 4 | LARc[5] << 12;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | LARc[6] << 13;
+ sr = sr >> 3 | LARc[7] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 7 | Nc[0] << 9;
+ sr = sr >> 2 | bc[0] << 14;
+ *c++ = sr >> 7;
+ sr = sr >> 2 | Mc[0] << 14;
+ sr = sr >> 6 | xmaxc[0] << 10;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[0] << 13;
+ sr = sr >> 3 | xmc[1] << 13;
+ sr = sr >> 3 | xmc[2] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[3] << 13;
+ sr = sr >> 3 | xmc[4] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[5] << 13;
+ sr = sr >> 3 | xmc[6] << 13;
+ sr = sr >> 3 | xmc[7] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[8] << 13;
+ sr = sr >> 3 | xmc[9] << 13;
+ sr = sr >> 3 | xmc[10] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[11] << 13;
+ sr = sr >> 3 | xmc[12] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 7 | Nc[1] << 9;
+ sr = sr >> 2 | bc[1] << 14;
+ *c++ = sr >> 7;
+ sr = sr >> 2 | Mc[1] << 14;
+ sr = sr >> 6 | xmaxc[1] << 10;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[13] << 13;
+ sr = sr >> 3 | xmc[14] << 13;
+ sr = sr >> 3 | xmc[15] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[16] << 13;
+ sr = sr >> 3 | xmc[17] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[18] << 13;
+ sr = sr >> 3 | xmc[19] << 13;
+ sr = sr >> 3 | xmc[20] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[21] << 13;
+ sr = sr >> 3 | xmc[22] << 13;
+ sr = sr >> 3 | xmc[23] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[24] << 13;
+ sr = sr >> 3 | xmc[25] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 7 | Nc[2] << 9;
+ sr = sr >> 2 | bc[2] << 14;
+ *c++ = sr >> 7;
+ sr = sr >> 2 | Mc[2] << 14;
+ sr = sr >> 6 | xmaxc[2] << 10;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[26] << 13;
+ sr = sr >> 3 | xmc[27] << 13;
+ sr = sr >> 3 | xmc[28] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[29] << 13;
+ sr = sr >> 3 | xmc[30] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[31] << 13;
+ sr = sr >> 3 | xmc[32] << 13;
+ sr = sr >> 3 | xmc[33] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[34] << 13;
+ sr = sr >> 3 | xmc[35] << 13;
+ sr = sr >> 3 | xmc[36] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[37] << 13;
+ sr = sr >> 3 | xmc[38] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 7 | Nc[3] << 9;
+ sr = sr >> 2 | bc[3] << 14;
+ *c++ = sr >> 7;
+ sr = sr >> 2 | Mc[3] << 14;
+ sr = sr >> 6 | xmaxc[3] << 10;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[39] << 13;
+ sr = sr >> 3 | xmc[40] << 13;
+ sr = sr >> 3 | xmc[41] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[42] << 13;
+ sr = sr >> 3 | xmc[43] << 13;
+ *c++ = sr >> 8;
+ sr = sr >> 3 | xmc[44] << 13;
+ sr = sr >> 3 | xmc[45] << 13;
+ sr = sr >> 3 | xmc[46] << 13;
+ *c++ = sr >> 7;
+ sr = sr >> 3 | xmc[47] << 13;
+ sr = sr >> 3 | xmc[48] << 13;
+ sr = sr >> 3 | xmc[49] << 13;
+ *c++ = sr >> 6;
+ sr = sr >> 3 | xmc[50] << 13;
+ sr = sr >> 3 | xmc[51] << 13;
+ *c++ = sr >> 8;
+ }
+ }
+
+ else
+
+#endif /* WAV49 */
+ {
+
+ *c++ = ((GSM_MAGIC & 0xF) << 4) /* 1 */
+ | ((LARc[0] >> 2) & 0xF);
+ *c++ = ((LARc[0] & 0x3) << 6)
+ | (LARc[1] & 0x3F);
+ *c++ = ((LARc[2] & 0x1F) << 3)
+ | ((LARc[3] >> 2) & 0x7);
+ *c++ = ((LARc[3] & 0x3) << 6)
+ | ((LARc[4] & 0xF) << 2)
+ | ((LARc[5] >> 2) & 0x3);
+ *c++ = ((LARc[5] & 0x3) << 6)
+ | ((LARc[6] & 0x7) << 3)
+ | (LARc[7] & 0x7);
+ *c++ = ((Nc[0] & 0x7F) << 1)
+ | ((bc[0] >> 1) & 0x1);
+ *c++ = ((bc[0] & 0x1) << 7)
+ | ((Mc[0] & 0x3) << 5)
+ | ((xmaxc[0] >> 1) & 0x1F);
+ *c++ = ((xmaxc[0] & 0x1) << 7)
+ | ((xmc[0] & 0x7) << 4)
+ | ((xmc[1] & 0x7) << 1)
+ | ((xmc[2] >> 2) & 0x1);
+ *c++ = ((xmc[2] & 0x3) << 6)
+ | ((xmc[3] & 0x7) << 3)
+ | (xmc[4] & 0x7);
+ *c++ = ((xmc[5] & 0x7) << 5) /* 10 */
+ | ((xmc[6] & 0x7) << 2)
+ | ((xmc[7] >> 1) & 0x3);
+ *c++ = ((xmc[7] & 0x1) << 7)
+ | ((xmc[8] & 0x7) << 4)
+ | ((xmc[9] & 0x7) << 1)
+ | ((xmc[10] >> 2) & 0x1);
+ *c++ = ((xmc[10] & 0x3) << 6)
+ | ((xmc[11] & 0x7) << 3)
+ | (xmc[12] & 0x7);
+ *c++ = ((Nc[1] & 0x7F) << 1)
+ | ((bc[1] >> 1) & 0x1);
+ *c++ = ((bc[1] & 0x1) << 7)
+ | ((Mc[1] & 0x3) << 5)
+ | ((xmaxc[1] >> 1) & 0x1F);
+ *c++ = ((xmaxc[1] & 0x1) << 7)
+ | ((xmc[13] & 0x7) << 4)
+ | ((xmc[14] & 0x7) << 1)
+ | ((xmc[15] >> 2) & 0x1);
+ *c++ = ((xmc[15] & 0x3) << 6)
+ | ((xmc[16] & 0x7) << 3)
+ | (xmc[17] & 0x7);
+ *c++ = ((xmc[18] & 0x7) << 5)
+ | ((xmc[19] & 0x7) << 2)
+ | ((xmc[20] >> 1) & 0x3);
+ *c++ = ((xmc[20] & 0x1) << 7)
+ | ((xmc[21] & 0x7) << 4)
+ | ((xmc[22] & 0x7) << 1)
+ | ((xmc[23] >> 2) & 0x1);
+ *c++ = ((xmc[23] & 0x3) << 6)
+ | ((xmc[24] & 0x7) << 3)
+ | (xmc[25] & 0x7);
+ *c++ = ((Nc[2] & 0x7F) << 1) /* 20 */
+ | ((bc[2] >> 1) & 0x1);
+ *c++ = ((bc[2] & 0x1) << 7)
+ | ((Mc[2] & 0x3) << 5)
+ | ((xmaxc[2] >> 1) & 0x1F);
+ *c++ = ((xmaxc[2] & 0x1) << 7)
+ | ((xmc[26] & 0x7) << 4)
+ | ((xmc[27] & 0x7) << 1)
+ | ((xmc[28] >> 2) & 0x1);
+ *c++ = ((xmc[28] & 0x3) << 6)
+ | ((xmc[29] & 0x7) << 3)
+ | (xmc[30] & 0x7);
+ *c++ = ((xmc[31] & 0x7) << 5)
+ | ((xmc[32] & 0x7) << 2)
+ | ((xmc[33] >> 1) & 0x3);
+ *c++ = ((xmc[33] & 0x1) << 7)
+ | ((xmc[34] & 0x7) << 4)
+ | ((xmc[35] & 0x7) << 1)
+ | ((xmc[36] >> 2) & 0x1);
+ *c++ = ((xmc[36] & 0x3) << 6)
+ | ((xmc[37] & 0x7) << 3)
+ | (xmc[38] & 0x7);
+ *c++ = ((Nc[3] & 0x7F) << 1)
+ | ((bc[3] >> 1) & 0x1);
+ *c++ = ((bc[3] & 0x1) << 7)
+ | ((Mc[3] & 0x3) << 5)
+ | ((xmaxc[3] >> 1) & 0x1F);
+ *c++ = ((xmaxc[3] & 0x1) << 7)
+ | ((xmc[39] & 0x7) << 4)
+ | ((xmc[40] & 0x7) << 1)
+ | ((xmc[41] >> 2) & 0x1);
+ *c++ = ((xmc[41] & 0x3) << 6) /* 30 */
+ | ((xmc[42] & 0x7) << 3)
+ | (xmc[43] & 0x7);
+ *c++ = ((xmc[44] & 0x7) << 5)
+ | ((xmc[45] & 0x7) << 2)
+ | ((xmc[46] >> 1) & 0x3);
+ *c++ = ((xmc[46] & 0x1) << 7)
+ | ((xmc[47] & 0x7) << 4)
+ | ((xmc[48] & 0x7) << 1)
+ | ((xmc[49] >> 2) & 0x1);
+ *c++ = ((xmc[49] & 0x3) << 6)
+ | ((xmc[50] & 0x7) << 3)
+ | (xmc[51] & 0x7);
+
+ }
+}
--- /dev/null
+++ b/src/libgsm/gsm_option.3
@@ -1,0 +1,183 @@
+.\"
+.\" Copyright 1992-1995 by Jutta Degener and Carsten Bormann, Technische
+.\" Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+.\" details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+.\"
+.PU
+.TH GSM_OPTION 3
+.SH NAME
+gsm_option \(em customizing the GSM 06.10 implementation
+.SH SYNOPSIS
+#include "gsm.h"
+.PP
+int gsm_option(handle, option, valueP);
+.br
+gsm handle;
+.br
+int option;
+.br
+int * valueP;
+.SH "DESCRIPTION"
+The gsm library is an implementation of the final draft GSM 06.10
+standard for full-rate speech transcoding, a lossy
+speech compression algorithm.
+.PP
+The gsm_option() function can be used to set and query various
+options or flags that are not needed for regular GSM 06.10 encoding
+or decoding, but might be of interest in special cases.
+.PP
+The second argument to gsm_option specifies what parameter
+should be changed or queried.
+The third argument is either a null pointer, in which case
+the current value of that parameter is returned;
+or it is a pointer to an integer containing the value
+you want to set, in which case the previous value will
+be returned.
+.PP
+The following options are defined:
+.PP
+.I GSM_OPT_VERBOSE
+Verbosity level.
+.br
+.in+5
+This option is only supported if the library was compiled
+with debugging turned on, and may be used by developers of
+compression algorithms to aid debugging.
+.br
+The verbosity level can be changed at any time during encoding or decoding.
+.in-5
+.sp
+.PP
+.I GSM_OPT_FAST
+Faster compression algorithm.
+.br
+.in+5
+This implementation offers a not strictly standard-compliant, but
+faster compression algorithm that is compatible with the regular
+method and does not noticably degrade audio quality.
+.br
+The value passed to
+.br
+.nf
+ gsm_option(handle, GSM_OPT_FAST, & value)
+.fi
+.br
+functions as a boolean flag; if it is zero, the regular algorithm
+will be used, if not, the faster version will be used.
+.br
+The availability of this option depends on the hardware used;
+if it is not available, gsm_option will return -1 on an attempt
+to set or query it.
+.br
+This option can be set any time during encoding or decoding.
+.in-5
+.ne 5
+.sp
+.PP
+.I GSM_OPT_LTP_CUT
+Enable, disable, or query the LTP cut-off optimization.
+.br
+.in+5
+During encoding, the search for the long-term correlation
+lag forms the bottleneck of the algorithm.
+The ltp-cut option enables an approximation that disregards most
+of the samples for purposes of finding that correlation,
+and hence speeds up the encoding at a noticable loss in quality.
+.br
+The value passed to
+.br
+.nf
+ gsm_option(handle, GSM_OPT_LTP_CUT, & value)
+.fi
+.br
+turns the optimization on if nonzero, and off if zero.
+.br
+This option can be set any time during encoding
+or decoding; it will only affect the encoding pass, not
+the decoding.
+.sp
+.PP
+.I GSM_OPT_WAV49
+WAV-style byte ordering.
+.br
+.in+5
+A WAV file of type #49 contains GSM 06.10-encoded frames.
+Unfortunately, the framing and code ordering of the WAV version
+are incompatible with the native ones of this GSM 06.10 library.
+The GSM_OPT_WAV49 option turns on a different packing
+algorithm that produces alternating frames of 32 and 33 bytes
+(or makes it consume alternating frames of 33 and 32 bytes, note
+the opposite order of the two numbers) which, when concatenated,
+can be used in the body of a WAV #49 frame.
+It is up to the user program to write a WAV header, if any;
+neither the library itself nor the toast program produce
+complete WAV files.
+.br
+The value passed to
+.br
+.nf
+ gsm_option(handle, GSM_OPT_WAV49, & value)
+.fi
+.br
+functions as a boolean flag; if it is zero, the library's native
+framing algorithm will be used, if nonzero, WAV-type packing is in effect.
+.br
+This option should be used before any frames are encoded.
+Whether or not it is supported at all depends on a
+compile-time switch, WAV49.
+Both option and compile time switch are new to the library
+as of patchlevel 9, and are considerably less tested than the
+well-worn rest of the it.
+.br
+Thanks to Jeff Chilton for the detective work and first free
+implementation of this version of the GSM 06.10 encoding.
+.sp
+.PP
+.I GSM_OPT_FRAME_CHAIN
+Query or set the chaining byte.
+.br
+.in+5
+Between the two frames of a WAV-style encoding, the GSM 06.10 library
+must keep track of one half-byte that is technically part of the first
+frame, but will be written as the first four bits of the second.
+This half-byte are the lowest four bits of the value returned by,
+and optionally set by,
+.br
+.nf
+ gsm_option(handle, GSM_OPT_FRAME_CHAIN, & value)
+.fi
+.br
+This option can be queried and set at any time.
+.sp
+.PP
+.I GSM_OPT_FRAME_INDEX
+Query or set the current frame's index in a format's
+alternating list of frames.
+.br
+.in+5
+The WAV #49 framing uses two alternating types of frames.
+Which type the next GSM-coded frame belongs to can be queried, or,
+when decoding, announced, using
+.br
+.nf
+ gsm_option(handle, GSM_OPT_FRAME_INDEX, & value)
+.fi
+.br
+For WAV-style framing, the value should be 0 or 1; the first frame
+of an encoding has an index of 0.
+At library initialization, the index is set to zero.
+.br
+The frame index can be queried and set at any time.
+Used in combination with the
+.IR GSM_OPT_FRAME_CHAIN ,
+option, it can be used to position on arbitrary GSM frames
+within a format like WAV #49 (not accounting for the lost
+internal GSM state).
+.in-5
+.SH "RETURN VALUE"
+gsm_option() returns -1 if an option is not supported, the
+previous value of the option otherwise.
+.SH BUGS
+Please direct bug reports to jutta@cs.tu-berlin.de and cabo@cs.tu-berlin.de.
+.SH "SEE ALSO"
+toast(1), gsm(3), gsm_explode(3), gsm_print(3)
--- /dev/null
+++ b/src/libgsm/gsm_option.c
@@ -1,0 +1,68 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_option.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include "private.h"
+
+#include "gsm.h"
+
+int gsm_option (gsm r, int opt, int * val)
+{
+ int result = -1;
+
+ switch (opt) {
+ case GSM_OPT_LTP_CUT:
+#ifdef LTP_CUT
+ result = r->ltp_cut;
+ if (val) r->ltp_cut = *val;
+#endif
+ break;
+
+ case GSM_OPT_VERBOSE:
+#ifndef NDEBUG
+ result = r->verbose;
+ if (val) r->verbose = *val;
+#endif
+ break;
+
+ case GSM_OPT_FAST:
+
+#if defined(FAST) && defined(USE_FLOAT_MUL)
+ result = r->fast;
+ if (val) r->fast = !!*val;
+#endif
+ break;
+
+ case GSM_OPT_FRAME_CHAIN:
+
+#ifdef WAV49
+ result = r->frame_chain;
+ if (val) r->frame_chain = *val;
+#endif
+ break;
+
+ case GSM_OPT_FRAME_INDEX:
+
+#ifdef WAV49
+ result = r->frame_index;
+ if (val) r->frame_index = *val;
+#endif
+ break;
+
+ case GSM_OPT_WAV49:
+
+#ifdef WAV49
+ result = r->wav_fmt;
+ if (val) r->wav_fmt = !!*val;
+#endif
+ break;
+
+ default:
+ break;
+ }
+ return result;
+}
--- /dev/null
+++ b/src/libgsm/long_term.c
@@ -1,0 +1,947 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/long_term.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include <stdio.h>
+#include <assert.h>
+
+#include "private.h"
+
+#include "gsm.h"
+
+/*
+ * 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION
+ */
+
+
+/*
+ * This module computes the LTP gain (bc) and the LTP lag (Nc)
+ * for the long term analysis filter. This is done by calculating a
+ * maximum of the cross-correlation function between the current
+ * sub-segment short term residual signal d[0..39] (output of
+ * the short term analysis filter; for simplification the index
+ * of this array begins at 0 and ends at 39 for each sub-segment of the
+ * RPE-LTP analysis) and the previous reconstructed short term
+ * residual signal dp[ -120 .. -1 ]. A dynamic scaling must be
+ * performed to avoid overflow.
+ */
+
+ /* The next procedure exists in six versions. First two integer
+ * version (if USE_FLOAT_MUL is not defined); then four floating
+ * point versions, twice with proper scaling (USE_FLOAT_MUL defined),
+ * once without (USE_FLOAT_MUL and FAST defined, and fast run-time
+ * option used). Every pair has first a Cut version (see the -C
+ * option to toast or the LTP_CUT option to gsm_option()), then the
+ * uncut one. (For a detailed explanation of why this is altogether
+ * a bad idea, see Henry Spencer and Geoff Collyer, ``#ifdef Considered
+ * Harmful''.)
+ */
+
+#ifndef USE_FLOAT_MUL
+
+#ifdef LTP_CUT
+
+static void Cut_Calculation_of_the_LTP_parameters (
+
+ struct gsm_state * st,
+
+ register word * d, /* [0..39] IN */
+ register word * dp, /* [-120..-1] IN */
+ word * bc_out, /* OUT */
+ word * Nc_out /* OUT */
+)
+{
+ register int k, lambda;
+ word Nc, bc;
+ word wt[40];
+
+ longword L_result;
+ longword L_max, L_power;
+ word R, S, dmax, scal, best_k;
+ word ltp_cut;
+
+ register word temp, wt_k;
+
+ /* Search of the optimum scaling of d[0..39].
+ */
+ dmax = 0;
+ for (k = 0; k <= 39; k++) {
+ temp = d[k];
+ temp = GSM_ABS( temp );
+ if (temp > dmax) {
+ dmax = temp;
+ best_k = k;
+ }
+ }
+ temp = 0;
+ if (dmax == 0) scal = 0;
+ else {
+ assert(dmax > 0);
+ temp = gsm_norm( (longword)dmax << 16 );
+ }
+ if (temp > 6) scal = 0;
+ else scal = 6 - temp;
+ assert(scal >= 0);
+
+ /* Search for the maximum cross-correlation and coding of the LTP lag
+ */
+ L_max = 0;
+ Nc = 40; /* index for the maximum cross-correlation */
+ wt_k = SASR(d[best_k], scal);
+
+ for (lambda = 40; lambda <= 120; lambda++) {
+ L_result = (longword)wt_k * dp[best_k - lambda];
+ if (L_result > L_max) {
+ Nc = lambda;
+ L_max = L_result;
+ }
+ }
+ *Nc_out = Nc;
+ L_max <<= 1;
+
+ /* Rescaling of L_max
+ */
+ assert(scal <= 100 && scal >= -100);
+ L_max = L_max >> (6 - scal); /* sub(6, scal) */
+
+ assert( Nc <= 120 && Nc >= 40);
+
+ /* Compute the power of the reconstructed short term residual
+ * signal dp[..]
+ */
+ L_power = 0;
+ for (k = 0; k <= 39; k++) {
+
+ register longword L_temp;
+
+ L_temp = SASR( dp[k - Nc], 3 );
+ L_power += L_temp * L_temp;
+ }
+ L_power <<= 1; /* from L_MULT */
+
+ /* Normalization of L_max and L_power
+ */
+
+ if (L_max <= 0) {
+ *bc_out = 0;
+ return;
+ }
+ if (L_max >= L_power) {
+ *bc_out = 3;
+ return;
+ }
+
+ temp = gsm_norm( L_power );
+
+ R = SASR( L_max << temp, 16 );
+ S = SASR( L_power << temp, 16 );
+
+ /* Coding of the LTP gain
+ */
+
+ /* Table 4.3a must be used to obtain the level DLB[i] for the
+ * quantization of the LTP gain b to get the coded version bc.
+ */
+ for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
+ *bc_out = bc;
+}
+
+#endif /* LTP_CUT */
+
+static void Calculation_of_the_LTP_parameters (
+ register word * d, /* [0..39] IN */
+ register word * dp, /* [-120..-1] IN */
+ word * bc_out, /* OUT */
+ word * Nc_out /* OUT */
+)
+{
+ register int k, lambda;
+ word Nc, bc;
+ word wt[40];
+
+ longword L_max, L_power;
+ word R, S, dmax, scal;
+ register word temp;
+
+ /* Search of the optimum scaling of d[0..39].
+ */
+ dmax = 0;
+
+ for (k = 0; k <= 39; k++) {
+ temp = d[k];
+ temp = GSM_ABS( temp );
+ if (temp > dmax) dmax = temp;
+ }
+
+ temp = 0;
+ if (dmax == 0) scal = 0;
+ else {
+ assert(dmax > 0);
+ temp = gsm_norm( (longword)dmax << 16 );
+ }
+
+ if (temp > 6) scal = 0;
+ else scal = 6 - temp;
+
+ assert(scal >= 0);
+
+ /* Initialization of a working array wt
+ */
+
+ for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal );
+
+ /* Search for the maximum cross-correlation and coding of the LTP lag
+ */
+ L_max = 0;
+ Nc = 40; /* index for the maximum cross-correlation */
+
+ for (lambda = 40; lambda <= 120; lambda++) {
+
+# undef STEP
+# define STEP(k) (longword)wt[k] * dp[k - lambda]
+
+ register longword L_result;
+
+ L_result = STEP(0) ; L_result += STEP(1) ;
+ L_result += STEP(2) ; L_result += STEP(3) ;
+ L_result += STEP(4) ; L_result += STEP(5) ;
+ L_result += STEP(6) ; L_result += STEP(7) ;
+ L_result += STEP(8) ; L_result += STEP(9) ;
+ L_result += STEP(10) ; L_result += STEP(11) ;
+ L_result += STEP(12) ; L_result += STEP(13) ;
+ L_result += STEP(14) ; L_result += STEP(15) ;
+ L_result += STEP(16) ; L_result += STEP(17) ;
+ L_result += STEP(18) ; L_result += STEP(19) ;
+ L_result += STEP(20) ; L_result += STEP(21) ;
+ L_result += STEP(22) ; L_result += STEP(23) ;
+ L_result += STEP(24) ; L_result += STEP(25) ;
+ L_result += STEP(26) ; L_result += STEP(27) ;
+ L_result += STEP(28) ; L_result += STEP(29) ;
+ L_result += STEP(30) ; L_result += STEP(31) ;
+ L_result += STEP(32) ; L_result += STEP(33) ;
+ L_result += STEP(34) ; L_result += STEP(35) ;
+ L_result += STEP(36) ; L_result += STEP(37) ;
+ L_result += STEP(38) ; L_result += STEP(39) ;
+
+ if (L_result > L_max) {
+
+ Nc = lambda;
+ L_max = L_result;
+ }
+ }
+
+ *Nc_out = Nc;
+
+ L_max <<= 1;
+
+ /* Rescaling of L_max
+ */
+ assert(scal <= 100 && scal >= -100);
+ L_max = L_max >> (6 - scal); /* sub(6, scal) */
+
+ assert( Nc <= 120 && Nc >= 40);
+
+ /* Compute the power of the reconstructed short term residual
+ * signal dp[..]
+ */
+ L_power = 0;
+ for (k = 0; k <= 39; k++) {
+
+ register longword L_temp;
+
+ L_temp = SASR( dp[k - Nc], 3 );
+ L_power += L_temp * L_temp;
+ }
+ L_power <<= 1; /* from L_MULT */
+
+ /* Normalization of L_max and L_power
+ */
+
+ if (L_max <= 0) {
+ *bc_out = 0;
+ return;
+ }
+ if (L_max >= L_power) {
+ *bc_out = 3;
+ return;
+ }
+
+ temp = gsm_norm( L_power );
+
+ R = SASR( L_max << temp, 16 );
+ S = SASR( L_power << temp, 16 );
+
+ /* Coding of the LTP gain
+ */
+
+ /* Table 4.3a must be used to obtain the level DLB[i] for the
+ * quantization of the LTP gain b to get the coded version bc.
+ */
+ for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
+ *bc_out = bc;
+}
+
+#else /* USE_FLOAT_MUL */
+
+#ifdef LTP_CUT
+
+static void Cut_Calculation_of_the_LTP_parameters (
+ struct gsm_state * st, /* IN */
+ register word * d, /* [0..39] IN */
+ register word * dp, /* [-120..-1] IN */
+ word * bc_out, /* OUT */
+ word * Nc_out /* OUT */
+)
+{
+ register int k, lambda;
+ word Nc, bc;
+ word ltp_cut;
+
+ float wt_float[40];
+ float dp_float_base[120], * dp_float = dp_float_base + 120;
+
+ longword L_max, L_power;
+ word R, S, dmax, scal;
+ register word temp;
+
+ /* Search of the optimum scaling of d[0..39].
+ */
+ dmax = 0;
+
+ for (k = 0; k <= 39; k++) {
+ temp = d[k];
+ temp = GSM_ABS( temp );
+ if (temp > dmax) dmax = temp;
+ }
+
+ temp = 0;
+ if (dmax == 0) scal = 0;
+ else {
+ assert(dmax > 0);
+ temp = gsm_norm( (longword)dmax << 16 );
+ }
+
+ if (temp > 6) scal = 0;
+ else scal = 6 - temp;
+
+ assert(scal >= 0);
+ ltp_cut = (longword)SASR(dmax, scal) * st->ltp_cut / 100;
+
+
+ /* Initialization of a working array wt
+ */
+
+ for (k = 0; k < 40; k++) {
+ register word w = SASR( d[k], scal );
+ if (w < 0 ? w > -ltp_cut : w < ltp_cut) {
+ wt_float[k] = 0.0;
+ }
+ else {
+ wt_float[k] = w;
+ }
+ }
+ for (k = -120; k < 0; k++) dp_float[k] = dp[k];
+
+ /* Search for the maximum cross-correlation and coding of the LTP lag
+ */
+ L_max = 0;
+ Nc = 40; /* index for the maximum cross-correlation */
+
+ for (lambda = 40; lambda <= 120; lambda += 9) {
+
+ /* Calculate L_result for l = lambda .. lambda + 9.
+ */
+ register float *lp = dp_float - lambda;
+
+ register float W;
+ register float a = lp[-8], b = lp[-7], c = lp[-6],
+ d = lp[-5], e = lp[-4], f = lp[-3],
+ g = lp[-2], h = lp[-1];
+ register float E;
+ register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
+ S5 = 0, S6 = 0, S7 = 0, S8 = 0;
+
+# undef STEP
+# define STEP(K, a, b, c, d, e, f, g, h) \
+ if ((W = wt_float[K]) != 0.0) { \
+ E = W * a; S8 += E; \
+ E = W * b; S7 += E; \
+ E = W * c; S6 += E; \
+ E = W * d; S5 += E; \
+ E = W * e; S4 += E; \
+ E = W * f; S3 += E; \
+ E = W * g; S2 += E; \
+ E = W * h; S1 += E; \
+ a = lp[K]; \
+ E = W * a; S0 += E; } else (a = lp[K])
+
+# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
+# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
+# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
+# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
+# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
+# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
+# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
+# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
+
+ STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
+ STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
+
+ STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
+ STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
+
+ STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
+ STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
+
+ STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
+ STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
+
+ STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
+ STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
+
+ if (S0 > L_max) { L_max = S0; Nc = lambda; }
+ if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
+ if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
+ if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
+ if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
+ if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
+ if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
+ if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
+ if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
+
+ }
+ *Nc_out = Nc;
+
+ L_max <<= 1;
+
+ /* Rescaling of L_max
+ */
+ assert(scal <= 100 && scal >= -100);
+ L_max = L_max >> (6 - scal); /* sub(6, scal) */
+
+ assert( Nc <= 120 && Nc >= 40);
+
+ /* Compute the power of the reconstructed short term residual
+ * signal dp[..]
+ */
+ L_power = 0;
+ for (k = 0; k <= 39; k++) {
+
+ register longword L_temp;
+
+ L_temp = SASR( dp[k - Nc], 3 );
+ L_power += L_temp * L_temp;
+ }
+ L_power <<= 1; /* from L_MULT */
+
+ /* Normalization of L_max and L_power
+ */
+
+ if (L_max <= 0) {
+ *bc_out = 0;
+ return;
+ }
+ if (L_max >= L_power) {
+ *bc_out = 3;
+ return;
+ }
+
+ temp = gsm_norm( L_power );
+
+ R = SASR( L_max << temp, 16 );
+ S = SASR( L_power << temp, 16 );
+
+ /* Coding of the LTP gain
+ */
+
+ /* Table 4.3a must be used to obtain the level DLB[i] for the
+ * quantization of the LTP gain b to get the coded version bc.
+ */
+ for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
+ *bc_out = bc;
+}
+
+#endif /* LTP_CUT */
+
+static void Calculation_of_the_LTP_parameters (
+ register word * d, /* [0..39] IN */
+ register word * dp, /* [-120..-1] IN */
+ word * bc_out, /* OUT */
+ word * Nc_out /* OUT */
+)
+{
+ register int k, lambda;
+ word Nc, bc;
+
+ float wt_float[40];
+ float dp_float_base[120], * dp_float = dp_float_base + 120;
+
+ longword L_max, L_power;
+ word R, S, dmax, scal;
+ register word temp;
+
+ /* Search of the optimum scaling of d[0..39].
+ */
+ dmax = 0;
+
+ for (k = 0; k <= 39; k++) {
+ temp = d[k];
+ temp = GSM_ABS( temp );
+ if (temp > dmax) dmax = temp;
+ }
+
+ temp = 0;
+ if (dmax == 0) scal = 0;
+ else {
+ assert(dmax > 0);
+ temp = gsm_norm( (longword)dmax << 16 );
+ }
+
+ if (temp > 6) scal = 0;
+ else scal = 6 - temp;
+
+ assert(scal >= 0);
+
+ /* Initialization of a working array wt
+ */
+
+ for (k = 0; k < 40; k++) wt_float[k] = SASR( d[k], scal );
+ for (k = -120; k < 0; k++) dp_float[k] = dp[k];
+
+ /* Search for the maximum cross-correlation and coding of the LTP lag
+ */
+ L_max = 0;
+ Nc = 40; /* index for the maximum cross-correlation */
+
+ for (lambda = 40; lambda <= 120; lambda += 9) {
+
+ /* Calculate L_result for l = lambda .. lambda + 9.
+ */
+ register float *lp = dp_float - lambda;
+
+ register float W;
+ register float a = lp[-8], b = lp[-7], c = lp[-6],
+ d = lp[-5], e = lp[-4], f = lp[-3],
+ g = lp[-2], h = lp[-1];
+ register float E;
+ register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
+ S5 = 0, S6 = 0, S7 = 0, S8 = 0;
+
+# undef STEP
+# define STEP(K, a, b, c, d, e, f, g, h) \
+ W = wt_float[K]; \
+ E = W * a; S8 += E; \
+ E = W * b; S7 += E; \
+ E = W * c; S6 += E; \
+ E = W * d; S5 += E; \
+ E = W * e; S4 += E; \
+ E = W * f; S3 += E; \
+ E = W * g; S2 += E; \
+ E = W * h; S1 += E; \
+ a = lp[K]; \
+ E = W * a; S0 += E
+
+# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
+# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
+# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
+# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
+# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
+# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
+# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
+# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
+
+ STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
+ STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
+
+ STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
+ STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
+
+ STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
+ STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
+
+ STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
+ STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
+
+ STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
+ STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
+
+ if (S0 > L_max) { L_max = S0; Nc = lambda; }
+ if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
+ if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
+ if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
+ if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
+ if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
+ if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
+ if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
+ if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
+ }
+ *Nc_out = Nc;
+
+ L_max <<= 1;
+
+ /* Rescaling of L_max
+ */
+ assert(scal <= 100 && scal >= -100);
+ L_max = L_max >> (6 - scal); /* sub(6, scal) */
+
+ assert( Nc <= 120 && Nc >= 40);
+
+ /* Compute the power of the reconstructed short term residual
+ * signal dp[..]
+ */
+ L_power = 0;
+ for (k = 0; k <= 39; k++) {
+
+ register longword L_temp;
+
+ L_temp = SASR( dp[k - Nc], 3 );
+ L_power += L_temp * L_temp;
+ }
+ L_power <<= 1; /* from L_MULT */
+
+ /* Normalization of L_max and L_power
+ */
+
+ if (L_max <= 0) {
+ *bc_out = 0;
+ return;
+ }
+ if (L_max >= L_power) {
+ *bc_out = 3;
+ return;
+ }
+
+ temp = gsm_norm( L_power );
+
+ R = SASR( L_max << temp, 16 );
+ S = SASR( L_power << temp, 16 );
+
+ /* Coding of the LTP gain
+ */
+
+ /* Table 4.3a must be used to obtain the level DLB[i] for the
+ * quantization of the LTP gain b to get the coded version bc.
+ */
+ for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
+ *bc_out = bc;
+}
+
+#ifdef FAST
+#ifdef LTP_CUT
+
+static void Cut_Fast_Calculation_of_the_LTP_parameters (
+ struct gsm_state * st, /* IN */
+ register word * d, /* [0..39] IN */
+ register word * dp, /* [-120..-1] IN */
+ word * bc_out, /* OUT */
+ word * Nc_out /* OUT */
+)
+{
+ register int k, lambda;
+ register float wt_float;
+ word Nc, bc;
+ word wt_max, best_k, ltp_cut;
+
+ float dp_float_base[120], * dp_float = dp_float_base + 120;
+
+ register float L_result, L_max, L_power;
+
+ wt_max = 0;
+
+ for (k = 0; k < 40; ++k) {
+ if ( d[k] > wt_max) wt_max = d[best_k = k];
+ else if (-d[k] > wt_max) wt_max = -d[best_k = k];
+ }
+
+ assert(wt_max >= 0);
+ wt_float = (float)wt_max;
+
+ for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
+
+ /* Search for the maximum cross-correlation and coding of the LTP lag
+ */
+ L_max = 0;
+ Nc = 40; /* index for the maximum cross-correlation */
+
+ for (lambda = 40; lambda <= 120; lambda++) {
+ L_result = wt_float * dp_float[best_k - lambda];
+ if (L_result > L_max) {
+ Nc = lambda;
+ L_max = L_result;
+ }
+ }
+
+ *Nc_out = Nc;
+ if (L_max <= 0.) {
+ *bc_out = 0;
+ return;
+ }
+
+ /* Compute the power of the reconstructed short term residual
+ * signal dp[..]
+ */
+ dp_float -= Nc;
+ L_power = 0;
+ for (k = 0; k < 40; ++k) {
+ register float f = dp_float[k];
+ L_power += f * f;
+ }
+
+ if (L_max >= L_power) {
+ *bc_out = 3;
+ return;
+ }
+
+ /* Coding of the LTP gain
+ * Table 4.3a must be used to obtain the level DLB[i] for the
+ * quantization of the LTP gain b to get the coded version bc.
+ */
+ lambda = L_max / L_power * 32768.;
+ for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
+ *bc_out = bc;
+}
+
+#endif /* LTP_CUT */
+
+static void Fast_Calculation_of_the_LTP_parameters (
+ register word * d, /* [0..39] IN */
+ register word * dp, /* [-120..-1] IN */
+ word * bc_out, /* OUT */
+ word * Nc_out /* OUT */
+)
+{
+ register int k, lambda;
+ word Nc, bc;
+
+ float wt_float[40];
+ float dp_float_base[120], * dp_float = dp_float_base + 120;
+
+ register float L_max, L_power;
+
+ for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k];
+ for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
+
+ /* Search for the maximum cross-correlation and coding of the LTP lag
+ */
+ L_max = 0;
+ Nc = 40; /* index for the maximum cross-correlation */
+
+ for (lambda = 40; lambda <= 120; lambda += 9) {
+
+ /* Calculate L_result for l = lambda .. lambda + 9.
+ */
+ register float *lp = dp_float - lambda;
+
+ register float W;
+ register float a = lp[-8], b = lp[-7], c = lp[-6],
+ d = lp[-5], e = lp[-4], f = lp[-3],
+ g = lp[-2], h = lp[-1];
+ register float E;
+ register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
+ S5 = 0, S6 = 0, S7 = 0, S8 = 0;
+
+# undef STEP
+# define STEP(K, a, b, c, d, e, f, g, h) \
+ W = wt_float[K]; \
+ E = W * a; S8 += E; \
+ E = W * b; S7 += E; \
+ E = W * c; S6 += E; \
+ E = W * d; S5 += E; \
+ E = W * e; S4 += E; \
+ E = W * f; S3 += E; \
+ E = W * g; S2 += E; \
+ E = W * h; S1 += E; \
+ a = lp[K]; \
+ E = W * a; S0 += E
+
+# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
+# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
+# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
+# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
+# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
+# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
+# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
+# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
+
+ STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
+ STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
+
+ STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
+ STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
+
+ STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
+ STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
+
+ STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
+ STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
+
+ STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
+ STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
+
+ if (S0 > L_max) { L_max = S0; Nc = lambda; }
+ if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
+ if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
+ if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
+ if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
+ if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
+ if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
+ if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
+ if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
+ }
+ *Nc_out = Nc;
+
+ if (L_max <= 0.) {
+ *bc_out = 0;
+ return;
+ }
+
+ /* Compute the power of the reconstructed short term residual
+ * signal dp[..]
+ */
+ dp_float -= Nc;
+ L_power = 0;
+ for (k = 0; k < 40; ++k) {
+ register float f = dp_float[k];
+ L_power += f * f;
+ }
+
+ if (L_max >= L_power) {
+ *bc_out = 3;
+ return;
+ }
+
+ /* Coding of the LTP gain
+ * Table 4.3a must be used to obtain the level DLB[i] for the
+ * quantization of the LTP gain b to get the coded version bc.
+ */
+ lambda = L_max / L_power * 32768.;
+ for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
+ *bc_out = bc;
+}
+
+#endif /* FAST */
+#endif /* USE_FLOAT_MUL */
+
+
+/* 4.2.12 */
+
+static void Long_term_analysis_filtering (
+ word bc, /* IN */
+ word Nc, /* IN */
+ register word * dp, /* previous d [-120..-1] IN */
+ register word * d, /* d [0..39] IN */
+ register word * dpp, /* estimate [0..39] OUT */
+ register word * e /* long term res. signal [0..39] OUT */
+)
+/*
+ * In this part, we have to decode the bc parameter to compute
+ * the samples of the estimate dpp[0..39]. The decoding of bc needs the
+ * use of table 4.3b. The long term residual signal e[0..39]
+ * is then calculated to be fed to the RPE encoding section.
+ */
+{
+ register int k;
+ register longword ltmp;
+
+# undef STEP
+# define STEP(BP) \
+ for (k = 0; k <= 39; k++) { \
+ dpp[k] = GSM_MULT_R( BP, dp[k - Nc]); \
+ e[k] = GSM_SUB( d[k], dpp[k] ); \
+ }
+
+ switch (bc) {
+ case 0: STEP( 3277 ); break;
+ case 1: STEP( 11469 ); break;
+ case 2: STEP( 21299 ); break;
+ case 3: STEP( 32767 ); break;
+ }
+}
+
+void Gsm_Long_Term_Predictor ( /* 4x for 160 samples */
+
+ struct gsm_state * S,
+
+ word * d, /* [0..39] residual signal IN */
+ word * dp, /* [-120..-1] d' IN */
+
+ word * e, /* [0..39] OUT */
+ word * dpp, /* [0..39] OUT */
+ word * Nc, /* correlation lag OUT */
+ word * bc /* gain factor OUT */
+)
+{
+ assert( d ); assert( dp ); assert( e );
+ assert( dpp); assert( Nc ); assert( bc );
+
+#if defined(FAST) && defined(USE_FLOAT_MUL)
+ if (S->fast)
+#if defined (LTP_CUT)
+ if (S->ltp_cut)
+ Cut_Fast_Calculation_of_the_LTP_parameters(S,
+ d, dp, bc, Nc);
+ else
+#endif /* LTP_CUT */
+ Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc );
+ else
+#endif /* FAST & USE_FLOAT_MUL */
+#ifdef LTP_CUT
+ if (S->ltp_cut)
+ Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc);
+ else
+#endif
+ Calculation_of_the_LTP_parameters(d, dp, bc, Nc);
+
+ Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );
+}
+
+/* 4.3.2 */
+void Gsm_Long_Term_Synthesis_Filtering (
+ struct gsm_state * S,
+
+ word Ncr,
+ word bcr,
+ register word * erp, /* [0..39] IN */
+ register word * drp /* [-120..-1] IN, [-120..40] OUT */
+)
+/*
+ * This procedure uses the bcr and Ncr parameter to realize the
+ * long term synthesis filtering. The decoding of bcr needs
+ * table 4.3b.
+ */
+{
+ register longword ltmp; /* for ADD */
+ register int k;
+ word brp, drpp, Nr;
+
+ /* Check the limits of Nr.
+ */
+ Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
+ S->nrp = Nr;
+ assert(Nr >= 40 && Nr <= 120);
+
+ /* Decoding of the LTP gain bcr
+ */
+ brp = gsm_QLB[ bcr ];
+
+ /* Computation of the reconstructed short term residual
+ * signal drp[0..39]
+ */
+ assert(brp != MIN_WORD);
+
+ for (k = 0; k <= 39; k++) {
+ drpp = GSM_MULT_R( brp, drp[ k - Nr ] );
+ drp[k] = GSM_ADD( erp[k], drpp );
+ }
+
+ /*
+ * Update of the reconstructed short term residual signal
+ * drp[ -1..-120 ]
+ */
+
+ for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
+}
--- /dev/null
+++ b/src/libgsm/lpc.c
@@ -1,0 +1,338 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/lpc.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include <stdio.h>
+#include <assert.h>
+
+#include "private.h"
+
+#include "gsm.h"
+
+/*
+ * 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
+ */
+
+/* 4.2.4 */
+
+
+static void Autocorrelation (
+ word * s, /* [0..159] IN/OUT */
+ longword * L_ACF) /* [0..8] OUT */
+/*
+ * The goal is to compute the array L_ACF[k]. The signal s[i] must
+ * be scaled in order to avoid an overflow situation.
+ */
+{
+ register int k, i;
+
+ word temp, smax, scalauto;
+
+#ifdef USE_FLOAT_MUL
+ float float_s[160];
+#endif
+
+ /* Dynamic scaling of the array s[0..159]
+ */
+
+ /* Search for the maximum.
+ */
+ smax = 0;
+ for (k = 0; k <= 159; k++) {
+ temp = GSM_ABS( s[k] );
+ if (temp > smax) smax = temp;
+ }
+
+ /* Computation of the scaling factor.
+ */
+ if (smax == 0) scalauto = 0;
+ else {
+ assert(smax > 0);
+ scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
+ }
+
+ /* Scaling of the array s[0...159]
+ */
+
+ if (scalauto > 0) {
+
+# ifdef USE_FLOAT_MUL
+# define SCALE(n) \
+ case n: for (k = 0; k <= 159; k++) \
+ float_s[k] = (float) \
+ (s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\
+ break;
+# else
+# define SCALE(n) \
+ case n: for (k = 0; k <= 159; k++) \
+ s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
+ break;
+# endif /* USE_FLOAT_MUL */
+
+ switch (scalauto) {
+ SCALE(1)
+ SCALE(2)
+ SCALE(3)
+ SCALE(4)
+ }
+# undef SCALE
+ }
+# ifdef USE_FLOAT_MUL
+ else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k];
+# endif
+
+ /* Compute the L_ACF[..].
+ */
+ {
+# ifdef USE_FLOAT_MUL
+ register float * sp = float_s;
+ register float sl = *sp;
+
+# define STEP(k) L_ACF[k] += (longword)(sl * sp[ -(k) ]);
+# else
+ word * sp = s;
+ word sl = *sp;
+
+# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]);
+# endif
+
+# define NEXTI sl = *++sp
+
+
+ for (k = 9; k--; L_ACF[k] = 0) ;
+
+ STEP (0);
+ NEXTI;
+ STEP(0); STEP(1);
+ NEXTI;
+ STEP(0); STEP(1); STEP(2);
+ NEXTI;
+ STEP(0); STEP(1); STEP(2); STEP(3);
+ NEXTI;
+ STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
+ NEXTI;
+ STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
+ NEXTI;
+ STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
+ NEXTI;
+ STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
+
+ for (i = 8; i <= 159; i++) {
+
+ NEXTI;
+
+ STEP(0);
+ STEP(1); STEP(2); STEP(3); STEP(4);
+ STEP(5); STEP(6); STEP(7); STEP(8);
+ }
+
+ for (k = 9; k--; L_ACF[k] <<= 1) ;
+
+ }
+ /* Rescaling of the array s[0..159]
+ */
+ if (scalauto > 0) {
+ assert(scalauto <= 4);
+ for (k = 160; k--; *s++ <<= scalauto) ;
+ }
+}
+
+#if defined(USE_FLOAT_MUL) && defined(FAST)
+
+static void Fast_Autocorrelation (
+ word * s, /* [0..159] IN/OUT */
+ longword * L_ACF) /* [0..8] OUT */
+{
+ register int k, i;
+ float f_L_ACF[9];
+ float scale;
+
+ float s_f[160];
+ register float *sf = s_f;
+
+ for (i = 0; i < 160; ++i) sf[i] = s[i];
+ for (k = 0; k <= 8; k++) {
+ register float L_temp2 = 0;
+ register float *sfl = sf - k;
+ for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i];
+ f_L_ACF[k] = L_temp2;
+ }
+ scale = MAX_LONGWORD / f_L_ACF[0];
+
+ for (k = 0; k <= 8; k++) {
+ L_ACF[k] = f_L_ACF[k] * scale;
+ }
+}
+#endif /* defined (USE_FLOAT_MUL) && defined (FAST) */
+
+/* 4.2.5 */
+
+static void Reflection_coefficients (
+ longword * L_ACF, /* 0...8 IN */
+ register word * r /* 0...7 OUT */
+)
+{
+ register int i, m, n;
+ register word temp;
+ register longword ltmp;
+ word ACF[9]; /* 0..8 */
+ word P[ 9]; /* 0..8 */
+ word K[ 9]; /* 2..8 */
+
+ /* Schur recursion with 16 bits arithmetic.
+ */
+
+ if (L_ACF[0] == 0) {
+ for (i = 8; i--; *r++ = 0) ;
+ return;
+ }
+
+ assert( L_ACF[0] != 0 );
+ temp = gsm_norm( L_ACF[0] );
+
+ assert(temp >= 0 && temp < 32);
+
+ /* ? overflow ? */
+ for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
+
+ /* Initialize array P[..] and K[..] for the recursion.
+ */
+
+ for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
+ for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
+
+ /* Compute reflection coefficients
+ */
+ for (n = 1; n <= 8; n++, r++) {
+
+ temp = P[1];
+ temp = GSM_ABS(temp);
+ if (P[0] < temp) {
+ for (i = n; i <= 8; i++) *r++ = 0;
+ return;
+ }
+
+ *r = gsm_div( temp, P[0] );
+
+ assert(*r >= 0);
+ if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */
+ assert (*r != MIN_WORD);
+ if (n == 8) return;
+
+ /* Schur recursion
+ */
+ temp = GSM_MULT_R( P[1], *r );
+ P[0] = GSM_ADD( P[0], temp );
+
+ for (m = 1; m <= 8 - n; m++) {
+ temp = GSM_MULT_R( K[ m ], *r );
+ P[m] = GSM_ADD( P[ m+1 ], temp );
+
+ temp = GSM_MULT_R( P[ m+1 ], *r );
+ K[m] = GSM_ADD( K[ m ], temp );
+ }
+ }
+}
+
+/* 4.2.6 */
+
+static void Transformation_to_Log_Area_Ratios (
+ register word * r /* 0..7 IN/OUT */
+)
+/*
+ * The following scaling for r[..] and LAR[..] has been used:
+ *
+ * r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1.
+ * LAR[..] = integer( real_LAR[..] * 16384 );
+ * with -1.625 <= real_LAR <= 1.625
+ */
+{
+ register word temp;
+ register int i;
+
+
+ /* Computation of the LAR[0..7] from the r[0..7]
+ */
+ for (i = 1; i <= 8; i++, r++) {
+
+ temp = *r;
+ temp = GSM_ABS(temp);
+ assert(temp >= 0);
+
+ if (temp < 22118) {
+ temp >>= 1;
+ } else if (temp < 31130) {
+ assert( temp >= 11059 );
+ temp -= 11059;
+ } else {
+ assert( temp >= 26112 );
+ temp -= 26112;
+ temp <<= 2;
+ }
+
+ *r = *r < 0 ? -temp : temp;
+ assert( *r != MIN_WORD );
+ }
+}
+
+/* 4.2.7 */
+
+static void Quantization_and_coding (
+ register word * LAR /* [0..7] IN/OUT */
+)
+{
+ register word temp;
+ longword ltmp;
+
+
+ /* This procedure needs four tables; the following equations
+ * give the optimum scaling for the constants:
+ *
+ * A[0..7] = integer( real_A[0..7] * 1024 )
+ * B[0..7] = integer( real_B[0..7] * 512 )
+ * MAC[0..7] = maximum of the LARc[0..7]
+ * MIC[0..7] = minimum of the LARc[0..7]
+ */
+
+# undef STEP
+# define STEP( A, B, MAC, MIC ) \
+ temp = GSM_MULT( A, *LAR ); \
+ temp = GSM_ADD( temp, B ); \
+ temp = GSM_ADD( temp, 256 ); \
+ temp = SASR( temp, 9 ); \
+ *LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
+ LAR++;
+
+ STEP( 20480, 0, 31, -32 );
+ STEP( 20480, 0, 31, -32 );
+ STEP( 20480, 2048, 15, -16 );
+ STEP( 20480, -2560, 15, -16 );
+
+ STEP( 13964, 94, 7, -8 );
+ STEP( 15360, -1792, 7, -8 );
+ STEP( 8534, -341, 3, -4 );
+ STEP( 9036, -1144, 3, -4 );
+
+# undef STEP
+}
+
+void Gsm_LPC_Analysis (
+ struct gsm_state *S,
+ word * s, /* 0..159 signals IN/OUT */
+ word * LARc) /* 0..7 LARc's OUT */
+{
+ longword L_ACF[9];
+
+#if defined(USE_FLOAT_MUL) && defined(FAST)
+ if (S->fast) Fast_Autocorrelation (s, L_ACF );
+ else
+#endif
+ Autocorrelation (s, L_ACF );
+ Reflection_coefficients (L_ACF, LARc );
+ Transformation_to_Log_Area_Ratios (LARc);
+ Quantization_and_coding (LARc);
+}
--- /dev/null
+++ b/src/libgsm/preprocess.c
@@ -1,0 +1,112 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/preprocess.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include <stdio.h>
+#include <assert.h>
+
+#include "private.h"
+
+#include "gsm.h"
+
+/* 4.2.0 .. 4.2.3 PREPROCESSING SECTION
+ *
+ * After A-law to linear conversion (or directly from the
+ * Ato D converter) the following scaling is assumed for
+ * input to the RPE-LTP algorithm:
+ *
+ * in: 0.1.....................12
+ * S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
+ *
+ * Where S is the sign bit, v a valid bit, and * a "don't care" bit.
+ * The original signal is called sop[..]
+ *
+ * out: 0.1................... 12
+ * S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
+ */
+
+
+void Gsm_Preprocess (
+ struct gsm_state * S,
+ word * s,
+ word * so ) /* [0..159] IN/OUT */
+{
+
+ word z1 = S->z1;
+ longword L_z2 = S->L_z2;
+ word mp = S->mp;
+
+ word s1;
+ longword L_s2;
+
+ longword L_temp;
+
+ word msp, lsp;
+ word SO;
+
+ longword ltmp; /* for ADD */
+ ulongword utmp; /* for L_ADD */
+
+ register int k = 160;
+
+ while (k--) {
+
+ /* 4.2.1 Downscaling of the input signal
+ */
+ SO = SASR( *s, 3 ) << 2;
+ s++;
+
+ assert (SO >= -0x4000); /* downscaled by */
+ assert (SO <= 0x3FFC); /* previous routine. */
+
+
+ /* 4.2.2 Offset compensation
+ *
+ * This part implements a high-pass filter and requires extended
+ * arithmetic precision for the recursive part of this filter.
+ * The input of this procedure is the array so[0...159] and the
+ * output the array sof[ 0...159 ].
+ */
+ /* Compute the non-recursive part
+ */
+
+ s1 = SO - z1; /* s1 = gsm_sub( *so, z1 ); */
+ z1 = SO;
+
+ assert(s1 != MIN_WORD);
+
+ /* Compute the recursive part
+ */
+ L_s2 = s1;
+ L_s2 <<= 15;
+
+ /* Execution of a 31 bv 16 bits multiplication
+ */
+
+ msp = SASR( L_z2, 15 );
+ lsp = L_z2-((longword)msp<<15); /* gsm_L_sub(L_z2,(msp<<15)); */
+
+ L_s2 += GSM_MULT_R( lsp, 32735 );
+ L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
+ L_z2 = GSM_L_ADD( L_temp, L_s2 );
+
+ /* Compute sof[k] with rounding
+ */
+ L_temp = GSM_L_ADD( L_z2, 16384 );
+
+ /* 4.2.3 Preemphasis
+ */
+
+ msp = GSM_MULT_R( mp, -28180 );
+ mp = SASR( L_temp, 15 );
+ *so++ = GSM_ADD( mp, msp );
+ }
+
+ S->z1 = z1;
+ S->L_z2 = L_z2;
+ S->mp = mp;
+}
--- /dev/null
+++ b/src/libgsm/private.h
@@ -1,0 +1,264 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/*$Header: /cvsroot/sox/sox/src/libgsm/Attic/private.h,v 1.1 2006/08/27 23:04:56 cbagwell Exp $*/
+
+#ifndef PRIVATE_H
+#define PRIVATE_H
+
+typedef short word; /* 16 bit signed int */
+typedef long longword; /* 32 bit signed int */
+
+typedef unsigned short uword; /* unsigned word */
+typedef unsigned long ulongword; /* unsigned longword */
+
+struct gsm_state {
+
+ word dp0[ 280 ];
+
+ word z1; /* preprocessing.c, Offset_com. */
+ longword L_z2; /* Offset_com. */
+ int mp; /* Preemphasis */
+
+ word u[8]; /* short_term_aly_filter.c */
+ word LARpp[2][8]; /* */
+ word j; /* */
+
+ word ltp_cut; /* long_term.c, LTP crosscorr. */
+ word nrp; /* 40 */ /* long_term.c, synthesis */
+ word v[9]; /* short_term.c, synthesis */
+ word msr; /* decoder.c, Postprocessing */
+
+ char verbose; /* only used if !NDEBUG */
+ char fast; /* only used if FAST */
+
+ char wav_fmt; /* only used if WAV49 defined */
+ unsigned char frame_index; /* odd/even chaining */
+ unsigned char frame_chain; /* half-byte to carry forward */
+};
+
+
+#define MIN_WORD (-32767 - 1)
+#define MAX_WORD 32767
+
+#define MIN_LONGWORD (-2147483647 - 1)
+#define MAX_LONGWORD 2147483647
+
+#ifdef SASR /* flag: >> is a signed arithmetic shift right */
+#undef SASR
+#define SASR(x, by) ((x) >> (by))
+#else
+#define SASR(x, by) ((x) >= 0 ? (x) >> (by) : (~(-((x) + 1) >> (by))))
+#endif /* SASR */
+
+/*
+ * Prototypes from add.c
+ */
+extern word gsm_mult (word a, word b);
+extern longword gsm_L_mult (word a, word b);
+extern word gsm_mult_r (word a, word b);
+
+extern word gsm_div (word num, word denum);
+
+extern word gsm_add ( word a, word b );
+extern longword gsm_L_add ( longword a, longword b );
+
+extern word gsm_sub (word a, word b);
+extern longword gsm_L_sub (longword a, longword b);
+
+extern word gsm_abs (word a);
+
+extern word gsm_norm ( longword a );
+
+extern longword gsm_L_asl (longword a, int n);
+extern word gsm_asl (word a, int n);
+
+extern longword gsm_L_asr (longword a, int n);
+extern word gsm_asr (word a, int n);
+
+/*
+ * Inlined functions from add.h
+ */
+
+/*
+ * #define GSM_MULT_R(a, b) (* word a, word b, !(a == b == MIN_WORD) *) \
+ * (0x0FFFF & SASR(((longword)(a) * (longword)(b) + 16384), 15))
+ */
+#define GSM_MULT_R(a, b) /* word a, word b, !(a == b == MIN_WORD) */ \
+ (SASR( ((longword)(a) * (longword)(b) + 16384), 15 ))
+
+# define GSM_MULT(a,b) /* word a, word b, !(a == b == MIN_WORD) */ \
+ (SASR( ((longword)(a) * (longword)(b)), 15 ))
+
+# define GSM_L_MULT(a, b) /* word a, word b */ \
+ (((longword)(a) * (longword)(b)) << 1)
+
+# define GSM_L_ADD(a, b) \
+ ( (a) < 0 ? ( (b) >= 0 ? (a) + (b) \
+ : (utmp = (ulongword)-((a) + 1) + (ulongword)-((b) + 1)) \
+ >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)utmp-2 ) \
+ : ((b) <= 0 ? (a) + (b) \
+ : (utmp = (ulongword)(a) + (ulongword)(b)) >= MAX_LONGWORD \
+ ? MAX_LONGWORD : utmp))
+
+/*
+ * # define GSM_ADD(a, b) \
+ * ((ltmp = (longword)(a) + (longword)(b)) >= MAX_WORD \
+ * ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
+ */
+/* Nonportable, but faster: */
+
+#define GSM_ADD(a, b) \
+ ((ulongword)((ltmp = (longword)(a) + (longword)(b)) - MIN_WORD) > \
+ MAX_WORD - MIN_WORD ? (ltmp > 0 ? MAX_WORD : MIN_WORD) : ltmp)
+
+# define GSM_SUB(a, b) \
+ ((ltmp = (longword)(a) - (longword)(b)) >= MAX_WORD \
+ ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
+
+# define GSM_ABS(a) ((a) < 0 ? ((a) == MIN_WORD ? MAX_WORD : -(a)) : (a))
+
+/* Use these if necessary:
+
+# define GSM_MULT_R(a, b) gsm_mult_r(a, b)
+# define GSM_MULT(a, b) gsm_mult(a, b)
+# define GSM_L_MULT(a, b) gsm_L_mult(a, b)
+
+# define GSM_L_ADD(a, b) gsm_L_add(a, b)
+# define GSM_ADD(a, b) gsm_add(a, b)
+# define GSM_SUB(a, b) gsm_sub(a, b)
+
+# define GSM_ABS(a) gsm_abs(a)
+
+*/
+
+/*
+ * More prototypes from implementations..
+ */
+extern void Gsm_Coder (
+ struct gsm_state * S,
+ word * s, /* [0..159] samples IN */
+ word * LARc, /* [0..7] LAR coefficients OUT */
+ word * Nc, /* [0..3] LTP lag OUT */
+ word * bc, /* [0..3] coded LTP gain OUT */
+ word * Mc, /* [0..3] RPE grid selection OUT */
+ word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
+ word * xMc /* [13*4] normalized RPE samples OUT */);
+
+extern void Gsm_Long_Term_Predictor ( /* 4x for 160 samples */
+ struct gsm_state * S,
+ word * d, /* [0..39] residual signal IN */
+ word * dp, /* [-120..-1] d' IN */
+ word * e, /* [0..40] OUT */
+ word * dpp, /* [0..40] OUT */
+ word * Nc, /* correlation lag OUT */
+ word * bc /* gain factor OUT */);
+
+extern void Gsm_LPC_Analysis (
+ struct gsm_state * S,
+ word * s, /* 0..159 signals IN/OUT */
+ word * LARc); /* 0..7 LARc's OUT */
+
+extern void Gsm_Preprocess (
+ struct gsm_state * S,
+ word * s, word * so);
+
+extern void Gsm_Encoding (
+ struct gsm_state * S,
+ word * e,
+ word * ep,
+ word * xmaxc,
+ word * Mc,
+ word * xMc);
+
+extern void Gsm_Short_Term_Analysis_Filter (
+ struct gsm_state * S,
+ word * LARc, /* coded log area ratio [0..7] IN */
+ word * d /* st res. signal [0..159] IN/OUT */);
+
+extern void Gsm_Decoder (
+ struct gsm_state * S,
+ word * LARcr, /* [0..7] IN */
+ word * Ncr, /* [0..3] IN */
+ word * bcr, /* [0..3] IN */
+ word * Mcr, /* [0..3] IN */
+ word * xmaxcr, /* [0..3] IN */
+ word * xMcr, /* [0..13*4] IN */
+ word * s); /* [0..159] OUT */
+
+extern void Gsm_Decoding (
+ struct gsm_state * S,
+ word xmaxcr,
+ word Mcr,
+ word * xMcr, /* [0..12] IN */
+ word * erp); /* [0..39] OUT */
+
+extern void Gsm_Long_Term_Synthesis_Filtering (
+ struct gsm_state* S,
+ word Ncr,
+ word bcr,
+ word * erp, /* [0..39] IN */
+ word * drp); /* [-120..-1] IN, [0..40] OUT */
+
+void Gsm_RPE_Decoding (
+ struct gsm_state *S,
+ word xmaxcr,
+ word Mcr,
+ word * xMcr, /* [0..12], 3 bits IN */
+ word * erp); /* [0..39] OUT */
+
+void Gsm_RPE_Encoding (
+ struct gsm_state * S,
+ word * e, /* -5..-1][0..39][40..44 IN/OUT */
+ word * xmaxc, /* OUT */
+ word * Mc, /* OUT */
+ word * xMc); /* [0..12] OUT */
+
+extern void Gsm_Short_Term_Synthesis_Filter (
+ struct gsm_state * S,
+ word * LARcr, /* log area ratios [0..7] IN */
+ word * drp, /* received d [0...39] IN */
+ word * s); /* signal s [0..159] OUT */
+
+extern void Gsm_Update_of_reconstructed_short_time_residual_signal (
+ word * dpp, /* [0...39] IN */
+ word * ep, /* [0...39] IN */
+ word * dp); /* [-120...-1] IN/OUT */
+
+/*
+ * Tables from table.c
+ */
+#ifndef GSM_TABLE_C
+
+extern word gsm_A[8], gsm_B[8], gsm_MIC[8], gsm_MAC[8];
+extern word gsm_INVA[8];
+extern word gsm_DLB[4], gsm_QLB[4];
+extern word gsm_H[11];
+extern word gsm_NRFAC[8];
+extern word gsm_FAC[8];
+
+#endif /* GSM_TABLE_C */
+
+/*
+ * Debugging
+ */
+#ifdef NDEBUG
+
+# define gsm_debug_words(a, b, c, d) /* nil */
+# define gsm_debug_longwords(a, b, c, d) /* nil */
+# define gsm_debug_word(a, b) /* nil */
+# define gsm_debug_longword(a, b) /* nil */
+
+#else /* !NDEBUG => DEBUG */
+
+ extern void gsm_debug_words (char * name, int, int, word *);
+ extern void gsm_debug_longwords (char * name, int, int, longword *);
+ extern void gsm_debug_longword (char * name, longword);
+ extern void gsm_debug_word (char * name, word);
+
+#endif /* !NDEBUG */
+
+#endif /* PRIVATE_H */
--- /dev/null
+++ b/src/libgsm/rpe.c
@@ -1,0 +1,487 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/rpe.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include <stdio.h>
+#include <assert.h>
+
+#include "private.h"
+
+#include "gsm.h"
+
+/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
+ */
+
+/* 4.2.13 */
+
+static void Weighting_filter (
+ register word * e, /* signal [-5..0.39.44] IN */
+ word * x /* signal [0..39] OUT */
+)
+/*
+ * The coefficients of the weighting filter are stored in a table
+ * (see table 4.4). The following scaling is used:
+ *
+ * H[0..10] = integer( real_H[ 0..10] * 8192 );
+ */
+{
+ /* word wt[ 50 ]; */
+
+ register longword L_result;
+ register int k /* , i */ ;
+
+ /* Initialization of a temporary working array wt[0...49]
+ */
+
+ /* for (k = 0; k <= 4; k++) wt[k] = 0;
+ * for (k = 5; k <= 44; k++) wt[k] = *e++;
+ * for (k = 45; k <= 49; k++) wt[k] = 0;
+ *
+ * (e[-5..-1] and e[40..44] are allocated by the caller,
+ * are initially zero and are not written anywhere.)
+ */
+ e -= 5;
+
+ /* Compute the signal x[0..39]
+ */
+ for (k = 0; k <= 39; k++) {
+
+ L_result = 8192 >> 1;
+
+ /* for (i = 0; i <= 10; i++) {
+ * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
+ * L_result = GSM_L_ADD( L_result, L_temp );
+ * }
+ */
+
+#undef STEP
+#define STEP( i, H ) (e[ k + i ] * (longword)H)
+
+ /* Every one of these multiplications is done twice --
+ * but I don't see an elegant way to optimize this.
+ * Do you?
+ */
+
+#ifdef STUPID_COMPILER
+ L_result += STEP( 0, -134 ) ;
+ L_result += STEP( 1, -374 ) ;
+ /* + STEP( 2, 0 ) */
+ L_result += STEP( 3, 2054 ) ;
+ L_result += STEP( 4, 5741 ) ;
+ L_result += STEP( 5, 8192 ) ;
+ L_result += STEP( 6, 5741 ) ;
+ L_result += STEP( 7, 2054 ) ;
+ /* + STEP( 8, 0 ) */
+ L_result += STEP( 9, -374 ) ;
+ L_result += STEP( 10, -134 ) ;
+#else
+ L_result +=
+ STEP( 0, -134 )
+ + STEP( 1, -374 )
+ /* + STEP( 2, 0 ) */
+ + STEP( 3, 2054 )
+ + STEP( 4, 5741 )
+ + STEP( 5, 8192 )
+ + STEP( 6, 5741 )
+ + STEP( 7, 2054 )
+ /* + STEP( 8, 0 ) */
+ + STEP( 9, -374 )
+ + STEP(10, -134 )
+ ;
+#endif
+
+ /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
+ * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
+ *
+ * x[k] = SASR( L_result, 16 );
+ */
+
+ /* 2 adds vs. >>16 => 14, minus one shift to compensate for
+ * those we lost when replacing L_MULT by '*'.
+ */
+
+ L_result = SASR( L_result, 13 );
+ x[k] = ( L_result < MIN_WORD ? MIN_WORD
+ : (L_result > MAX_WORD ? MAX_WORD : L_result ));
+ }
+}
+
+/* 4.2.14 */
+
+static void RPE_grid_selection (
+ word * x, /* [0..39] IN */
+ word * xM, /* [0..12] OUT */
+ word * Mc_out /* OUT */
+)
+/*
+ * The signal x[0..39] is used to select the RPE grid which is
+ * represented by Mc.
+ */
+{
+ /* register word temp1; */
+ register int /* m, */ i;
+ register longword L_result, L_temp;
+ longword EM; /* xxx should be L_EM? */
+ word Mc;
+
+ longword L_common_0_3;
+
+ EM = 0;
+ Mc = 0;
+
+ /* for (m = 0; m <= 3; m++) {
+ * L_result = 0;
+ *
+ *
+ * for (i = 0; i <= 12; i++) {
+ *
+ * temp1 = SASR( x[m + 3*i], 2 );
+ *
+ * assert(temp1 != MIN_WORD);
+ *
+ * L_temp = GSM_L_MULT( temp1, temp1 );
+ * L_result = GSM_L_ADD( L_temp, L_result );
+ * }
+ *
+ * if (L_result > EM) {
+ * Mc = m;
+ * EM = L_result;
+ * }
+ * }
+ */
+
+#undef STEP
+#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
+ L_result += L_temp * L_temp;
+
+ /* common part of 0 and 3 */
+
+ L_result = 0;
+ STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
+ STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
+ STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
+ L_common_0_3 = L_result;
+
+ /* i = 0 */
+
+ STEP( 0, 0 );
+ L_result <<= 1; /* implicit in L_MULT */
+ EM = L_result;
+
+ /* i = 1 */
+
+ L_result = 0;
+ STEP( 1, 0 );
+ STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
+ STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
+ STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
+ L_result <<= 1;
+ if (L_result > EM) {
+ Mc = 1;
+ EM = L_result;
+ }
+
+ /* i = 2 */
+
+ L_result = 0;
+ STEP( 2, 0 );
+ STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
+ STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
+ STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
+ L_result <<= 1;
+ if (L_result > EM) {
+ Mc = 2;
+ EM = L_result;
+ }
+
+ /* i = 3 */
+
+ L_result = L_common_0_3;
+ STEP( 3, 12 );
+ L_result <<= 1;
+ if (L_result > EM) {
+ Mc = 3;
+ EM = L_result;
+ }
+
+ /**/
+
+ /* Down-sampling by a factor 3 to get the selected xM[0..12]
+ * RPE sequence.
+ */
+ for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
+ *Mc_out = Mc;
+}
+
+/* 4.12.15 */
+
+static void APCM_quantization_xmaxc_to_exp_mant (
+ word xmaxc, /* IN */
+ word * exp_out, /* OUT */
+ word * mant_out ) /* OUT */
+{
+ word exp, mant;
+
+ /* Compute exponent and mantissa of the decoded version of xmaxc
+ */
+
+ exp = 0;
+ if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
+ mant = xmaxc - (exp << 3);
+
+ if (mant == 0) {
+ exp = -4;
+ mant = 7;
+ }
+ else {
+ while (mant <= 7) {
+ mant = mant << 1 | 1;
+ exp--;
+ }
+ mant -= 8;
+ }
+
+ assert( exp >= -4 && exp <= 6 );
+ assert( mant >= 0 && mant <= 7 );
+
+ *exp_out = exp;
+ *mant_out = mant;
+}
+
+static void APCM_quantization (
+ word * xM, /* [0..12] IN */
+
+ word * xMc, /* [0..12] OUT */
+ word * mant_out, /* OUT */
+ word * exp_out, /* OUT */
+ word * xmaxc_out /* OUT */
+)
+{
+ int i, itest;
+
+ word xmax, xmaxc, temp, temp1, temp2;
+ word exp, mant;
+
+
+ /* Find the maximum absolute value xmax of xM[0..12].
+ */
+
+ xmax = 0;
+ for (i = 0; i <= 12; i++) {
+ temp = xM[i];
+ temp = GSM_ABS(temp);
+ if (temp > xmax) xmax = temp;
+ }
+
+ /* Qantizing and coding of xmax to get xmaxc.
+ */
+
+ exp = 0;
+ temp = SASR( xmax, 9 );
+ itest = 0;
+
+ for (i = 0; i <= 5; i++) {
+
+ itest |= (temp <= 0);
+ temp = SASR( temp, 1 );
+
+ assert(exp <= 5);
+ if (itest == 0) exp++; /* exp = add (exp, 1) */
+ }
+
+ assert(exp <= 6 && exp >= 0);
+ temp = exp + 5;
+
+ assert(temp <= 11 && temp >= 0);
+ xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
+
+ /* Quantizing and coding of the xM[0..12] RPE sequence
+ * to get the xMc[0..12]
+ */
+
+ APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
+
+ /* This computation uses the fact that the decoded version of xmaxc
+ * can be calculated by using the exponent and the mantissa part of
+ * xmaxc (logarithmic table).
+ * So, this method avoids any division and uses only a scaling
+ * of the RPE samples by a function of the exponent. A direct
+ * multiplication by the inverse of the mantissa (NRFAC[0..7]
+ * found in table 4.5) gives the 3 bit coded version xMc[0..12]
+ * of the RPE samples.
+ */
+
+
+ /* Direct computation of xMc[0..12] using table 4.5
+ */
+
+ assert( exp <= 4096 && exp >= -4096);
+ assert( mant >= 0 && mant <= 7 );
+
+ temp1 = 6 - exp; /* normalization by the exponent */
+ temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
+
+ for (i = 0; i <= 12; i++) {
+
+ assert(temp1 >= 0 && temp1 < 16);
+
+ temp = xM[i] << temp1;
+ temp = GSM_MULT( temp, temp2 );
+ temp = SASR(temp, 12);
+ xMc[i] = temp + 4; /* see note below */
+ }
+
+ /* NOTE: This equation is used to make all the xMc[i] positive.
+ */
+
+ *mant_out = mant;
+ *exp_out = exp;
+ *xmaxc_out = xmaxc;
+}
+
+/* 4.2.16 */
+
+static void APCM_inverse_quantization (
+ register word * xMc, /* [0..12] IN */
+ word mant,
+ word exp,
+ register word * xMp) /* [0..12] OUT */
+/*
+ * This part is for decoding the RPE sequence of coded xMc[0..12]
+ * samples to obtain the xMp[0..12] array. Table 4.6 is used to get
+ * the mantissa of xmaxc (FAC[0..7]).
+ */
+{
+ int i;
+ word temp, temp1, temp2, temp3;
+ longword ltmp;
+
+ assert( mant >= 0 && mant <= 7 );
+
+ temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
+ temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
+ temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
+
+ for (i = 13; i--;) {
+
+ assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
+
+ /* temp = gsm_sub( *xMc++ << 1, 7 ); */
+ temp = (*xMc++ << 1) - 7; /* restore sign */
+ assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
+
+ temp <<= 12; /* 16 bit signed */
+ temp = GSM_MULT_R( temp1, temp );
+ temp = GSM_ADD( temp, temp3 );
+ *xMp++ = gsm_asr( temp, temp2 );
+ }
+}
+
+/* 4.2.17 */
+
+static void RPE_grid_positioning (
+ word Mc, /* grid position IN */
+ register word * xMp, /* [0..12] IN */
+ register word * ep /* [0..39] OUT */
+)
+/*
+ * This procedure computes the reconstructed long term residual signal
+ * ep[0..39] for the LTP analysis filter. The inputs are the Mc
+ * which is the grid position selection and the xMp[0..12] decoded
+ * RPE samples which are upsampled by a factor of 3 by inserting zero
+ * values.
+ */
+{
+ int i = 13;
+
+ assert(0 <= Mc && Mc <= 3);
+
+ switch (Mc) {
+ case 3: *ep++ = 0;
+ case 2: do {
+ *ep++ = 0;
+ case 1: *ep++ = 0;
+ case 0: *ep++ = *xMp++;
+ } while (--i);
+ }
+ while (++Mc < 4) *ep++ = 0;
+
+ /*
+
+ int i, k;
+ for (k = 0; k <= 39; k++) ep[k] = 0;
+ for (i = 0; i <= 12; i++) {
+ ep[ Mc + (3*i) ] = xMp[i];
+ }
+ */
+}
+
+/* 4.2.18 */
+
+/* This procedure adds the reconstructed long term residual signal
+ * ep[0..39] to the estimated signal dpp[0..39] from the long term
+ * analysis filter to compute the reconstructed short term residual
+ * signal dp[-40..-1]; also the reconstructed short term residual
+ * array dp[-120..-41] is updated.
+ */
+
+#if 0 /* Has been inlined in code.c */
+void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
+ word * dpp, /* [0...39] IN */
+ word * ep, /* [0...39] IN */
+ word * dp) /* [-120...-1] IN/OUT */
+{
+ int k;
+
+ for (k = 0; k <= 79; k++)
+ dp[ -120 + k ] = dp[ -80 + k ];
+
+ for (k = 0; k <= 39; k++)
+ dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
+}
+#endif /* Has been inlined in code.c */
+
+void Gsm_RPE_Encoding (
+
+ struct gsm_state * S,
+
+ word * e, /* -5..-1][0..39][40..44 IN/OUT */
+ word * xmaxc, /* OUT */
+ word * Mc, /* OUT */
+ word * xMc) /* [0..12] OUT */
+{
+ word x[40];
+ word xM[13], xMp[13];
+ word mant, exp;
+
+ Weighting_filter(e, x);
+ RPE_grid_selection(x, xM, Mc);
+
+ APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
+ APCM_inverse_quantization( xMc, mant, exp, xMp);
+
+ RPE_grid_positioning( *Mc, xMp, e );
+
+}
+
+void Gsm_RPE_Decoding (
+ struct gsm_state * S,
+
+ word xmaxcr,
+ word Mcr,
+ word * xMcr, /* [0..12], 3 bits IN */
+ word * erp /* [0..39] OUT */
+)
+{
+ word exp, mant;
+ word xMp[ 13 ];
+
+ APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
+ APCM_inverse_quantization( xMcr, mant, exp, xMp );
+ RPE_grid_positioning( Mcr, xMp, erp );
+
+}
--- /dev/null
+++ b/src/libgsm/short_term.c
@@ -1,0 +1,428 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/short_term.c,v 1.1 2006/08/27 23:04:56 cbagwell Exp $ */
+
+#include <stdio.h>
+#include <assert.h>
+
+#include "private.h"
+
+#include "gsm.h"
+
+/*
+ * SHORT TERM ANALYSIS FILTERING SECTION
+ */
+
+/* 4.2.8 */
+
+static void Decoding_of_the_coded_Log_Area_Ratios (
+ word * LARc, /* coded log area ratio [0..7] IN */
+ word * LARpp) /* out: decoded .. */
+{
+ register word temp1 /* , temp2 */;
+ register long ltmp; /* for GSM_ADD */
+
+ /* This procedure requires for efficient implementation
+ * two tables.
+ *
+ * INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
+ * MIC[1..8] = minimum value of the LARc[1..8]
+ */
+
+ /* Compute the LARpp[1..8]
+ */
+
+ /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
+ *
+ * temp1 = GSM_ADD( *LARc, *MIC ) << 10;
+ * temp2 = *B << 1;
+ * temp1 = GSM_SUB( temp1, temp2 );
+ *
+ * assert(*INVA != MIN_WORD);
+ *
+ * temp1 = GSM_MULT_R( *INVA, temp1 );
+ * *LARpp = GSM_ADD( temp1, temp1 );
+ * }
+ */
+
+#undef STEP
+#define STEP( B, MIC, INVA ) \
+ temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
+ temp1 = GSM_SUB( temp1, B << 1 ); \
+ temp1 = GSM_MULT_R( INVA, temp1 ); \
+ *LARpp++ = GSM_ADD( temp1, temp1 );
+
+ STEP( 0, -32, 13107 );
+ STEP( 0, -32, 13107 );
+ STEP( 2048, -16, 13107 );
+ STEP( -2560, -16, 13107 );
+
+ STEP( 94, -8, 19223 );
+ STEP( -1792, -8, 17476 );
+ STEP( -341, -4, 31454 );
+ STEP( -1144, -4, 29708 );
+
+ /* NOTE: the addition of *MIC is used to restore
+ * the sign of *LARc.
+ */
+}
+
+/* 4.2.9 */
+/* Computation of the quantized reflection coefficients
+ */
+
+/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
+ */
+
+/*
+ * Within each frame of 160 analyzed speech samples the short term
+ * analysis and synthesis filters operate with four different sets of
+ * coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
+ * and the actual set of decoded LARs (LARpp(j))
+ *
+ * (Initial value: LARpp(j-1)[1..8] = 0.)
+ */
+
+static void Coefficients_0_12 (
+ register word * LARpp_j_1,
+ register word * LARpp_j,
+ register word * LARp)
+{
+ register int i;
+ register longword ltmp;
+
+ for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
+ *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
+ *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
+ }
+}
+
+static void Coefficients_13_26 (
+ register word * LARpp_j_1,
+ register word * LARpp_j,
+ register word * LARp)
+{
+ register int i;
+ register longword ltmp;
+ for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
+ *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
+ }
+}
+
+static void Coefficients_27_39 (
+ register word * LARpp_j_1,
+ register word * LARpp_j,
+ register word * LARp)
+{
+ register int i;
+ register longword ltmp;
+
+ for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
+ *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
+ *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
+ }
+}
+
+
+static void Coefficients_40_159 (
+ register word * LARpp_j,
+ register word * LARp)
+{
+ register int i;
+
+ for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
+ *LARp = *LARpp_j;
+}
+
+/* 4.2.9.2 */
+
+static void LARp_to_rp (
+ register word * LARp) /* [0..7] IN/OUT */
+/*
+ * The input of this procedure is the interpolated LARp[0..7] array.
+ * The reflection coefficients, rp[i], are used in the analysis
+ * filter and in the synthesis filter.
+ */
+{
+ register int i;
+ register word temp;
+ register longword ltmp;
+
+ for (i = 1; i <= 8; i++, LARp++) {
+
+ /* temp = GSM_ABS( *LARp );
+ *
+ * if (temp < 11059) temp <<= 1;
+ * else if (temp < 20070) temp += 11059;
+ * else temp = GSM_ADD( temp >> 2, 26112 );
+ *
+ * *LARp = *LARp < 0 ? -temp : temp;
+ */
+
+ if (*LARp < 0) {
+ temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
+ *LARp = - ((temp < 11059) ? temp << 1
+ : ((temp < 20070) ? temp + 11059
+ : GSM_ADD( temp >> 2, 26112 )));
+ } else {
+ temp = *LARp;
+ *LARp = (temp < 11059) ? temp << 1
+ : ((temp < 20070) ? temp + 11059
+ : GSM_ADD( temp >> 2, 26112 ));
+ }
+ }
+}
+
+
+/* 4.2.10 */
+static void Short_term_analysis_filtering (
+ struct gsm_state * S,
+ register word * rp, /* [0..7] IN */
+ register int k_n, /* k_end - k_start */
+ register word * s /* [0..n-1] IN/OUT */
+)
+/*
+ * This procedure computes the short term residual signal d[..] to be fed
+ * to the RPE-LTP loop from the s[..] signal and from the local rp[..]
+ * array (quantized reflection coefficients). As the call of this
+ * procedure can be done in many ways (see the interpolation of the LAR
+ * coefficient), it is assumed that the computation begins with index
+ * k_start (for arrays d[..] and s[..]) and stops with index k_end
+ * (k_start and k_end are defined in 4.2.9.1). This procedure also
+ * needs to keep the array u[0..7] in memory for each call.
+ */
+{
+ register word * u = S->u;
+ register int i;
+ register word di, zzz, ui, sav, rpi;
+ register longword ltmp;
+
+ for (; k_n--; s++) {
+
+ di = sav = *s;
+
+ for (i = 0; i < 8; i++) { /* YYY */
+
+ ui = u[i];
+ rpi = rp[i];
+ u[i] = sav;
+
+ zzz = GSM_MULT_R(rpi, di);
+ sav = GSM_ADD( ui, zzz);
+
+ zzz = GSM_MULT_R(rpi, ui);
+ di = GSM_ADD( di, zzz );
+ }
+
+ *s = di;
+ }
+}
+
+#if defined(USE_FLOAT_MUL) && defined(FAST)
+
+static void Fast_Short_term_analysis_filtering (
+ struct gsm_state * S,
+ register word * rp, /* [0..7] IN */
+ register int k_n, /* k_end - k_start */
+ register word * s /* [0..n-1] IN/OUT */
+)
+{
+ register word * u = S->u;
+ register int i;
+
+ float uf[8],
+ rpf[8];
+
+ register float scalef = 3.0517578125e-5;
+ register float sav, di, temp;
+
+ for (i = 0; i < 8; ++i) {
+ uf[i] = u[i];
+ rpf[i] = rp[i] * scalef;
+ }
+ for (; k_n--; s++) {
+ sav = di = *s;
+ for (i = 0; i < 8; ++i) {
+ register float rpfi = rpf[i];
+ register float ufi = uf[i];
+
+ uf[i] = sav;
+ temp = rpfi * di + ufi;
+ di += rpfi * ufi;
+ sav = temp;
+ }
+ *s = di;
+ }
+ for (i = 0; i < 8; ++i) u[i] = uf[i];
+}
+#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
+
+static void Short_term_synthesis_filtering (
+ struct gsm_state * S,
+ register word * rrp, /* [0..7] IN */
+ register int k, /* k_end - k_start */
+ register word * wt, /* [0..k-1] IN */
+ register word * sr /* [0..k-1] OUT */
+)
+{
+ register word * v = S->v;
+ register int i;
+ register word sri, tmp1, tmp2;
+ register longword ltmp; /* for GSM_ADD & GSM_SUB */
+
+ while (k--) {
+ sri = *wt++;
+ for (i = 8; i--;) {
+
+ /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
+ */
+ tmp1 = rrp[i];
+ tmp2 = v[i];
+ tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
+ ? MAX_WORD
+ : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
+ + 16384) >> 15)) ;
+
+ sri = GSM_SUB( sri, tmp2 );
+
+ /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
+ */
+ tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
+ ? MAX_WORD
+ : 0x0FFFF & (( (longword)tmp1 * (longword)sri
+ + 16384) >> 15)) ;
+
+ v[i+1] = GSM_ADD( v[i], tmp1);
+ }
+ *sr++ = v[0] = sri;
+ }
+}
+
+
+#if defined(FAST) && defined(USE_FLOAT_MUL)
+
+static void Fast_Short_term_synthesis_filtering (
+ struct gsm_state * S,
+ register word * rrp, /* [0..7] IN */
+ register int k, /* k_end - k_start */
+ register word * wt, /* [0..k-1] IN */
+ register word * sr /* [0..k-1] OUT */
+)
+{
+ register word * v = S->v;
+ register int i;
+
+ float va[9], rrpa[8];
+ register float scalef = 3.0517578125e-5, temp;
+
+ for (i = 0; i < 8; ++i) {
+ va[i] = v[i];
+ rrpa[i] = (float)rrp[i] * scalef;
+ }
+ while (k--) {
+ register float sri = *wt++;
+ for (i = 8; i--;) {
+ sri -= rrpa[i] * va[i];
+ if (sri < -32768.) sri = -32768.;
+ else if (sri > 32767.) sri = 32767.;
+
+ temp = va[i] + rrpa[i] * sri;
+ if (temp < -32768.) temp = -32768.;
+ else if (temp > 32767.) temp = 32767.;
+ va[i+1] = temp;
+ }
+ *sr++ = va[0] = sri;
+ }
+ for (i = 0; i < 9; ++i) v[i] = va[i];
+}
+
+#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
+
+void Gsm_Short_Term_Analysis_Filter (
+
+ struct gsm_state * S,
+
+ word * LARc, /* coded log area ratio [0..7] IN */
+ word * s /* signal [0..159] IN/OUT */
+)
+{
+ word * LARpp_j = S->LARpp[ S->j ];
+ word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
+
+ word LARp[8];
+
+#undef FILTER
+#if defined(FAST) && defined(USE_FLOAT_MUL)
+# define FILTER (* (S->fast \
+ ? Fast_Short_term_analysis_filtering \
+ : Short_term_analysis_filtering ))
+
+#else
+# define FILTER Short_term_analysis_filtering
+#endif
+
+ Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
+
+ Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
+ LARp_to_rp( LARp );
+ FILTER( S, LARp, 13, s);
+
+ Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
+ LARp_to_rp( LARp );
+ FILTER( S, LARp, 14, s + 13);
+
+ Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
+ LARp_to_rp( LARp );
+ FILTER( S, LARp, 13, s + 27);
+
+ Coefficients_40_159( LARpp_j, LARp);
+ LARp_to_rp( LARp );
+ FILTER( S, LARp, 120, s + 40);
+}
+
+void Gsm_Short_Term_Synthesis_Filter (
+ struct gsm_state * S,
+
+ word * LARcr, /* received log area ratios [0..7] IN */
+ word * wt, /* received d [0..159] IN */
+
+ word * s /* signal s [0..159] OUT */
+)
+{
+ word * LARpp_j = S->LARpp[ S->j ];
+ word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
+
+ word LARp[8];
+
+#undef FILTER
+#if defined(FAST) && defined(USE_FLOAT_MUL)
+
+# define FILTER (* (S->fast \
+ ? Fast_Short_term_synthesis_filtering \
+ : Short_term_synthesis_filtering ))
+#else
+# define FILTER Short_term_synthesis_filtering
+#endif
+
+ Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
+
+ Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
+ LARp_to_rp( LARp );
+ FILTER( S, LARp, 13, wt, s );
+
+ Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
+ LARp_to_rp( LARp );
+ FILTER( S, LARp, 14, wt + 13, s + 13 );
+
+ Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
+ LARp_to_rp( LARp );
+ FILTER( S, LARp, 13, wt + 27, s + 27 );
+
+ Coefficients_40_159( LARpp_j, LARp );
+ LARp_to_rp( LARp );
+ FILTER(S, LARp, 120, wt + 40, s + 40);
+}
--- /dev/null
+++ b/src/libgsm/table.c
@@ -1,0 +1,63 @@
+/*
+ * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
+ * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
+ * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
+ */
+
+/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/table.c,v 1.1 2006/08/27 23:04:57 cbagwell Exp $ */
+
+/* Most of these tables are inlined at their point of use.
+ */
+
+/* 4.4 TABLES USED IN THE FIXED POINT IMPLEMENTATION OF THE RPE-LTP
+ * CODER AND DECODER
+ *
+ * (Most of them inlined, so watch out.)
+ */
+
+#define GSM_TABLE_C
+#include "private.h"
+#include "gsm.h"
+
+/* Table 4.1 Quantization of the Log.-Area Ratios
+ */
+/* i 1 2 3 4 5 6 7 8 */
+word gsm_A[8] = {20480, 20480, 20480, 20480, 13964, 15360, 8534, 9036};
+word gsm_B[8] = { 0, 0, 2048, -2560, 94, -1792, -341, -1144};
+word gsm_MIC[8] = { -32, -32, -16, -16, -8, -8, -4, -4 };
+word gsm_MAC[8] = { 31, 31, 15, 15, 7, 7, 3, 3 };
+
+
+/* Table 4.2 Tabulation of 1/A[1..8]
+ */
+word gsm_INVA[8]={ 13107, 13107, 13107, 13107, 19223, 17476, 31454, 29708 };
+
+
+/* Table 4.3a Decision level of the LTP gain quantizer
+ */
+/* bc 0 1 2 3 */
+word gsm_DLB[4] = { 6554, 16384, 26214, 32767 };
+
+
+/* Table 4.3b Quantization levels of the LTP gain quantizer
+ */
+/* bc 0 1 2 3 */
+word gsm_QLB[4] = { 3277, 11469, 21299, 32767 };
+
+
+/* Table 4.4 Coefficients of the weighting filter
+ */
+/* i 0 1 2 3 4 5 6 7 8 9 10 */
+word gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 };
+
+
+/* Table 4.5 Normalized inverse mantissa used to compute xM/xmax
+ */
+/* i 0 1 2 3 4 5 6 7 */
+word gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 };
+
+
+/* Table 4.6 Normalized direct mantissa used to compute xM/xmax
+ */
+/* i 0 1 2 3 4 5 6 7 */
+word gsm_FAC[8] = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };
--- a/src/wav.c
+++ b/src/wav.c
@@ -72,7 +72,11 @@
#include "ima_rw.h"
#include "adpcm.h"
#ifdef ENABLE_GSM
-#include "gsm/gsm.h"
+#if defined(EXTERNAL_GSM)
+#include <gsm/gsm.h>
+#else
+#include "libgsm/gsm.h"
+#endif
#endif
#undef PAD_NSAMPS