ref: 245e4f8ab45f6b2f74923a9a7a189f87c5d2152c
dir: /dsf.c/
/* * dsf.c: some functions to handle a disjoint set forest, * which is a data structure useful in any solver which has to * worry about avoiding closed loops. */ #include <assert.h> #include <string.h> #include "puzzles.h" /*void print_dsf(int *dsf, int size) { int *printed_elements = snewn(size, int); int *equal_elements = snewn(size, int); int *inverse_elements = snewn(size, int); int printed_count = 0, equal_count, inverse_count; int i, n; bool inverse; memset(printed_elements, -1, sizeof(int) * size); while (1) { equal_count = 0; inverse_count = 0; for (i = 0; i < size; ++i) { if (!memchr(printed_elements, i, sizeof(int) * size)) break; } if (i == size) goto done; i = dsf_canonify(dsf, i); for (n = 0; n < size; ++n) { if (edsf_canonify(dsf, n, &inverse) == i) { if (inverse) inverse_elements[inverse_count++] = n; else equal_elements[equal_count++] = n; } } for (n = 0; n < equal_count; ++n) { fprintf(stderr, "%d ", equal_elements[n]); printed_elements[printed_count++] = equal_elements[n]; } if (inverse_count) { fprintf(stderr, "!= "); for (n = 0; n < inverse_count; ++n) { fprintf(stderr, "%d ", inverse_elements[n]); printed_elements[printed_count++] = inverse_elements[n]; } } fprintf(stderr, "\n"); } done: sfree(printed_elements); sfree(equal_elements); sfree(inverse_elements); }*/ void dsf_init(int *dsf, int size) { int i; for (i = 0; i < size; i++) dsf[i] = 6; /* Bottom bit of each element of this array stores whether that * element is opposite to its parent, which starts off as * false. Second bit of each element stores whether that element * is the root of its tree or not. If it's not the root, the * remaining 30 bits are the parent, otherwise the remaining 30 * bits are the number of elements in the tree. */ } int *snew_dsf(int size) { int *ret; ret = snewn(size, int); dsf_init(ret, size); /*print_dsf(ret, size); */ return ret; } int dsf_canonify(int *dsf, int index) { return edsf_canonify(dsf, index, NULL); } void dsf_merge(int *dsf, int v1, int v2) { edsf_merge(dsf, v1, v2, false); } int dsf_size(int *dsf, int index) { return dsf[dsf_canonify(dsf, index)] >> 2; } int edsf_canonify(int *dsf, int index, bool *inverse_return) { int start_index = index, canonical_index; bool inverse = false; /* fprintf(stderr, "dsf = %p\n", dsf); */ /* fprintf(stderr, "Canonify %2d\n", index); */ assert(index >= 0); /* Find the index of the canonical element of the 'equivalence class' of * which start_index is a member, and figure out whether start_index is the * same as or inverse to that. */ while ((dsf[index] & 2) == 0) { inverse ^= (dsf[index] & 1); index = dsf[index] >> 2; /* fprintf(stderr, "index = %2d, ", index); */ /* fprintf(stderr, "inverse = %d\n", inverse); */ } canonical_index = index; if (inverse_return) *inverse_return = inverse; /* Update every member of this 'equivalence class' to point directly at the * canonical member. */ index = start_index; while (index != canonical_index) { int nextindex = dsf[index] >> 2; bool nextinverse = inverse ^ (dsf[index] & 1); dsf[index] = (canonical_index << 2) | inverse; inverse = nextinverse; index = nextindex; } assert(!inverse); /* fprintf(stderr, "Return %2d\n", index); */ return index; } void edsf_merge(int *dsf, int v1, int v2, bool inverse) { bool i1, i2; /* fprintf(stderr, "dsf = %p\n", dsf); */ /* fprintf(stderr, "Merge [%2d,%2d], %d\n", v1, v2, inverse); */ v1 = edsf_canonify(dsf, v1, &i1); assert(dsf[v1] & 2); inverse ^= i1; v2 = edsf_canonify(dsf, v2, &i2); assert(dsf[v2] & 2); inverse ^= i2; /* fprintf(stderr, "Doing [%2d,%2d], %d\n", v1, v2, inverse); */ if (v1 == v2) assert(!inverse); else { /* * We always make the smaller of v1 and v2 the new canonical * element. This ensures that the canonical element of any * class in this structure is always the first element in * it. 'Keen' depends critically on this property. * * (Jonas Koelker previously had this code choosing which * way round to connect the trees by examining the sizes of * the classes being merged, so that the root of the * larger-sized class became the new root. This gives better * asymptotic performance, but I've changed it to do it this * way because I like having a deterministic canonical * element.) */ if (v1 > v2) { int v3 = v1; v1 = v2; v2 = v3; } dsf[v1] += (dsf[v2] >> 2) << 2; dsf[v2] = (v1 << 2) | inverse; } v2 = edsf_canonify(dsf, v2, &i2); assert(v2 == v1); assert(i2 == inverse); /* fprintf(stderr, "dsf[%2d] = %2d\n", v2, dsf[v2]); */ }