ref: 383c15794a517a4e6dc0b7364edac1f7056cee82
parent: c94afe9cd6ff0ad719798d7fd6fb842a336f66ed
author: Simon Tatham <anakin@pobox.com>
date: Fri Apr 12 12:28:55 EDT 2013
Patch from Rogier Goossens to speed up the Pattern solver. do_recurse() now prunes early whenever it encounters a branch of the search tree inconsistent with existing grid data (rather than the previous naive approach of proceeding to enumerate all possibilities anyway and then ruling them out one by one); do_recurse also tries to split the row up into independent sections where possible; finally the main solver loop (all three copies of which have now been factored out into a new solve_puzzle function), instead of simply looping round and round over all the rows and columns, heuristically looks at the ones most changed since the last time deduction was attempted on them, on the basis that that will probably yield the most information the fastest. [originally from svn r9828]
--- a/LICENCE
+++ b/LICENCE
@@ -2,7 +2,7 @@
Portions copyright Richard Boulton, James Harvey, Mike Pinna, Jonas
K�lker, Dariusz Olszewski, Michael Schierl, Lambros Lambrou, Bernd
-Schmidt, Steffen Bauer and Lennard Sprong.
+Schmidt, Steffen Bauer, Lennard Sprong and Rogier Goossens.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
--- a/pattern.c
+++ b/pattern.c
@@ -344,35 +344,76 @@
int verbose = FALSE;
#endif
-static void do_recurse(unsigned char *known, unsigned char *deduced,
- unsigned char *row, int *data, int len,
+static int do_recurse(unsigned char *known, unsigned char *deduced,
+ unsigned char *row,
+ unsigned char *minpos_done, unsigned char *maxpos_done,
+ unsigned char *minpos_ok, unsigned char *maxpos_ok,
+ int *data, int len,
int freespace, int ndone, int lowest)
{
int i, j, k;
+
+ /* This algorithm basically tries all possible ways the given rows of
+ * black blocks can be laid out in the row/column being examined.
+ * Special care is taken to avoid checking the tail of a row/column
+ * if the same conditions have already been checked during this recursion
+ * The algorithm also takes care to cut its losses as soon as an
+ * invalid (partial) solution is detected.
+ */
if (data[ndone]) {
+ if (lowest >= minpos_done[ndone] && lowest <= maxpos_done[ndone]) {
+ if (lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]) {
+ for (i=0; i<lowest; i++)
+ deduced[i] |= row[i];
+ }
+ return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone];
+ } else {
+ if (lowest < minpos_done[ndone]) minpos_done[ndone] = lowest;
+ if (lowest > maxpos_done[ndone]) maxpos_done[ndone] = lowest;
+ }
for (i=0; i<=freespace; i++) {
j = lowest;
- for (k=0; k<i; k++) row[j++] = DOT;
- for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
- if (j < len) row[j++] = DOT;
- do_recurse(known, deduced, row, data, len,
- freespace-i, ndone+1, j);
+ for (k=0; k<i; k++) {
+ if (known[j] == BLOCK) goto next_iter;
+ row[j++] = DOT;
+ }
+ for (k=0; k<data[ndone]; k++) {
+ if (known[j] == DOT) goto next_iter;
+ row[j++] = BLOCK;
+ }
+ if (j < len) {
+ if (known[j] == BLOCK) goto next_iter;
+ row[j++] = DOT;
+ }
+ if (do_recurse(known, deduced, row, minpos_done, maxpos_done,
+ minpos_ok, maxpos_ok, data, len, freespace-i, ndone+1, j)) {
+ if (lowest < minpos_ok[ndone]) minpos_ok[ndone] = lowest;
+ if (lowest + i > maxpos_ok[ndone]) maxpos_ok[ndone] = lowest + i;
+ if (lowest + i > maxpos_done[ndone]) maxpos_done[ndone] = lowest + i;
+ }
+ next_iter:
+ j++;
}
+ return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone];
} else {
- for (i=lowest; i<len; i++)
+ for (i=lowest; i<len; i++) {
+ if (known[i] == BLOCK) return FALSE;
row[i] = DOT;
+ }
for (i=0; i<len; i++)
- if (known[i] && known[i] != row[i])
- return;
- for (i=0; i<len; i++)
deduced[i] |= row[i];
+ return TRUE;
}
}
+
static int do_row(unsigned char *known, unsigned char *deduced,
unsigned char *row,
- unsigned char *start, int len, int step, int *data
+ unsigned char *minpos_done, unsigned char *maxpos_done,
+ unsigned char *minpos_ok, unsigned char *maxpos_ok,
+ unsigned char *start, int len, int step, int *data,
+ unsigned int *changed
#ifdef STANDALONE_SOLVER
, const char *rowcol, int index, int cluewid
#endif
@@ -381,19 +422,26 @@
int rowlen, i, freespace, done_any;
freespace = len+1;
- for (rowlen = 0; data[rowlen]; rowlen++)
+ for (rowlen = 0; data[rowlen]; rowlen++) {
+ minpos_done[rowlen] = minpos_ok[rowlen] = len - 1;
+ maxpos_done[rowlen] = maxpos_ok[rowlen] = 0;
freespace -= data[rowlen]+1;
+ }
for (i = 0; i < len; i++) {
known[i] = start[i*step];
deduced[i] = 0;
}
+ for (i = len - 1; i >= 0 && known[i] == DOT; i--)
+ freespace--;
- do_recurse(known, deduced, row, data, len, freespace, 0, 0);
+ do_recurse(known, deduced, row, minpos_done, maxpos_done, minpos_ok, maxpos_ok, data, len, freespace, 0, 0);
+
done_any = FALSE;
for (i=0; i<len; i++)
if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
start[i*step] = deduced[i];
+ if (changed) changed[i]++;
done_any = TRUE;
}
#ifdef STANDALONE_SOLVER
@@ -420,16 +468,151 @@
return done_any;
}
+static int solve_puzzle(game_state *state, unsigned char *grid, int w, int h,
+ unsigned char *matrix, unsigned char *workspace,
+ unsigned int *changed_h, unsigned int *changed_w,
+ int *rowdata
+#ifdef STANDALONE_SOLVER
+ , int cluewid
+#else
+ , int dummy
+#endif
+ )
+{
+ int i, j, ok, max;
+ int max_h, max_w;
+
+ assert((state!=NULL) ^ (grid!=NULL));
+
+ max = max(w, h);
+
+ memset(matrix, 0, w*h);
+
+ /* For each column, compute how many squares can be deduced
+ * from just the row-data.
+ * Later, changed_* will hold how many squares were changed
+ * in every row/column in the previous iteration
+ * Changed_* is used to choose the next rows / cols to re-examine
+ */
+ for (i=0; i<h; i++) {
+ int freespace;
+ if (state) {
+ memcpy(rowdata, state->rowdata + state->rowsize*(w+i), max*sizeof(int));
+ rowdata[state->rowlen[w+i]] = 0;
+ } else {
+ rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
+ }
+ for (j=0, freespace=w+1; rowdata[j]; j++) freespace -= rowdata[j] + 1;
+ for (j=0, changed_h[i]=0; rowdata[j]; j++)
+ if (rowdata[j] > freespace)
+ changed_h[i] += rowdata[j] - freespace;
+ }
+ for (i=0,max_h=0; i<h; i++)
+ if (changed_h[i] > max_h)
+ max_h = changed_h[i];
+ for (i=0; i<w; i++) {
+ int freespace;
+ if (state) {
+ memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
+ rowdata[state->rowlen[i]] = 0;
+ } else {
+ rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
+ }
+ for (j=0, freespace=h+1; rowdata[j]; j++) freespace -= rowdata[j] + 1;
+ for (j=0, changed_w[i]=0; rowdata[j]; j++)
+ if (rowdata[j] > freespace)
+ changed_w[i] += rowdata[j] - freespace;
+ }
+ for (i=0,max_w=0; i<w; i++)
+ if (changed_w[i] > max_w)
+ max_w = changed_w[i];
+
+ /* Solve the puzzle.
+ * Process rows/columns individually. Deductions involving more than one
+ * row and/or column at a time are not supported.
+ * Take care to only process rows/columns which have been changed since they
+ * were previously processed.
+ * Also, prioritize rows/columns which have had the most changes since their
+ * previous processing, as they promise the greatest benefit.
+ * Extremely rectangular grids (e.g. 10x20, 15x40, etc.) are not treated specially.
+ */
+ do {
+ for (; max_h && max_h >= max_w; max_h--) {
+ for (i=0; i<h; i++) {
+ if (changed_h[i] >= max_h) {
+ if (state) {
+ memcpy(rowdata, state->rowdata + state->rowsize*(w+i), max*sizeof(int));
+ rowdata[state->rowlen[w+i]] = 0;
+ } else {
+ rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
+ }
+ do_row(workspace, workspace+max, workspace+2*max,
+ workspace+3*max, workspace+4*max,
+ workspace+5*max, workspace+6*max,
+ matrix+i*w, w, 1, rowdata, changed_w
+#ifdef STANDALONE_SOLVER
+ , "row", i+1, cluewid
+#endif
+ );
+ changed_h[i] = 0;
+ }
+ }
+ for (i=0,max_w=0; i<w; i++)
+ if (changed_w[i] > max_w)
+ max_w = changed_w[i];
+ }
+ for (; max_w && max_w >= max_h; max_w--) {
+ for (i=0; i<w; i++) {
+ if (changed_w[i] >= max_w) {
+ if (state) {
+ memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
+ rowdata[state->rowlen[i]] = 0;
+ } else {
+ rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
+ }
+ do_row(workspace, workspace+max, workspace+2*max,
+ workspace+3*max, workspace+4*max,
+ workspace+5*max, workspace+6*max,
+ matrix+i, h, w, rowdata, changed_h
+#ifdef STANDALONE_SOLVER
+ , "col", i+1, cluewid
+#endif
+ );
+ changed_w[i] = 0;
+ }
+ }
+ for (i=0,max_h=0; i<h; i++)
+ if (changed_h[i] > max_h)
+ max_h = changed_h[i];
+ }
+ } while (max_h>0 || max_w>0);
+
+ ok = TRUE;
+ for (i=0; i<h; i++) {
+ for (j=0; j<w; j++) {
+ if (matrix[i*w+j] == UNKNOWN)
+ ok = FALSE;
+ }
+ }
+
+ return ok;
+}
+
static unsigned char *generate_soluble(random_state *rs, int w, int h)
{
- int i, j, done_any, ok, ntries, max;
+ int i, j, ok, ntries, max;
unsigned char *grid, *matrix, *workspace;
+ unsigned int *changed_h, *changed_w;
int *rowdata;
+ max = max(w, h);
+
grid = snewn(w*h, unsigned char);
+ /* Allocate this here, to avoid having to reallocate it again for every geneerated grid */
matrix = snewn(w*h, unsigned char);
- max = max(w, h);
- workspace = snewn(max*3, unsigned char);
+ workspace = snewn(max*7, unsigned char);
+ changed_h = snewn(max+1, unsigned int);
+ changed_w = snewn(max+1, unsigned int);
rowdata = snewn(max+1, int);
ntries = 0;
@@ -467,41 +650,14 @@
if (!ok)
continue;
- memset(matrix, 0, w*h);
-
- do {
- done_any = 0;
- for (i=0; i<h; i++) {
- rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
- done_any |= do_row(workspace, workspace+max, workspace+2*max,
- matrix+i*w, w, 1, rowdata
-#ifdef STANDALONE_SOLVER
- , NULL, 0, 0 /* never do diagnostics here */
-#endif
- );
- }
- for (i=0; i<w; i++) {
- rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
- done_any |= do_row(workspace, workspace+max, workspace+2*max,
- matrix+i, h, w, rowdata
-#ifdef STANDALONE_SOLVER
- , NULL, 0, 0 /* never do diagnostics here */
-#endif
- );
- }
- } while (done_any);
-
- ok = TRUE;
- for (i=0; i<h; i++) {
- for (j=0; j<w; j++) {
- if (matrix[i*w+j] == UNKNOWN)
- ok = FALSE;
- }
- }
+ ok = solve_puzzle(NULL, grid, w, h, matrix, workspace,
+ changed_h, changed_w, rowdata, 0);
} while (!ok);
sfree(matrix);
sfree(workspace);
+ sfree(changed_h);
+ sfree(changed_w);
sfree(rowdata);
return grid;
}
@@ -709,8 +865,9 @@
int w = state->w, h = state->h;
int i;
char *ret;
- int done_any, max;
+ int max, ok;
unsigned char *workspace;
+ unsigned int *changed_h, *changed_w;
int *rowdata;
/*
@@ -719,47 +876,25 @@
if (ai)
return dupstr(ai);
- matrix = snewn(w*h, unsigned char);
max = max(w, h);
- workspace = snewn(max*3, unsigned char);
+ matrix = snewn(w*h, unsigned char);
+ workspace = snewn(max*7, unsigned char);
+ changed_h = snewn(max+1, unsigned int);
+ changed_w = snewn(max+1, unsigned int);
rowdata = snewn(max+1, int);
- memset(matrix, 0, w*h);
+ ok = solve_puzzle(state, NULL, w, h, matrix, workspace,
+ changed_h, changed_w, rowdata, 0);
- do {
- done_any = 0;
- for (i=0; i<h; i++) {
- memcpy(rowdata, state->rowdata + state->rowsize*(w+i),
- max*sizeof(int));
- rowdata[state->rowlen[w+i]] = 0;
- done_any |= do_row(workspace, workspace+max, workspace+2*max,
- matrix+i*w, w, 1, rowdata
-#ifdef STANDALONE_SOLVER
- , NULL, 0, 0 /* never do diagnostics here */
-#endif
- );
- }
- for (i=0; i<w; i++) {
- memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
- rowdata[state->rowlen[i]] = 0;
- done_any |= do_row(workspace, workspace+max, workspace+2*max,
- matrix+i, h, w, rowdata
-#ifdef STANDALONE_SOLVER
- , NULL, 0, 0 /* never do diagnostics here */
-#endif
- );
- }
- } while (done_any);
-
sfree(workspace);
+ sfree(changed_h);
+ sfree(changed_w);
sfree(rowdata);
- for (i = 0; i < w*h; i++) {
- if (matrix[i] != BLOCK && matrix[i] != DOT) {
- sfree(matrix);
- *error = "Solving algorithm cannot complete this puzzle";
- return NULL;
- }
+ if (!ok) {
+ sfree(matrix);
+ *error = "Solving algorithm cannot complete this puzzle";
+ return NULL;
}
ret = snewn(w*h+2, char);
@@ -1635,17 +1770,18 @@
s = new_game(NULL, p, desc);
{
- int w = p->w, h = p->h, i, j, done_any, max, cluewid = 0;
+ int w = p->w, h = p->h, i, j, max, cluewid = 0;
unsigned char *matrix, *workspace;
+ unsigned int *changed_h, *changed_w;
int *rowdata;
matrix = snewn(w*h, unsigned char);
max = max(w, h);
- workspace = snewn(max*3, unsigned char);
+ workspace = snewn(max*7, unsigned char);
+ changed_h = snewn(max+1, unsigned int);
+ changed_w = snewn(max+1, unsigned int);
rowdata = snewn(max+1, int);
- memset(matrix, 0, w*h);
-
if (verbose) {
int thiswid;
/*
@@ -1662,30 +1798,8 @@
}
}
- do {
- done_any = 0;
- for (i=0; i<h; i++) {
- memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
- max*sizeof(int));
- rowdata[s->rowlen[w+i]] = 0;
- done_any |= do_row(workspace, workspace+max, workspace+2*max,
- matrix+i*w, w, 1, rowdata
-#ifdef STANDALONE_SOLVER
- , "row", i+1, cluewid
-#endif
- );
- }
- for (i=0; i<w; i++) {
- memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
- rowdata[s->rowlen[i]] = 0;
- done_any |= do_row(workspace, workspace+max, workspace+2*max,
- matrix+i, h, w, rowdata
-#ifdef STANDALONE_SOLVER
- , "col", i+1, cluewid
-#endif
- );
- }
- } while (done_any);
+ solve_puzzle(s, NULL, w, h, matrix, workspace,
+ changed_h, changed_w, rowdata, cluewid);
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
--- a/puzzles.but
+++ b/puzzles.but
@@ -3108,8 +3108,8 @@
This software is \i{copyright} 2004-2012 Simon Tatham.
Portions copyright Richard Boulton, James Harvey, Mike Pinna, Jonas
-K\u00F6{oe}lker, Dariusz Olszewski, Michael Schierl, Lambros
-Lambrou, Bernd Schmidt, Steffen Bauer and Lennard Sprong.
+K\u00F6{oe}lker, Dariusz Olszewski, Michael Schierl, Lambros Lambrou,
+Bernd Schmidt, Steffen Bauer, Lennard Sprong and Rogier Goossens.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files