ref: b780b073da9a038347066d4ba65d9c28cc9eedce
dir: /twiddle.c/
/* * twiddle.c: Puzzle involving rearranging a grid of squares by * rotating subsquares. Adapted and generalised from a * door-unlocking puzzle in Metroid Prime 2 (the one in the Main * Gyro Chamber). */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #define PREFERRED_TILE_SIZE 48 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) #define HIGHLIGHT_WIDTH (TILE_SIZE / 20) #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 ) #define ANIM_PER_BLKSIZE_UNIT 0.13F #define FLASH_FRAME 0.13F enum { COL_BACKGROUND, COL_TEXT, COL_HIGHLIGHT, COL_HIGHLIGHT_GENTLE, COL_LOWLIGHT, COL_LOWLIGHT_GENTLE, COL_HIGHCURSOR, COL_LOWCURSOR, NCOLOURS }; struct game_params { int w, h, n; bool rowsonly; bool orientable; int movetarget; }; struct game_state { int w, h, n; bool orientable; int *grid; int completed; bool used_solve; /* used to suppress completion flash */ int movecount, movetarget; int lastx, lasty, lastr; /* coordinates of last rotation */ }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 3; ret->n = 2; ret->rowsonly = ret->orientable = false; ret->movetarget = 0; return ret; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static bool game_fetch_preset(int i, char **name, game_params **params) { static struct { const char *title; game_params params; } const presets[] = { { "3x3 rows only", { 3, 3, 2, true, false } }, { "3x3 normal", { 3, 3, 2, false, false } }, { "3x3 orientable", { 3, 3, 2, false, true } }, { "4x4 normal", { 4, 4, 2, false } }, { "4x4 orientable", { 4, 4, 2, false, true } }, { "4x4, rotating 3x3 blocks", { 4, 4, 3, false } }, { "5x5, rotating 3x3 blocks", { 5, 5, 3, false } }, { "6x6, rotating 4x4 blocks", { 6, 6, 4, false } }, }; if (i < 0 || i >= lenof(presets)) return false; *name = dupstr(presets[i].title); *params = dup_params(&presets[i].params); return true; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); ret->n = 2; ret->rowsonly = false; ret->orientable = false; ret->movetarget = 0; while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'n') { string++; ret->n = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } while (*string) { if (*string == 'r') { ret->rowsonly = true; } else if (*string == 'o') { ret->orientable = true; } else if (*string == 'm') { string++; ret->movetarget = atoi(string); while (string[1] && isdigit((unsigned char)string[1])) string++; } string++; } } static char *encode_params(const game_params *params, bool full) { char buf[256]; sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n, params->rowsonly ? "r" : "", params->orientable ? "o" : ""); /* Shuffle limit is part of the limited parameters, because we have to * supply the target move count. */ if (params->movetarget) sprintf(buf + strlen(buf), "m%d", params->movetarget); return dupstr(buf); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(7, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Rotating block size"; ret[2].type = C_STRING; sprintf(buf, "%d", params->n); ret[2].u.string.sval = dupstr(buf); ret[3].name = "One number per row"; ret[3].type = C_BOOLEAN; ret[3].u.boolean.bval = params->rowsonly; ret[4].name = "Orientation matters"; ret[4].type = C_BOOLEAN; ret[4].u.boolean.bval = params->orientable; ret[5].name = "Number of shuffling moves"; ret[5].type = C_STRING; sprintf(buf, "%d", params->movetarget); ret[5].u.string.sval = dupstr(buf); ret[6].name = NULL; ret[6].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); ret->n = atoi(cfg[2].u.string.sval); ret->rowsonly = cfg[3].u.boolean.bval; ret->orientable = cfg[4].u.boolean.bval; ret->movetarget = atoi(cfg[5].u.string.sval); return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->n < 2) return "Rotating block size must be at least two"; if (params->w < params->n) return "Width must be at least the rotating block size"; if (params->h < params->n) return "Height must be at least the rotating block size"; return NULL; } /* * This function actually performs a rotation on a grid. The `x' * and `y' coordinates passed in are the coordinates of the _top * left corner_ of the rotated region. (Using the centre would have * involved half-integers and been annoyingly fiddly. Clicking in * the centre is good for a user interface, but too inconvenient to * use internally.) */ static void do_rotate(int *grid, int w, int h, int n, bool orientable, int x, int y, int dir) { int i, j; assert(x >= 0 && x+n <= w); assert(y >= 0 && y+n <= h); dir &= 3; if (dir == 0) return; /* nothing to do */ grid += y*w+x; /* translate region to top corner */ /* * If we were leaving the result of the rotation in a separate * grid, the simple thing to do would be to loop over each * square within the rotated region and assign it from its * source square. However, to do it in place without taking * O(n^2) memory, we need to be marginally more clever. What * I'm going to do is loop over about one _quarter_ of the * rotated region and permute each element within that quarter * with its rotational coset. * * The size of the region I need to loop over is (n+1)/2 by * n/2, which is an obvious exact quarter for even n and is a * rectangle for odd n. (For odd n, this technique leaves out * one element of the square, which is of course the central * one that never moves anyway.) */ for (i = 0; i < (n+1)/2; i++) { for (j = 0; j < n/2; j++) { int k; int g[4]; int p[4]; p[0] = j*w+i; p[1] = i*w+(n-j-1); p[2] = (n-j-1)*w+(n-i-1); p[3] = (n-i-1)*w+j; for (k = 0; k < 4; k++) g[k] = grid[p[k]]; for (k = 0; k < 4; k++) { int v = g[(k+dir) & 3]; if (orientable) v ^= ((v+dir) ^ v) & 3; /* alter orientation */ grid[p[k]] = v; } } } /* * Don't forget the orientation on the centre square, if n is * odd. */ if (orientable && (n & 1)) { int v = grid[n/2*(w+1)]; v ^= ((v+dir) ^ v) & 3; /* alter orientation */ grid[n/2*(w+1)] = v; } } static bool grid_complete(int *grid, int wh, bool orientable) { bool ok = true; int i; for (i = 1; i < wh; i++) if (grid[i] < grid[i-1]) ok = false; if (orientable) { for (i = 0; i < wh; i++) if (grid[i] & 3) ok = false; } return ok; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { int *grid; int w = params->w, h = params->h, n = params->n, wh = w*h; int i; char *ret; int retlen; int total_moves; /* * Set up a solved grid. */ grid = snewn(wh, int); for (i = 0; i < wh; i++) grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4; /* * Shuffle it. This game is complex enough that I don't feel up * to analysing its full symmetry properties (particularly at * n=4 and above!), so I'm going to do it the pedestrian way * and simply shuffle the grid by making a long sequence of * randomly chosen moves. */ total_moves = params->movetarget; if (!total_moves) /* Add a random move to avoid parity issues. */ total_moves = w*h*n*n*2 + random_upto(rs, 2); do { int *prevmoves; int rw, rh; /* w/h of rotation centre space */ rw = w - n + 1; rh = h - n + 1; prevmoves = snewn(rw * rh, int); for (i = 0; i < rw * rh; i++) prevmoves[i] = 0; for (i = 0; i < total_moves; i++) { int x, y, r, oldtotal, newtotal, dx, dy; do { x = random_upto(rs, w - n + 1); y = random_upto(rs, h - n + 1); r = 2 * random_upto(rs, 2) - 1; /* * See if any previous rotations has happened at * this point which nothing has overlapped since. * If so, ensure we haven't either undone a * previous move or repeated one so many times that * it turns into fewer moves in the inverse * direction (i.e. three identical rotations). */ oldtotal = prevmoves[y*rw+x]; newtotal = oldtotal + r; /* * Special case here for w==h==n, in which case * there is actually no way to _avoid_ all moves * repeating or undoing previous ones. */ } while ((w != n || h != n) && (abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2)); do_rotate(grid, w, h, n, params->orientable, x, y, r); /* * Log the rotation we've just performed at this point, * for inversion detection in the next move. * * Also zero a section of the prevmoves array, because * any rotation area which _overlaps_ this one is now * entirely safe to perform further moves in. * * Two rotation areas overlap if their top left * coordinates differ by strictly less than n in both * directions */ prevmoves[y*rw+x] += r; for (dy = -n+1; dy <= n-1; dy++) { if (y + dy < 0 || y + dy >= rh) continue; for (dx = -n+1; dx <= n-1; dx++) { if (x + dx < 0 || x + dx >= rw) continue; if (dx == 0 && dy == 0) continue; prevmoves[(y+dy)*rw+(x+dx)] = 0; } } } sfree(prevmoves); } while (grid_complete(grid, wh, params->orientable)); /* * Now construct the game description, by describing the grid * as a simple sequence of integers. They're comma-separated, * unless the puzzle is orientable in which case they're * separated by orientation letters `u', `d', `l' and `r'. */ ret = NULL; retlen = 0; for (i = 0; i < wh; i++) { char buf[80]; int k; k = sprintf(buf, "%d%c", grid[i] / 4, (char)(params->orientable ? "uldr"[grid[i] & 3] : ',')); ret = sresize(ret, retlen + k + 1, char); strcpy(ret + retlen, buf); retlen += k; } if (!params->orientable) ret[retlen-1] = '\0'; /* delete last comma */ sfree(grid); return ret; } static const char *validate_desc(const game_params *params, const char *desc) { const char *p; int w = params->w, h = params->h, wh = w*h; int i; p = desc; for (i = 0; i < wh; i++) { if (*p < '0' || *p > '9') return "Not enough numbers in string"; while (*p >= '0' && *p <= '9') p++; if (!params->orientable && i < wh-1) { if (*p != ',') return "Expected comma after number"; } else if (params->orientable && i < wh) { if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd') return "Expected orientation letter after number"; } else if (i == wh-1 && *p) { return "Excess junk at end of string"; } if (*p) p++; /* eat comma */ } return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state = snew(game_state); int w = params->w, h = params->h, n = params->n, wh = w*h; int i; const char *p; state->w = w; state->h = h; state->n = n; state->orientable = params->orientable; state->completed = 0; state->used_solve = false; state->movecount = 0; state->movetarget = params->movetarget; state->lastx = state->lasty = state->lastr = -1; state->grid = snewn(wh, int); p = desc; for (i = 0; i < wh; i++) { state->grid[i] = 4 * atoi(p); while (*p >= '0' && *p <= '9') p++; if (*p) { if (params->orientable) { switch (*p) { case 'l': state->grid[i] |= 1; break; case 'd': state->grid[i] |= 2; break; case 'r': state->grid[i] |= 3; break; } } p++; } } return state; } static game_state *dup_game(const game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->n = state->n; ret->orientable = state->orientable; ret->completed = state->completed; ret->movecount = state->movecount; ret->movetarget = state->movetarget; ret->lastx = state->lastx; ret->lasty = state->lasty; ret->lastr = state->lastr; ret->used_solve = state->used_solve; ret->grid = snewn(ret->w * ret->h, int); memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int)); return ret; } static void free_game(game_state *state) { sfree(state->grid); sfree(state); } static int compare_int(const void *av, const void *bv) { const int *a = (const int *)av; const int *b = (const int *)bv; if (*a < *b) return -1; else if (*a > *b) return +1; else return 0; } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { return dupstr("S"); } static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { char *ret, *p, buf[80]; int i, x, y, col, maxlen; bool o = state->orientable; /* Pedantic check: ensure buf is large enough to format an int in * decimal, using the bound log10(2) < 1/3. (Obviously in practice * int is not going to be larger than even 32 bits any time soon, * but.) */ assert(sizeof(buf) >= 1 + sizeof(int) * CHAR_BIT/3); /* * First work out how many characters we need to display each * number. We're pretty flexible on grid contents here, so we * have to scan the entire grid. */ col = 0; for (i = 0; i < state->w * state->h; i++) { x = sprintf(buf, "%d", state->grid[i] / 4); if (col < x) col = x; } /* Reassure sprintf-checking compilers like gcc that the field * width we've just computed is not now excessive */ if (col >= sizeof(buf)) col = sizeof(buf)-1; /* * Now we know the exact total size of the grid we're going to * produce: it's got h rows, each containing w lots of col+o, * w-1 spaces and a trailing newline. */ maxlen = state->h * state->w * (col+o+1); ret = snewn(maxlen+1, char); p = ret; for (y = 0; y < state->h; y++) { for (x = 0; x < state->w; x++) { int v = state->grid[state->w*y+x]; sprintf(buf, "%*d", col, v/4); memcpy(p, buf, col); p += col; if (o) *p++ = "^<v>"[v & 3]; if (x+1 == state->w) *p++ = '\n'; else *p++ = ' '; } } assert(p - ret == maxlen); *p = '\0'; return ret; } struct game_ui { int cur_x, cur_y; bool cur_visible; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->cur_x = 0; ui->cur_y = 0; ui->cur_visible = false; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { if (!ui->cur_visible) return ""; switch (button) { case CURSOR_SELECT: return "Turn left"; case CURSOR_SELECT2: return "Turn right"; } return ""; } struct game_drawstate { bool started; int w, h, bgcolour; int *grid; int tilesize; int cur_x, cur_y; }; static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int w = state->w, h = state->h, n = state->n /* , wh = w*h */; char buf[80]; int dir; button = button & (~MOD_MASK | MOD_NUM_KEYPAD); if (IS_CURSOR_MOVE(button)) { if (button == CURSOR_LEFT && ui->cur_x > 0) ui->cur_x--; if (button == CURSOR_RIGHT && (ui->cur_x+n) < (w)) ui->cur_x++; if (button == CURSOR_UP && ui->cur_y > 0) ui->cur_y--; if (button == CURSOR_DOWN && (ui->cur_y+n) < (h)) ui->cur_y++; ui->cur_visible = true; return UI_UPDATE; } if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { /* * Determine the coordinates of the click. We offset by n-1 * half-blocks so that the user must click at the centre of * a rotation region rather than at the corner. */ x -= (n-1) * TILE_SIZE / 2; y -= (n-1) * TILE_SIZE / 2; x = FROMCOORD(x); y = FROMCOORD(y); dir = (button == LEFT_BUTTON ? 1 : -1); if (x < 0 || x > w-n || y < 0 || y > h-n) return NULL; ui->cur_visible = false; } else if (IS_CURSOR_SELECT(button)) { if (ui->cur_visible) { x = ui->cur_x; y = ui->cur_y; dir = (button == CURSOR_SELECT2) ? -1 : +1; } else { ui->cur_visible = true; return UI_UPDATE; } } else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') { x = y = 0; dir = (button == 'A' ? -1 : +1); } else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') { x = w-n; y = 0; dir = (button == 'B' ? -1 : +1); } else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') { x = 0; y = h-n; dir = (button == 'C' ? -1 : +1); } else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') { x = w-n; y = h-n; dir = (button == 'D' ? -1 : +1); } else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) { x = (w-n) / 2; y = 0; dir = +1; } else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) { x = (w-n) / 2; y = h-n; dir = +1; } else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) { x = 0; y = (h-n) / 2; dir = +1; } else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) { x = w-n; y = (h-n) / 2; dir = +1; } else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){ x = (w-n) / 2; y = (h-n) / 2; dir = +1; } else { return NULL; /* no move to be made */ } /* * If we reach here, we have a valid move. */ sprintf(buf, "M%d,%d,%d", x, y, dir); return dupstr(buf); } static game_state *execute_move(const game_state *from, const char *move) { game_state *ret; int w = from->w, h = from->h, n = from->n, wh = w*h; int x, y, dir; if (!strcmp(move, "S")) { int i; ret = dup_game(from); /* * Simply replace the grid with a solved one. For this game, * this isn't a useful operation for actually telling the user * what they should have done, but it is useful for * conveniently being able to get hold of a clean state from * which to practise manoeuvres. */ qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int); for (i = 0; i < ret->w*ret->h; i++) ret->grid[i] &= ~3; ret->used_solve = true; ret->completed = ret->movecount = 1; return ret; } if (move[0] != 'M' || sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 || x < 0 || y < 0 || x > from->w - n || y > from->h - n) return NULL; /* can't parse this move string */ ret = dup_game(from); ret->movecount++; do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir); ret->lastx = x; ret->lasty = y; ret->lastr = dir; /* * See if the game has been completed. To do this we simply * test that the grid contents are in increasing order. */ if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable)) ret->completed = ret->movecount; return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = TILE_SIZE * params->w + 2 * BORDER; *y = TILE_SIZE * params->h + 2 * BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT); /* cursor is light-background with a red tinge. */ ret[COL_HIGHCURSOR * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 1.0F; ret[COL_HIGHCURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.5F; ret[COL_HIGHCURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.5F; for (i = 0; i < 3; i++) { ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F; ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F; ret[COL_TEXT * 3 + i] = 0.0; ret[COL_LOWCURSOR * 3 + i] = ret[COL_HIGHCURSOR * 3 + i] * 0.6F; } *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = false; ds->w = state->w; ds->h = state->h; ds->bgcolour = COL_BACKGROUND; ds->grid = snewn(ds->w*ds->h, int); ds->tilesize = 0; /* haven't decided yet */ for (i = 0; i < ds->w*ds->h; i++) ds->grid[i] = -1; ds->cur_x = ds->cur_y = -state->n; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->grid); sfree(ds); } struct rotation { int cx, cy, cw, ch; /* clip region */ int ox, oy; /* rotation origin */ float c, s; /* cos and sin of rotation angle */ int lc, rc, tc, bc; /* colours of tile edges */ }; static void rotate(int *xy, struct rotation *rot) { if (rot) { float xf = (float)xy[0] - rot->ox, yf = (float)xy[1] - rot->oy; float xf2, yf2; xf2 = rot->c * xf + rot->s * yf; yf2 = - rot->s * xf + rot->c * yf; xy[0] = (int)(xf2 + rot->ox + 0.5); /* round to nearest */ xy[1] = (int)(yf2 + rot->oy + 0.5); /* round to nearest */ } } #define CUR_TOP 1 #define CUR_RIGHT 2 #define CUR_BOTTOM 4 #define CUR_LEFT 8 static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state, int x, int y, int tile, int flash_colour, struct rotation *rot, unsigned cedges) { int coords[8]; char str[40]; /* * If we've been passed a rotation region but we're drawing a * tile which is outside it, we must draw it normally. This can * occur if we're cleaning up after a completion flash while a * new move is also being made. */ if (rot && (x < rot->cx || y < rot->cy || x >= rot->cx+rot->cw || y >= rot->cy+rot->ch)) rot = NULL; if (rot) clip(dr, rot->cx, rot->cy, rot->cw, rot->ch); /* * We must draw each side of the tile's highlight separately, * because in some cases (during rotation) they will all need * to be different colours. */ /* The centre point is common to all sides. */ coords[4] = x + TILE_SIZE / 2; coords[5] = y + TILE_SIZE / 2; rotate(coords+4, rot); /* Right side. */ coords[0] = x + TILE_SIZE - 1; coords[1] = y + TILE_SIZE - 1; rotate(coords+0, rot); coords[2] = x + TILE_SIZE - 1; coords[3] = y; rotate(coords+2, rot); draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT, rot ? rot->rc : (cedges & CUR_RIGHT) ? COL_LOWCURSOR : COL_LOWLIGHT); /* Bottom side. */ coords[2] = x; coords[3] = y + TILE_SIZE - 1; rotate(coords+2, rot); draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT, rot ? rot->bc : (cedges & CUR_BOTTOM) ? COL_LOWCURSOR : COL_LOWLIGHT); /* Left side. */ coords[0] = x; coords[1] = y; rotate(coords+0, rot); draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT, rot ? rot->lc : (cedges & CUR_LEFT) ? COL_HIGHCURSOR : COL_HIGHLIGHT); /* Top side. */ coords[2] = x + TILE_SIZE - 1; coords[3] = y; rotate(coords+2, rot); draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT, rot ? rot->tc : (cedges & CUR_TOP) ? COL_HIGHCURSOR : COL_HIGHLIGHT); /* * Now the main blank area in the centre of the tile. */ if (rot) { coords[0] = x + HIGHLIGHT_WIDTH; coords[1] = y + HIGHLIGHT_WIDTH; rotate(coords+0, rot); coords[2] = x + HIGHLIGHT_WIDTH; coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; rotate(coords+2, rot); coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; rotate(coords+4, rot); coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH; coords[7] = y + HIGHLIGHT_WIDTH; rotate(coords+6, rot); draw_polygon(dr, coords, 4, flash_colour, flash_colour); } else { draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH, flash_colour); } /* * Next, the triangles for orientation. */ if (state->orientable) { int xdx, xdy, ydx, ydy; int cx, cy, displ, displ2; switch (tile & 3) { case 0: xdx = 1, xdy = 0; ydx = 0, ydy = 1; break; case 1: xdx = 0, xdy = -1; ydx = 1, ydy = 0; break; case 2: xdx = -1, xdy = 0; ydx = 0, ydy = -1; break; default /* case 3 */: xdx = 0, xdy = 1; ydx = -1, ydy = 0; break; } cx = x + TILE_SIZE / 2; cy = y + TILE_SIZE / 2; displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2; displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH; coords[0] = cx - displ * xdx + displ2 * ydx; coords[1] = cy - displ * xdy + displ2 * ydy; rotate(coords+0, rot); coords[2] = cx + displ * xdx + displ2 * ydx; coords[3] = cy + displ * xdy + displ2 * ydy; rotate(coords+2, rot); coords[4] = cx - displ * ydx; coords[5] = cy - displ * ydy; rotate(coords+4, rot); draw_polygon(dr, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE); } coords[0] = x + TILE_SIZE/2; coords[1] = y + TILE_SIZE/2; rotate(coords+0, rot); sprintf(str, "%d", tile / 4); draw_text(dr, coords[0], coords[1], FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_TEXT, str); if (rot) unclip(dr); draw_update(dr, x, y, TILE_SIZE, TILE_SIZE); } static int highlight_colour(float angle) { int colours[32] = { COL_LOWLIGHT, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE, COL_HIGHLIGHT_GENTLE, COL_HIGHLIGHT_GENTLE, COL_HIGHLIGHT_GENTLE, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT, COL_HIGHLIGHT_GENTLE, COL_HIGHLIGHT_GENTLE, COL_HIGHLIGHT_GENTLE, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT, COL_LOWLIGHT, COL_LOWLIGHT, COL_LOWLIGHT, COL_LOWLIGHT, COL_LOWLIGHT, COL_LOWLIGHT, COL_LOWLIGHT, COL_LOWLIGHT, }; return colours[(int)((angle + 2*PI) / (PI/16)) & 31]; } static float game_anim_length_real(const game_state *oldstate, const game_state *newstate, int dir, const game_ui *ui) { /* * Our game_anim_length doesn't need to modify its game_ui, so * this is the real function which declares ui as const. We must * wrap this for the backend structure with a version that has ui * non-const, but we still need this version to call from within * game_redraw which only has a const ui available. */ return (float)(ANIM_PER_BLKSIZE_UNIT * sqrt(newstate->n-1)); } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return game_anim_length_real(oldstate, newstate, dir, ui); } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->used_solve && !newstate->used_solve) return 2 * FLASH_FRAME; else return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cur_visible) { *x = COORD(ui->cur_x); *y = COORD(ui->cur_y); *w = *h = state->n * TILE_SIZE; } } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int i, bgcolour; struct rotation srot, *rot; int lastx = -1, lasty = -1, lastr = -1; int cx, cy, n = state->n; bool cmoved = false; cx = ui->cur_visible ? ui->cur_x : -state->n; cy = ui->cur_visible ? ui->cur_y : -state->n; if (cx != ds->cur_x || cy != ds->cur_y) cmoved = true; if (flashtime > 0) { int frame = (int)(flashtime / FLASH_FRAME); bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT); } else bgcolour = COL_BACKGROUND; if (!ds->started) { int coords[10]; /* * Recessed area containing the whole puzzle. */ coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1; coords[3] = COORD(0) - HIGHLIGHT_WIDTH; coords[4] = coords[2] - TILE_SIZE; coords[5] = coords[3] + TILE_SIZE; coords[8] = COORD(0) - HIGHLIGHT_WIDTH; coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1; coords[6] = coords[8] + TILE_SIZE; coords[7] = coords[9] - TILE_SIZE; draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT); coords[1] = COORD(0) - HIGHLIGHT_WIDTH; coords[0] = COORD(0) - HIGHLIGHT_WIDTH; draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT); ds->started = true; } /* * If we're drawing any rotated tiles, sort out the rotation * parameters, and also zap the rotation region to the * background colour before doing anything else. */ if (oldstate) { float angle; float anim_max = game_anim_length_real(oldstate, state, dir, ui); if (dir > 0) { lastx = state->lastx; lasty = state->lasty; lastr = state->lastr; } else { lastx = oldstate->lastx; lasty = oldstate->lasty; lastr = -oldstate->lastr; } rot = &srot; rot->cx = COORD(lastx); rot->cy = COORD(lasty); rot->cw = rot->ch = TILE_SIZE * state->n; rot->ox = rot->cx + rot->cw/2; rot->oy = rot->cy + rot->ch/2; angle = (float)((-PI/2 * lastr) * (1.0 - animtime / anim_max)); rot->c = (float)cos(angle); rot->s = (float)sin(angle); /* * Sort out the colours of the various sides of the tile. */ rot->lc = highlight_colour((float)PI + angle); rot->rc = highlight_colour(angle); rot->tc = highlight_colour((float)(PI/2.0) + angle); rot->bc = highlight_colour((float)(-PI/2.0) + angle); draw_rect(dr, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour); } else rot = NULL; /* * Now draw each tile. */ for (i = 0; i < state->w * state->h; i++) { int t; bool cc = false; int tx = i % state->w, ty = i / state->w; /* * Figure out what should be displayed at this location. * Usually it will be state->grid[i], unless we're in the * middle of animating an actual rotation and this cell is * within the rotation region, in which case we set -1 * (always display). */ if (oldstate && lastx >= 0 && lasty >= 0 && tx >= lastx && tx < lastx + state->n && ty >= lasty && ty < lasty + state->n) t = -1; else t = state->grid[i]; if (cmoved) { /* cursor has moved (or changed visibility)... */ if (tx == cx || tx == cx+n-1 || ty == cy || ty == cy+n-1) cc = true; /* ...we're on new cursor, redraw */ if (tx == ds->cur_x || tx == ds->cur_x+n-1 || ty == ds->cur_y || ty == ds->cur_y+n-1) cc = true; /* ...we were on old cursor, redraw */ } if (ds->bgcolour != bgcolour || /* always redraw when flashing */ ds->grid[i] != t || ds->grid[i] == -1 || t == -1 || cc) { int x = COORD(tx), y = COORD(ty); unsigned cedges = 0; if (tx == cx && ty >= cy && ty <= cy+n-1) cedges |= CUR_LEFT; if (ty == cy && tx >= cx && tx <= cx+n-1) cedges |= CUR_TOP; if (tx == cx+n-1 && ty >= cy && ty <= cy+n-1) cedges |= CUR_RIGHT; if (ty == cy+n-1 && tx >= cx && tx <= cx+n-1) cedges |= CUR_BOTTOM; draw_tile(dr, ds, state, x, y, state->grid[i], bgcolour, rot, cedges); ds->grid[i] = t; } } ds->bgcolour = bgcolour; ds->cur_x = cx; ds->cur_y = cy; /* * Update the status bar. */ { char statusbuf[256]; /* * Don't show the new status until we're also showing the * new _state_ - after the game animation is complete. */ if (oldstate) state = oldstate; if (state->used_solve) sprintf(statusbuf, "Moves since auto-solve: %d", state->movecount - state->completed); else { sprintf(statusbuf, "%sMoves: %d", (state->completed ? "COMPLETED! " : ""), (state->completed ? state->completed : state->movecount)); if (state->movetarget) sprintf(statusbuf+strlen(statusbuf), " (target %d)", state->movetarget); } status_bar(dr, statusbuf); } } static bool game_timing_state(const game_state *state, game_ui *ui) { return true; } static void game_print_size(const game_params *params, float *x, float *y) { } static void game_print(drawing *dr, const game_state *state, int tilesize) { } #ifdef COMBINED #define thegame twiddle #endif const struct game thegame = { "Twiddle", "games.twiddle", "twiddle", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, false, false, game_print_size, game_print, true, /* wants_statusbar */ false, game_timing_state, 0, /* flags */ }; /* vim: set shiftwidth=4 tabstop=8: */