ref: fc6abc39c75c152780151c35bc95b12bee01b09c
dir: /tpl/internal/go_templates/texttemplate/exec.go/
// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package template import ( "fmt" "github.com/gohugoio/hugo/tpl/internal/go_templates/fmtsort" "github.com/gohugoio/hugo/tpl/internal/go_templates/texttemplate/parse" "io" "reflect" "runtime" "strings" ) // maxExecDepth specifies the maximum stack depth of templates within // templates. This limit is only practically reached by accidentally // recursive template invocations. This limit allows us to return // an error instead of triggering a stack overflow. var maxExecDepth = initMaxExecDepth() func initMaxExecDepth() int { if runtime.GOARCH == "wasm" { return 1000 } return 100000 } // state represents the state of an execution. It's not part of the // template so that multiple executions of the same template // can execute in parallel. type stateOld struct { tmpl *Template wr io.Writer node parse.Node // current node, for errors vars []variable // push-down stack of variable values. depth int // the height of the stack of executing templates. } // variable holds the dynamic value of a variable such as $, $x etc. type variable struct { name string value reflect.Value } // push pushes a new variable on the stack. func (s *state) push(name string, value reflect.Value) { s.vars = append(s.vars, variable{name, value}) } // mark returns the length of the variable stack. func (s *state) mark() int { return len(s.vars) } // pop pops the variable stack up to the mark. func (s *state) pop(mark int) { s.vars = s.vars[0:mark] } // setVar overwrites the last declared variable with the given name. // Used by variable assignments. func (s *state) setVar(name string, value reflect.Value) { for i := s.mark() - 1; i >= 0; i-- { if s.vars[i].name == name { s.vars[i].value = value return } } s.errorf("undefined variable: %s", name) } // setTopVar overwrites the top-nth variable on the stack. Used by range iterations. func (s *state) setTopVar(n int, value reflect.Value) { s.vars[len(s.vars)-n].value = value } // varValue returns the value of the named variable. func (s *state) varValue(name string) reflect.Value { for i := s.mark() - 1; i >= 0; i-- { if s.vars[i].name == name { return s.vars[i].value } } s.errorf("undefined variable: %s", name) return zero } var zero reflect.Value type missingValType struct{} var missingVal = reflect.ValueOf(missingValType{}) // at marks the state to be on node n, for error reporting. func (s *state) at(node parse.Node) { s.node = node } // doublePercent returns the string with %'s replaced by %%, if necessary, // so it can be used safely inside a Printf format string. func doublePercent(str string) string { return strings.ReplaceAll(str, "%", "%%") } // TODO: It would be nice if ExecError was more broken down, but // the way ErrorContext embeds the template name makes the // processing too clumsy. // ExecError is the custom error type returned when Execute has an // error evaluating its template. (If a write error occurs, the actual // error is returned; it will not be of type ExecError.) type ExecError struct { Name string // Name of template. Err error // Pre-formatted error. } func (e ExecError) Error() string { return e.Err.Error() } func (e ExecError) Unwrap() error { return e.Err } // errorf records an ExecError and terminates processing. func (s *state) errorf(format string, args ...interface{}) { name := doublePercent(s.tmpl.Name()) if s.node == nil { format = fmt.Sprintf("template: %s: %s", name, format) } else { location, context := s.tmpl.ErrorContext(s.node) format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) } panic(ExecError{ Name: s.tmpl.Name(), Err: fmt.Errorf(format, args...), }) } // writeError is the wrapper type used internally when Execute has an // error writing to its output. We strip the wrapper in errRecover. // Note that this is not an implementation of error, so it cannot escape // from the package as an error value. type writeError struct { Err error // Original error. } func (s *state) writeError(err error) { panic(writeError{ Err: err, }) } // errRecover is the handler that turns panics into returns from the top // level of Parse. func errRecover(errp *error) { e := recover() if e != nil { switch err := e.(type) { case runtime.Error: panic(e) case writeError: *errp = err.Err // Strip the wrapper. case ExecError: *errp = err // Keep the wrapper. default: panic(e) } } } // ExecuteTemplate applies the template associated with t that has the given name // to the specified data object and writes the output to wr. // If an error occurs executing the template or writing its output, // execution stops, but partial results may already have been written to // the output writer. // A template may be executed safely in parallel, although if parallel // executions share a Writer the output may be interleaved. func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { var tmpl *Template if t.common != nil { tmpl = t.tmpl[name] } if tmpl == nil { return fmt.Errorf("template: no template %q associated with template %q", name, t.name) } return tmpl.Execute(wr, data) } // Execute applies a parsed template to the specified data object, // and writes the output to wr. // If an error occurs executing the template or writing its output, // execution stops, but partial results may already have been written to // the output writer. // A template may be executed safely in parallel, although if parallel // executions share a Writer the output may be interleaved. // // If data is a reflect.Value, the template applies to the concrete // value that the reflect.Value holds, as in fmt.Print. func (t *Template) Execute(wr io.Writer, data interface{}) error { return t.execute(wr, data) } func (t *Template) execute(wr io.Writer, data interface{}) (err error) { defer errRecover(&err) value, ok := data.(reflect.Value) if !ok { value = reflect.ValueOf(data) } state := &state{ tmpl: t, wr: wr, vars: []variable{{"$", value}}, } if t.Tree == nil || t.Root == nil { state.errorf("%q is an incomplete or empty template", t.Name()) } state.walk(value, t.Root) return } // DefinedTemplates returns a string listing the defined templates, // prefixed by the string "; defined templates are: ". If there are none, // it returns the empty string. For generating an error message here // and in html/template. func (t *Template) DefinedTemplates() string { if t.common == nil { return "" } var b strings.Builder for name, tmpl := range t.tmpl { if tmpl.Tree == nil || tmpl.Root == nil { continue } if b.Len() == 0 { b.WriteString("; defined templates are: ") } else { b.WriteString(", ") } fmt.Fprintf(&b, "%q", name) } return b.String() } // Walk functions step through the major pieces of the template structure, // generating output as they go. func (s *state) walk(dot reflect.Value, node parse.Node) { s.at(node) switch node := node.(type) { case *parse.ActionNode: // Do not pop variables so they persist until next end. // Also, if the action declares variables, don't print the result. val := s.evalPipeline(dot, node.Pipe) if len(node.Pipe.Decl) == 0 { s.printValue(node, val) } case *parse.IfNode: s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) case *parse.ListNode: for _, node := range node.Nodes { s.walk(dot, node) } case *parse.RangeNode: s.walkRange(dot, node) case *parse.TemplateNode: s.walkTemplate(dot, node) case *parse.TextNode: if _, err := s.wr.Write(node.Text); err != nil { s.writeError(err) } case *parse.WithNode: s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) default: s.errorf("unknown node: %s", node) } } // walkIfOrWith walks an 'if' or 'with' node. The two control structures // are identical in behavior except that 'with' sets dot. func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { defer s.pop(s.mark()) val := s.evalPipeline(dot, pipe) truth, ok := isTrue(indirectInterface(val)) if !ok { s.errorf("if/with can't use %v", val) } if truth { if typ == parse.NodeWith { s.walk(val, list) } else { s.walk(dot, list) } } else if elseList != nil { s.walk(dot, elseList) } } // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, // and whether the value has a meaningful truth value. This is the definition of // truth used by if and other such actions. func IsTrue(val interface{}) (truth, ok bool) { return isTrue(reflect.ValueOf(val)) } func isTrueOld(val reflect.Value) (truth, ok bool) { if !val.IsValid() { // Something like var x interface{}, never set. It's a form of nil. return false, true } switch val.Kind() { case reflect.Array, reflect.Map, reflect.Slice, reflect.String: truth = val.Len() > 0 case reflect.Bool: truth = val.Bool() case reflect.Complex64, reflect.Complex128: truth = val.Complex() != 0 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: truth = !val.IsNil() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: truth = val.Int() != 0 case reflect.Float32, reflect.Float64: truth = val.Float() != 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: truth = val.Uint() != 0 case reflect.Struct: truth = true // Struct values are always true. default: return } return truth, true } func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { s.at(r) defer s.pop(s.mark()) val, _ := indirect(s.evalPipeline(dot, r.Pipe)) // mark top of stack before any variables in the body are pushed. mark := s.mark() oneIteration := func(index, elem reflect.Value) { // Set top var (lexically the second if there are two) to the element. if len(r.Pipe.Decl) > 0 { s.setTopVar(1, elem) } // Set next var (lexically the first if there are two) to the index. if len(r.Pipe.Decl) > 1 { s.setTopVar(2, index) } s.walk(elem, r.List) s.pop(mark) } switch val.Kind() { case reflect.Array, reflect.Slice: if val.Len() == 0 { break } for i := 0; i < val.Len(); i++ { oneIteration(reflect.ValueOf(i), val.Index(i)) } return case reflect.Map: if val.Len() == 0 { break } om := fmtsort.Sort(val) for i, key := range om.Key { oneIteration(key, om.Value[i]) } return case reflect.Chan: if val.IsNil() { break } i := 0 for ; ; i++ { elem, ok := val.Recv() if !ok { break } oneIteration(reflect.ValueOf(i), elem) } if i == 0 { break } return case reflect.Invalid: break // An invalid value is likely a nil map, etc. and acts like an empty map. default: s.errorf("range can't iterate over %v", val) } if r.ElseList != nil { s.walk(dot, r.ElseList) } } func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { s.at(t) tmpl := s.tmpl.tmpl[t.Name] if tmpl == nil { s.errorf("template %q not defined", t.Name) } if s.depth == maxExecDepth { s.errorf("exceeded maximum template depth (%v)", maxExecDepth) } // Variables declared by the pipeline persist. dot = s.evalPipeline(dot, t.Pipe) newState := *s newState.depth++ newState.tmpl = tmpl // No dynamic scoping: template invocations inherit no variables. newState.vars = []variable{{"$", dot}} newState.walk(dot, tmpl.Root) } // Eval functions evaluate pipelines, commands, and their elements and extract // values from the data structure by examining fields, calling methods, and so on. // The printing of those values happens only through walk functions. // evalPipeline returns the value acquired by evaluating a pipeline. If the // pipeline has a variable declaration, the variable will be pushed on the // stack. Callers should therefore pop the stack after they are finished // executing commands depending on the pipeline value. func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { if pipe == nil { return } s.at(pipe) value = missingVal for _, cmd := range pipe.Cmds { value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. // If the object has type interface{}, dig down one level to the thing inside. if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { value = reflect.ValueOf(value.Interface()) // lovely! } } for _, variable := range pipe.Decl { if pipe.IsAssign { s.setVar(variable.Ident[0], value) } else { s.push(variable.Ident[0], value) } } return value } func (s *state) notAFunction(args []parse.Node, final reflect.Value) { if len(args) > 1 || final != missingVal { s.errorf("can't give argument to non-function %s", args[0]) } } func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { firstWord := cmd.Args[0] switch n := firstWord.(type) { case *parse.FieldNode: return s.evalFieldNode(dot, n, cmd.Args, final) case *parse.ChainNode: return s.evalChainNode(dot, n, cmd.Args, final) case *parse.IdentifierNode: // Must be a function. return s.evalFunction(dot, n, cmd, cmd.Args, final) case *parse.PipeNode: // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. s.notAFunction(cmd.Args, final) return s.evalPipeline(dot, n) case *parse.VariableNode: return s.evalVariableNode(dot, n, cmd.Args, final) } s.at(firstWord) s.notAFunction(cmd.Args, final) switch word := firstWord.(type) { case *parse.BoolNode: return reflect.ValueOf(word.True) case *parse.DotNode: return dot case *parse.NilNode: s.errorf("nil is not a command") case *parse.NumberNode: return s.idealConstant(word) case *parse.StringNode: return reflect.ValueOf(word.Text) } s.errorf("can't evaluate command %q", firstWord) panic("not reached") } // idealConstant is called to return the value of a number in a context where // we don't know the type. In that case, the syntax of the number tells us // its type, and we use Go rules to resolve. Note there is no such thing as // a uint ideal constant in this situation - the value must be of int type. func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { // These are ideal constants but we don't know the type // and we have no context. (If it was a method argument, // we'd know what we need.) The syntax guides us to some extent. s.at(constant) switch { case constant.IsComplex: return reflect.ValueOf(constant.Complex128) // incontrovertible. case constant.IsFloat && !isHexInt(constant.Text) && !isRuneInt(constant.Text) && strings.ContainsAny(constant.Text, ".eEpP"): return reflect.ValueOf(constant.Float64) case constant.IsInt: n := int(constant.Int64) if int64(n) != constant.Int64 { s.errorf("%s overflows int", constant.Text) } return reflect.ValueOf(n) case constant.IsUint: s.errorf("%s overflows int", constant.Text) } return zero } func isRuneInt(s string) bool { return len(s) > 0 && s[0] == '\'' } func isHexInt(s string) bool { return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") } func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { s.at(field) return s.evalFieldChain(dot, dot, field, field.Ident, args, final) } func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { s.at(chain) if len(chain.Field) == 0 { s.errorf("internal error: no fields in evalChainNode") } if chain.Node.Type() == parse.NodeNil { s.errorf("indirection through explicit nil in %s", chain) } // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. pipe := s.evalArg(dot, nil, chain.Node) return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) } func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. s.at(variable) value := s.varValue(variable.Ident[0]) if len(variable.Ident) == 1 { s.notAFunction(args, final) return value } return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) } // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. // dot is the environment in which to evaluate arguments, while // receiver is the value being walked along the chain. func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { n := len(ident) for i := 0; i < n-1; i++ { receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) } // Now if it's a method, it gets the arguments. return s.evalField(dot, ident[n-1], node, args, final, receiver) } func (s *state) evalFunctionOld(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { s.at(node) name := node.Ident function, ok := findFunction(name, s.tmpl) if !ok { s.errorf("%q is not a defined function", name) } return s.evalCall(dot, function, cmd, name, args, final) } // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). // The 'final' argument represents the return value from the preceding // value of the pipeline, if any. func (s *state) evalFieldOld(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { if !receiver.IsValid() { if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. s.errorf("nil data; no entry for key %q", fieldName) } return zero } typ := receiver.Type() receiver, isNil := indirect(receiver) if receiver.Kind() == reflect.Interface && isNil { // Calling a method on a nil interface can't work. The // MethodByName method call below would panic. s.errorf("nil pointer evaluating %s.%s", typ, fieldName) return zero } // Unless it's an interface, need to get to a value of type *T to guarantee // we see all methods of T and *T. ptr := receiver if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() { ptr = ptr.Addr() } if method := ptr.MethodByName(fieldName); method.IsValid() { return s.evalCall(dot, method, node, fieldName, args, final) } hasArgs := len(args) > 1 || final != missingVal // It's not a method; must be a field of a struct or an element of a map. switch receiver.Kind() { case reflect.Struct: tField, ok := receiver.Type().FieldByName(fieldName) if ok { field := receiver.FieldByIndex(tField.Index) if tField.PkgPath != "" { // field is unexported s.errorf("%s is an unexported field of struct type %s", fieldName, typ) } // If it's a function, we must call it. if hasArgs { s.errorf("%s has arguments but cannot be invoked as function", fieldName) } return field } case reflect.Map: // If it's a map, attempt to use the field name as a key. nameVal := reflect.ValueOf(fieldName) if nameVal.Type().AssignableTo(receiver.Type().Key()) { if hasArgs { s.errorf("%s is not a method but has arguments", fieldName) } result := receiver.MapIndex(nameVal) if !result.IsValid() { switch s.tmpl.option.missingKey { case mapInvalid: // Just use the invalid value. case mapZeroValue: result = reflect.Zero(receiver.Type().Elem()) case mapError: s.errorf("map has no entry for key %q", fieldName) } } return result } case reflect.Ptr: etyp := receiver.Type().Elem() if etyp.Kind() == reflect.Struct { if _, ok := etyp.FieldByName(fieldName); !ok { // If there's no such field, say "can't evaluate" // instead of "nil pointer evaluating". break } } if isNil { s.errorf("nil pointer evaluating %s.%s", typ, fieldName) } } s.errorf("can't evaluate field %s in type %s", fieldName, typ) panic("not reached") } var ( errorType = reflect.TypeOf((*error)(nil)).Elem() fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() ) // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] // as the function itself. func (s *state) evalCallOld(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { if args != nil { args = args[1:] // Zeroth arg is function name/node; not passed to function. } typ := fun.Type() numIn := len(args) if final != missingVal { numIn++ } numFixed := len(args) if typ.IsVariadic() { numFixed = typ.NumIn() - 1 // last arg is the variadic one. if numIn < numFixed { s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) } } else if numIn != typ.NumIn() { s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) } if !goodFunc(typ) { // TODO: This could still be a confusing error; maybe goodFunc should provide info. s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) } // Build the arg list. argv := make([]reflect.Value, numIn) // Args must be evaluated. Fixed args first. i := 0 for ; i < numFixed && i < len(args); i++ { argv[i] = s.evalArg(dot, typ.In(i), args[i]) } // Now the ... args. if typ.IsVariadic() { argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. for ; i < len(args); i++ { argv[i] = s.evalArg(dot, argType, args[i]) } } // Add final value if necessary. if final != missingVal { t := typ.In(typ.NumIn() - 1) if typ.IsVariadic() { if numIn-1 < numFixed { // The added final argument corresponds to a fixed parameter of the function. // Validate against the type of the actual parameter. t = typ.In(numIn - 1) } else { // The added final argument corresponds to the variadic part. // Validate against the type of the elements of the variadic slice. t = t.Elem() } } argv[i] = s.validateType(final, t) } v, err := safeCall(fun, argv) // If we have an error that is not nil, stop execution and return that // error to the caller. if err != nil { s.at(node) s.errorf("error calling %s: %v", name, err) } if v.Type() == reflectValueType { v = v.Interface().(reflect.Value) } return v } // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. func canBeNil(typ reflect.Type) bool { switch typ.Kind() { case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: return true case reflect.Struct: return typ == reflectValueType } return false } // validateType guarantees that the value is valid and assignable to the type. func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { if !value.IsValid() { if typ == nil { // An untyped nil interface{}. Accept as a proper nil value. return reflect.ValueOf(nil) } if canBeNil(typ) { // Like above, but use the zero value of the non-nil type. return reflect.Zero(typ) } s.errorf("invalid value; expected %s", typ) } if typ == reflectValueType && value.Type() != typ { return reflect.ValueOf(value) } if typ != nil && !value.Type().AssignableTo(typ) { if value.Kind() == reflect.Interface && !value.IsNil() { value = value.Elem() if value.Type().AssignableTo(typ) { return value } // fallthrough } // Does one dereference or indirection work? We could do more, as we // do with method receivers, but that gets messy and method receivers // are much more constrained, so it makes more sense there than here. // Besides, one is almost always all you need. switch { case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): value = value.Elem() if !value.IsValid() { s.errorf("dereference of nil pointer of type %s", typ) } case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): value = value.Addr() default: s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) } } return value } func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { s.at(n) switch arg := n.(type) { case *parse.DotNode: return s.validateType(dot, typ) case *parse.NilNode: if canBeNil(typ) { return reflect.Zero(typ) } s.errorf("cannot assign nil to %s", typ) case *parse.FieldNode: return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) case *parse.VariableNode: return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) case *parse.PipeNode: return s.validateType(s.evalPipeline(dot, arg), typ) case *parse.IdentifierNode: return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) case *parse.ChainNode: return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) } switch typ.Kind() { case reflect.Bool: return s.evalBool(typ, n) case reflect.Complex64, reflect.Complex128: return s.evalComplex(typ, n) case reflect.Float32, reflect.Float64: return s.evalFloat(typ, n) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return s.evalInteger(typ, n) case reflect.Interface: if typ.NumMethod() == 0 { return s.evalEmptyInterface(dot, n) } case reflect.Struct: if typ == reflectValueType { return reflect.ValueOf(s.evalEmptyInterface(dot, n)) } case reflect.String: return s.evalString(typ, n) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return s.evalUnsignedInteger(typ, n) } s.errorf("can't handle %s for arg of type %s", n, typ) panic("not reached") } func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { s.at(n) if n, ok := n.(*parse.BoolNode); ok { value := reflect.New(typ).Elem() value.SetBool(n.True) return value } s.errorf("expected bool; found %s", n) panic("not reached") } func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { s.at(n) if n, ok := n.(*parse.StringNode); ok { value := reflect.New(typ).Elem() value.SetString(n.Text) return value } s.errorf("expected string; found %s", n) panic("not reached") } func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { s.at(n) if n, ok := n.(*parse.NumberNode); ok && n.IsInt { value := reflect.New(typ).Elem() value.SetInt(n.Int64) return value } s.errorf("expected integer; found %s", n) panic("not reached") } func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { s.at(n) if n, ok := n.(*parse.NumberNode); ok && n.IsUint { value := reflect.New(typ).Elem() value.SetUint(n.Uint64) return value } s.errorf("expected unsigned integer; found %s", n) panic("not reached") } func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { s.at(n) if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { value := reflect.New(typ).Elem() value.SetFloat(n.Float64) return value } s.errorf("expected float; found %s", n) panic("not reached") } func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { value := reflect.New(typ).Elem() value.SetComplex(n.Complex128) return value } s.errorf("expected complex; found %s", n) panic("not reached") } func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { s.at(n) switch n := n.(type) { case *parse.BoolNode: return reflect.ValueOf(n.True) case *parse.DotNode: return dot case *parse.FieldNode: return s.evalFieldNode(dot, n, nil, missingVal) case *parse.IdentifierNode: return s.evalFunction(dot, n, n, nil, missingVal) case *parse.NilNode: // NilNode is handled in evalArg, the only place that calls here. s.errorf("evalEmptyInterface: nil (can't happen)") case *parse.NumberNode: return s.idealConstant(n) case *parse.StringNode: return reflect.ValueOf(n.Text) case *parse.VariableNode: return s.evalVariableNode(dot, n, nil, missingVal) case *parse.PipeNode: return s.evalPipeline(dot, n) } s.errorf("can't handle assignment of %s to empty interface argument", n) panic("not reached") } // indirect returns the item at the end of indirection, and a bool to indicate // if it's nil. If the returned bool is true, the returned value's kind will be // either a pointer or interface. func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { if v.IsNil() { return v, true } } return v, false } // indirectInterface returns the concrete value in an interface value, // or else the zero reflect.Value. // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): // the fact that x was an interface value is forgotten. func indirectInterface(v reflect.Value) reflect.Value { if v.Kind() != reflect.Interface { return v } if v.IsNil() { return reflect.Value{} } return v.Elem() } // printValue writes the textual representation of the value to the output of // the template. func (s *state) printValue(n parse.Node, v reflect.Value) { s.at(n) iface, ok := printableValue(v) if !ok { s.errorf("can't print %s of type %s", n, v.Type()) } _, err := fmt.Fprint(s.wr, iface) if err != nil { s.writeError(err) } } // printableValue returns the, possibly indirected, interface value inside v that // is best for a call to formatted printer. func printableValue(v reflect.Value) (interface{}, bool) { if v.Kind() == reflect.Ptr { v, _ = indirect(v) // fmt.Fprint handles nil. } if !v.IsValid() { return "<no value>", true } if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { v = v.Addr() } else { switch v.Kind() { case reflect.Chan, reflect.Func: return nil, false } } } return v.Interface(), true }