ref: cf3e0cb65c03955ef18624a50b9e33c3f6e8c6e5
dir: /render.c/
#include <u.h>
#include <libc.h>
#include <thread.h>
#include <draw.h>
#include <memdraw.h>
#include <geometry.h>
#include "libobj/obj.h"
#include "graphics.h"
#include "internal.h"
Rectangle UR = {0,0,1,1};
static ulong
col2ul(Color c)
{
uchar cbuf[4];
cbuf[0] = c.a*0xFF;
cbuf[1] = c.b*0xFF;
cbuf[2] = c.g*0xFF;
cbuf[3] = c.r*0xFF;
return cbuf[3]<<24 | cbuf[2]<<16 | cbuf[1]<<8 | cbuf[0];
}
static void
pixel(Memimage *dst, Point p, Memimage *src)
{
if(dst == nil || src == nil)
return;
memimagedraw(dst, rectaddpt(UR, p), src, ZP, nil, ZP, SoverD);
}
static int
isvisible(Point3 p)
{
if(p.x < -p.w || p.x > p.w ||
p.y < -p.w || p.y > p.w ||
p.z < -p.w || p.z > p.w)
return 0;
return 1;
}
static int
isfacingback(Primitive p)
{
double sa; /* signed area */
sa = p.v[0].p.x * p.v[1].p.y - p.v[0].p.y * p.v[1].p.x +
p.v[1].p.x * p.v[2].p.y - p.v[1].p.y * p.v[2].p.x +
p.v[2].p.x * p.v[0].p.y - p.v[2].p.y * p.v[0].p.x;
return sa <= 0;
}
static void
mulsdm(double r[6], double m[6][4], Point3 p)
{
int i;
for(i = 0; i < 6; i++)
r[i] = m[i][0]*p.x + m[i][1]*p.y + m[i][2]*p.z + m[i][3]*p.w;
}
typedef struct
{
Vertex *v;
ulong n;
ulong cap;
} Polygon;
static int
addvert(Polygon *p, Vertex v)
{
if(++p->n > p->cap)
p->v = erealloc(p->v, (p->cap = p->n)*sizeof(*p->v));
p->v[p->n-1] = v;
return p->n;
}
static void
swappoly(Polygon *a, Polygon *b)
{
Polygon tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
static void
cleanpoly(Polygon *p)
{
int i;
for(i = 0; i < p->n; i++)
delvattrs(&p->v[i]);
p->n = 0;
}
/*
* references:
* - James F. Blinn, Martin E. Newell, “Clipping Using Homogeneous Coordinates”,
* SIGGRAPH '78, pp. 245-251
* - https://cs418.cs.illinois.edu/website/text/clipping.html
* - https://github.com/aap/librw/blob/14dab85dcae6f3762fb2b1eda4d58d8e67541330/tools/playground/tl_tests.cpp#L522
*/
static int
cliptriangle(Primitive *p)
{
/* signed distance from each clipping plane */
static double sdm[6][4] = {
1, 0, 0, 1, /* l */
-1, 0, 0, 1, /* r */
0, 1, 0, 1, /* b */
0, -1, 0, 1, /* t */
0, 0, 1, 1, /* f */
0, 0, -1, 1, /* n */
};
double sd0[6], sd1[6];
double d0, d1, perc;
Polygon Vin, Vout;
Vertex *v0, *v1, v; /* edge verts and new vertex (line-plane intersection) */
int i, j, nt;
nt = 0;
memset(&Vin, 0, sizeof Vin);
memset(&Vout, 0, sizeof Vout);
for(i = 0; i < 3; i++)
addvert(&Vin, p[0].v[i]);
for(j = 0; j < 6 && Vin.n > 0; j++){
for(i = 0; i < Vin.n; i++){
v0 = &Vin.v[i];
v1 = &Vin.v[(i+1) % Vin.n];
mulsdm(sd0, sdm, v0->p);
mulsdm(sd1, sdm, v1->p);
if(sd0[j] < 0 && sd1[j] < 0)
continue;
if(sd0[j] >= 0 && sd1[j] >= 0)
goto allin;
d0 = (j&1) == 0? sd0[j]: -sd0[j];
d1 = (j&1) == 0? sd1[j]: -sd1[j];
perc = d0/(d0 - d1);
lerpvertex(&v, v0, v1, perc);
addvert(&Vout, v);
if(sd1[j] >= 0){
allin:
addvert(&Vout, dupvertex(v1));
}
}
cleanpoly(&Vin);
if(j < 6-1)
swappoly(&Vin, &Vout);
}
/* triangulate */
if(Vout.n < 3)
cleanpoly(&Vout);
else
for(i = 0; i < Vout.n-2; i++, nt++){
/*
* when performing fan triangulation, indices 0 and 2
* are referenced on every triangle, so duplicate them
* to avoid complications during rasterization.
*/
p[nt].v[0] = i < Vout.n-2-1? dupvertex(&Vout.v[0]): Vout.v[0];
p[nt].v[1] = Vout.v[i+1];
p[nt].v[2] = i < Vout.n-2-1? dupvertex(&Vout.v[i+2]): Vout.v[i+2];
}
free(Vout.v);
free(Vin.v);
return nt;
}
/*
* transforms p from e's reference frame into
* the world.
*/
Point3
model2world(Entity *e, Point3 p)
{
return invrframexform3(p, *e);
}
/*
* transforms p from the world reference frame
* to c's one (aka Viewing Coordinate System).
*/
Point3
world2vcs(Camera *c, Point3 p)
{
return rframexform3(p, *c);
}
/*
* projects p from the VCS to clip space, placing
* p.[xyz] ∈ (-∞,-w)∪[-w,w]∪(w,∞) where [-w,w]
* represents the visibility volume.
*
* the clipping planes are:
*
* | -w | w |
* +----------------+
* | left | right |
* | bottom | top |
* | far | near |
*/
Point3
vcs2clip(Camera *c, Point3 p)
{
return xform3(p, c->proj);
}
Point3
world2clip(Camera *c, Point3 p)
{
return vcs2clip(c, world2vcs(c, p));
}
/*
* performs the perspective division, placing
* p.[xyz] ∈ [-1,1] and p.w = 1/z
* (aka Normalized Device Coordinates).
*
* p.w is kept as z⁻¹ so we can later do
* perspective-correct attribute interpolation.
*/
static Point3
clip2ndc(Point3 p)
{
p.w = p.w == 0? 1: 1.0/p.w;
p.x *= p.w;
p.y *= p.w;
p.z *= p.w;
return p;
}
/*
* scales p to fit the destination viewport,
* placing p.x ∈ [0,width], p.y ∈ [0,height],
* p.z ∈ [0,1] and leaving p.w intact.
*/
static Point3
ndc2viewport(Framebuf *fb, Point3 p)
{
Matrix3 view = {
Dx(fb->r)/2.0, 0, 0, Dx(fb->r)/2.0,
0, -Dy(fb->r)/2.0, 0, Dy(fb->r)/2.0,
0, 0, 1.0/2.0, 1.0/2.0,
0, 0, 0, 1,
};
double w;
w = p.w;
p.w = 1;
p = xform3(p, view);
p.w = w;
return p;
}
void
perspective(Matrix3 m, double fov, double a, double n, double f)
{
double cotan;
cotan = 1/tan(fov/2);
identity3(m);
m[0][0] = cotan/a;
m[1][1] = cotan;
m[2][2] = (f+n)/(f-n);
m[2][3] = -2*f*n/(f-n);
m[3][2] = -1;
}
void
orthographic(Matrix3 m, double l, double r, double b, double t, double n, double f)
{
identity3(m);
m[0][0] = 2/(r - l);
m[1][1] = 2/(t - b);
m[2][2] = -2/(f - n);
m[0][3] = -(r + l)/(r - l);
m[1][3] = -(t + b)/(t - b);
m[2][3] = -(f + n)/(f - n);
}
static void
rasterize(Rastertask *task)
{
SUparams *params;
Primitive prim;
FSparams fsp;
Triangle2 t₂;
Rectangle bbox;
Point p;
Point3 bc;
Color c;
double z, depth;
params = task->params;
prim = task->p;
memmove(prim.v, task->p.v, sizeof prim.v);
t₂.p0 = Pt2(prim.v[0].p.x, prim.v[0].p.y, 1);
t₂.p1 = Pt2(prim.v[1].p.x, prim.v[1].p.y, 1);
t₂.p2 = Pt2(prim.v[2].p.x, prim.v[2].p.y, 1);
/* find the triangle's bbox and clip it against our wr */
bbox.min.x = min(min(t₂.p0.x, t₂.p1.x), t₂.p2.x);
bbox.min.y = min(min(t₂.p0.y, t₂.p1.y), t₂.p2.y);
bbox.max.x = max(max(t₂.p0.x, t₂.p1.x), t₂.p2.x)+1;
bbox.max.y = max(max(t₂.p0.y, t₂.p1.y), t₂.p2.y)+1;
bbox.min.x = max(bbox.min.x, task->wr.min.x);
bbox.min.y = max(bbox.min.y, task->wr.min.y);
bbox.max.x = min(bbox.max.x, task->wr.max.x);
bbox.max.y = min(bbox.max.y, task->wr.max.y);
fsp.su = params;
memset(&fsp.v, 0, sizeof fsp.v);
for(p.y = bbox.min.y; p.y < bbox.max.y; p.y++)
for(p.x = bbox.min.x; p.x < bbox.max.x; p.x++){
bc = barycoords(t₂, Pt2(p.x,p.y,1));
if(bc.x < 0 || bc.y < 0 || bc.z < 0)
continue;
z = fberp(prim.v[0].p.z, prim.v[1].p.z, prim.v[2].p.z, bc);
depth = fclamp(z, 0, 1);
if(depth <= params->fb->zb[p.x + p.y*Dx(params->fb->r)])
continue;
params->fb->zb[p.x + p.y*Dx(params->fb->r)] = depth;
/* interpolate z⁻¹ and get actual z */
z = fberp(prim.v[0].p.w, prim.v[1].p.w, prim.v[2].p.w, bc);
z = 1.0/(z < 1e-5? 1e-5: z);
/* perspective-correct attribute interpolation */
bc.x *= prim.v[0].p.w;
bc.y *= prim.v[1].p.w;
bc.z *= prim.v[2].p.w;
bc = mulpt3(bc, z);
berpvertex(&fsp.v, &prim.v[0], &prim.v[1], &prim.v[2], bc);
fsp.p = p;
c = params->fshader(&fsp);
memfillcolor(params->frag, col2ul(c));
pixel(params->fb->cb, p, params->frag);
delvattrs(&fsp.v);
}
}
static void
rasterizer(void *arg)
{
Rasterparam *rp;
Rastertask *task;
SUparams *params;
Memimage *frag;
uvlong t0;
rp = arg;
frag = rgb(DBlack);
threadsetname("rasterizer %d", rp->id);
while((task = recvp(rp->taskc)) != nil){
t0 = nanosec();
params = task->params;
/* end of job */
if(params->entity == nil){
if(decref(params->job) < 1){
nbsend(params->job->donec, nil);
free(params);
}
free(task);
continue;
}
if(params->job->times.Rn.t0 == 0)
params->job->times.Rn.t0 = t0;
params->frag = frag;
rasterize(task);
delvattrs(&task->p.v[0]);
delvattrs(&task->p.v[1]);
delvattrs(&task->p.v[2]);
params->job->times.Rn.t1 = nanosec();
free(params);
free(task);
}
}
static void
tilerdurden(void *arg)
{
Tilerparam *tp;
SUparams *params, *newparams;
Rastertask *task;
VSparams vsp;
OBJVertex *verts, *tverts, *nverts; /* geometric, texture and normals vertices */
OBJIndexArray *idxtab;
OBJElem **ep;
Point3 n; /* surface normal */
Primitive *p; /* primitives to raster */
Rectangle *wr, bbox;
Channel **taskchans;
ulong Δy, nproc;
int i, np;
uvlong t0;
tp = arg;
p = emalloc(sizeof(*p)*16);
taskchans = tp->taskchans;
nproc = tp->nproc;
wr = emalloc(nproc*sizeof(Rectangle));
threadsetname("tilerdurden %d", tp->id);
while((params = recvp(tp->paramsc)) != nil){
t0 = nanosec();
if(params->job->times.Tn.t0 == 0)
params->job->times.Tn.t0 = t0;
/* end of job */
if(params->entity == nil){
if(decref(params->job) < 1){
params->job->ref = nproc;
for(i = 0; i < nproc; i++){
task = emalloc(sizeof *task);
memset(task, 0, sizeof *task);
task->params = params;
sendp(taskchans[i], task);
}
}
continue;
}
vsp.su = params;
wr[0] = params->fb->r;
Δy = Dy(wr[0])/nproc;
wr[0].max.y = wr[0].min.y + Δy;
for(i = 1; i < nproc; i++)
wr[i] = rectaddpt(wr[i-1], Pt(0,Δy));
if(wr[nproc-1].max.y < params->fb->r.max.y)
wr[nproc-1].max.y = params->fb->r.max.y;
verts = params->entity->mdl->obj->vertdata[OBJVGeometric].verts;
tverts = params->entity->mdl->obj->vertdata[OBJVTexture].verts;
nverts = params->entity->mdl->obj->vertdata[OBJVNormal].verts;
for(ep = params->eb; ep != params->ee; ep++){
np = 1; /* start with one. after clipping it might change */
/* TODO handle all the primitive types */
idxtab = &(*ep)->indextab[OBJVGeometric];
p[0].v[0].p = Pt3(verts[idxtab->indices[0]].x,
verts[idxtab->indices[0]].y,
verts[idxtab->indices[0]].z,
verts[idxtab->indices[0]].w);
p[0].v[1].p = Pt3(verts[idxtab->indices[1]].x,
verts[idxtab->indices[1]].y,
verts[idxtab->indices[1]].z,
verts[idxtab->indices[1]].w);
p[0].v[2].p = Pt3(verts[idxtab->indices[2]].x,
verts[idxtab->indices[2]].y,
verts[idxtab->indices[2]].z,
verts[idxtab->indices[2]].w);
idxtab = &(*ep)->indextab[OBJVNormal];
if(idxtab->nindex == 3){
p[0].v[0].n = Vec3(nverts[idxtab->indices[0]].i,
nverts[idxtab->indices[0]].j,
nverts[idxtab->indices[0]].k);
p[0].v[0].n = normvec3(p[0].v[0].n);
p[0].v[1].n = Vec3(nverts[idxtab->indices[1]].i,
nverts[idxtab->indices[1]].j,
nverts[idxtab->indices[1]].k);
p[0].v[1].n = normvec3(p[0].v[1].n);
p[0].v[2].n = Vec3(nverts[idxtab->indices[2]].i,
nverts[idxtab->indices[2]].j,
nverts[idxtab->indices[2]].k);
p[0].v[2].n = normvec3(p[0].v[2].n);
}else{
/* TODO build a list of per-vertex normals earlier */
n = normvec3(crossvec3(subpt3(p[0].v[1].p, p[0].v[0].p), subpt3(p[0].v[2].p, p[0].v[0].p)));
p[0].v[0].n = p[0].v[1].n = p[0].v[2].n = n;
}
idxtab = &(*ep)->indextab[OBJVTexture];
if(idxtab->nindex == 3){
p[0].v[0].uv = Pt2(tverts[idxtab->indices[0]].u,
tverts[idxtab->indices[0]].v, 1);
p[0].v[1].uv = Pt2(tverts[idxtab->indices[1]].u,
tverts[idxtab->indices[1]].v, 1);
p[0].v[2].uv = Pt2(tverts[idxtab->indices[2]].u,
tverts[idxtab->indices[2]].v, 1);
}else{
p[0].v[0].uv = p[0].v[1].uv = p[0].v[2].uv = Vec2(0,0);
}
for(i = 0; i < 3; i++){
p[0].v[i].c = Pt3(1,1,1,1);
p[0].v[i].mtl = (*ep)->mtl;
p[0].v[i].attrs = nil;
p[0].v[i].nattrs = 0;
}
vsp.v = &p[0].v[0];
vsp.idx = 0;
p[0].v[0].p = params->vshader(&vsp);
vsp.v = &p[0].v[1];
vsp.idx = 1;
p[0].v[1].p = params->vshader(&vsp);
vsp.v = &p[0].v[2];
vsp.idx = 2;
p[0].v[2].p = params->vshader(&vsp);
if(!isvisible(p[0].v[0].p) || !isvisible(p[0].v[1].p) || !isvisible(p[0].v[2].p))
np = cliptriangle(p);
while(np--){
p[np].v[0].p = clip2ndc(p[np].v[0].p);
p[np].v[1].p = clip2ndc(p[np].v[1].p);
p[np].v[2].p = clip2ndc(p[np].v[2].p);
/* culling */
// if(isfacingback(p[np]))
// goto skiptri;
p[np].v[0].p = ndc2viewport(params->fb, p[np].v[0].p);
p[np].v[1].p = ndc2viewport(params->fb, p[np].v[1].p);
p[np].v[2].p = ndc2viewport(params->fb, p[np].v[2].p);
bbox.min.x = min(min(p[np].v[0].p.x, p[np].v[1].p.x), p[np].v[2].p.x);
bbox.min.y = min(min(p[np].v[0].p.y, p[np].v[1].p.y), p[np].v[2].p.y);
bbox.max.x = max(max(p[np].v[0].p.x, p[np].v[1].p.x), p[np].v[2].p.x)+1;
bbox.max.y = max(max(p[np].v[0].p.y, p[np].v[1].p.y), p[np].v[2].p.y)+1;
for(i = 0; i < nproc; i++)
if(rectXrect(bbox,wr[i])){
newparams = emalloc(sizeof *newparams);
*newparams = *params;
task = emalloc(sizeof *task);
task->params = newparams;
task->wr = wr[i];
task->p.v[0] = dupvertex(&p[np].v[0]);
task->p.v[1] = dupvertex(&p[np].v[1]);
task->p.v[2] = dupvertex(&p[np].v[2]);
sendp(taskchans[i], task);
}
//skiptri:
delvattrs(&p[np].v[0]);
delvattrs(&p[np].v[1]);
delvattrs(&p[np].v[2]);
}
}
params->job->times.Tn.t1 = nanosec();
free(params);
}
}
static void
entityproc(void *arg)
{
Channel *paramsin, **paramsout, **taskchans;
Tilerparam *tp;
Rasterparam *rp;
SUparams *params, *newparams;
OBJElem **eb, **ee;
char *nprocs;
ulong stride, nelems, nproc, nworkers;
int i;
uvlong t0;
threadsetname("entityproc");
paramsin = arg;
nprocs = getenv("NPROC");
if(nprocs == nil || (nproc = strtoul(nprocs, nil, 10)) < 2)
nproc = 1;
else
nproc /= 2;
free(nprocs);
paramsout = emalloc(nproc*sizeof(*paramsout));
taskchans = emalloc(nproc*sizeof(*taskchans));
for(i = 0; i < nproc; i++){
paramsout[i] = chancreate(sizeof(SUparams*), 8);
tp = emalloc(sizeof *tp);
tp->id = i;
tp->paramsc = paramsout[i];
tp->taskchans = taskchans;
tp->nproc = nproc;
proccreate(tilerdurden, tp, mainstacksize);
}
for(i = 0; i < nproc; i++){
rp = emalloc(sizeof *rp);
rp->id = i;
rp->taskc = taskchans[i] = chancreate(sizeof(Rastertask*), 32);
proccreate(rasterizer, rp, mainstacksize);
}
while((params = recvp(paramsin)) != nil){
t0 = nanosec();
if(params->job->times.E.t0 == 0)
params->job->times.E.t0 = t0;
/* end of job */
if(params->entity == nil){
params->job->ref = nproc;
for(i = 0; i < nproc; i++)
sendp(paramsout[i], params);
continue;
}
eb = params->entity->mdl->elems;
nelems = params->entity->mdl->nelems;
ee = eb + nelems;
if(nelems <= nproc){
nworkers = nelems;
stride = 1;
}else{
nworkers = nproc;
stride = nelems/nproc;
}
for(i = 0; i < nworkers; i++){
newparams = emalloc(sizeof *newparams);
*newparams = *params;
newparams->eb = eb + i*stride;
newparams->ee = i == nworkers-1? ee: newparams->eb + stride;
sendp(paramsout[i], newparams);
}
params->job->times.E.t1 = nanosec();
free(params);
}
}
static void
renderer(void *arg)
{
Channel *jobc;
Renderjob *job;
Scene *sc;
Entity *ent;
SUparams *params;
Channel *paramsc;
uvlong time;
threadsetname("renderer");
jobc = arg;
paramsc = chancreate(sizeof(SUparams*), 8);
proccreate(entityproc, paramsc, mainstacksize);
while((job = recvp(jobc)) != nil){
time = nanosec();
job->times.R.t0 = time;
sc = job->scene;
if(sc->nents < 1){
nbsend(job->donec, nil);
continue;
}
for(ent = sc->ents.next; ent != &sc->ents; ent = ent->next){
params = emalloc(sizeof *params);
memset(params, 0, sizeof *params);
params->fb = job->fb;
params->job = job;
params->entity = ent;
params->uni_time = time;
params->vshader = job->shaders->vshader;
params->fshader = job->shaders->fshader;
sendp(paramsc, params);
}
/* mark end of job */
params = emalloc(sizeof *params);
memset(params, 0, sizeof *params);
params->job = job;
sendp(paramsc, params);
job->times.R.t1 = nanosec();
}
}
Renderer *
initgraphics(void)
{
Renderer *r;
r = emalloc(sizeof *r);
r->c = chancreate(sizeof(Renderjob*), 8);
proccreate(renderer, r->c, mainstacksize);
return r;
}