shithub: aacdec

ref: 5a1ffaa6a50fd05e7a4a8079941d1b7eb2ef3db9
dir: /libfaad/cfft.c/

View raw version
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: cfft.c,v 1.22 2003/12/23 18:41:42 menno Exp $
**/

/*
 * Algorithmically based on Fortran-77 FFTPACK
 * by Paul N. Swarztrauber(Version 4, 1985).
 *
 * Does even sized fft only
 */

/* isign is +1 for backward and -1 for forward transforms */

#include "common.h"
#include "structs.h"

#include <stdlib.h>

#include "cfft.h"
#include "cfft_tab.h"


/*----------------------------------------------------------------------
   passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.
  ----------------------------------------------------------------------*/

#ifdef USE_SSE
static void passf2pos_sse(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                          complex_t *ch, const complex_t *wa)
{
    uint16_t i, k, ah, ac;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            ah = 2*k;
            ac = 4*k;

            RE(ch[ah])    = RE(cc[ac]) + RE(cc[ac+1]);
            IM(ch[ah])    = IM(cc[ac]) + IM(cc[ac+1]);

            RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
            IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ah = k*ido;
            ac = 2*k*ido;

            for (i = 0; i < ido; i+=4)
            {
                __m128 m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14;
                __m128 m15, m16, m17, m18, m19, m20, m21, m22, m23, m24;
                __m128 w1, w2, w3, w4;

                m1 = _mm_load_ps(&RE(cc[ac+i]));
                m2 = _mm_load_ps(&RE(cc[ac+ido+i]));
                m5 = _mm_load_ps(&RE(cc[ac+i+2]));
                m6 = _mm_load_ps(&RE(cc[ac+ido+i+2]));
                w1 = _mm_load_ps(&RE(wa[i]));
                w3 = _mm_load_ps(&RE(wa[i+2]));

                m3 = _mm_add_ps(m1, m2);
                m15 = _mm_add_ps(m5, m6);

                m4 = _mm_sub_ps(m1, m2);
                m16 = _mm_sub_ps(m5, m6);

                _mm_store_ps(&RE(ch[ah+i]), m3);
                _mm_store_ps(&RE(ch[ah+i+2]), m15);

                w2 = _mm_shuffle_ps(w1, w1, _MM_SHUFFLE(2, 3, 0, 1));
                w4 = _mm_shuffle_ps(w3, w3, _MM_SHUFFLE(2, 3, 0, 1));

                m7 = _mm_mul_ps(m4, w1);
                m17 = _mm_mul_ps(m16, w3);
                m8 = _mm_mul_ps(m4, w2);
                m18 = _mm_mul_ps(m16, w4);

                m9  = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(2, 0, 2, 0));
                m19 = _mm_shuffle_ps(m17, m18, _MM_SHUFFLE(2, 0, 2, 0));
                m10 = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(3, 1, 3, 1));
                m20 = _mm_shuffle_ps(m17, m18, _MM_SHUFFLE(3, 1, 3, 1));

                m11 = _mm_add_ps(m9, m10);
                m21 = _mm_add_ps(m19, m20);
                m12 = _mm_sub_ps(m9, m10);
                m22 = _mm_sub_ps(m19, m20);

                m13 = _mm_shuffle_ps(m11, m11, _MM_SHUFFLE(0, 0, 3, 2));
                m23 = _mm_shuffle_ps(m21, m21, _MM_SHUFFLE(0, 0, 3, 2));

                m14 = _mm_unpacklo_ps(m12, m13);
                m24 = _mm_unpacklo_ps(m22, m23);

                _mm_store_ps(&RE(ch[ah+i+l1*ido]), m14);
                _mm_store_ps(&RE(ch[ah+i+2+l1*ido]), m24);
            }
        }
    }
}
#endif

static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa)
{
    uint16_t i, k, ah, ac;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            ah = 2*k;
            ac = 4*k;

            RE(ch[ah])    = RE(cc[ac]) + RE(cc[ac+1]);
            RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
            IM(ch[ah])    = IM(cc[ac]) + IM(cc[ac+1]);
            IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ah = k*ido;
            ac = 2*k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t t2;

                RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
                RE(t2)       = RE(cc[ac+i]) - RE(cc[ac+i+ido]);

                IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
                IM(t2)       = IM(cc[ac+i]) - IM(cc[ac+i+ido]);

                ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
                    IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
            }
        }
    }
}

static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa)
{
    uint16_t i, k, ah, ac;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            ah = 2*k;
            ac = 4*k;

            RE(ch[ah])    = RE(cc[ac]) + RE(cc[ac+1]);
            RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
            IM(ch[ah])    = IM(cc[ac]) + IM(cc[ac+1]);
            IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ah = k*ido;
            ac = 2*k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t t2;

                RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
                RE(t2)       = RE(cc[ac+i]) - RE(cc[ac+i+ido]);

                IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
                IM(t2)       = IM(cc[ac+i]) - IM(cc[ac+i+ido]);

                ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
                    RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
            }
        }
    }
}


static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                   complex_t *ch, const complex_t *wa1, const complex_t *wa2,
                   const int8_t isign)
{
    static real_t taur = FRAC_CONST(-0.5);
    static real_t taui = FRAC_CONST(0.866025403784439);
    uint16_t i, k, ac, ah;
    complex_t c2, c3, d2, d3, t2;

    if (ido == 1)
    {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                ac = 3*k+1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);

                RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
                IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);

                RE(ch[ah+l1]) = RE(c2) - IM(c3);
                IM(ch[ah+l1]) = IM(c2) + RE(c3);
                RE(ch[ah+2*l1]) = RE(c2) + IM(c3);
                IM(ch[ah+2*l1]) = IM(c2) - RE(c3);
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                ac = 3*k+1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);

                RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
                IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);

                RE(ch[ah+l1]) = RE(c2) + IM(c3);
                IM(ch[ah+l1]) = IM(c2) - RE(c3);
                RE(ch[ah+2*l1]) = RE(c2) - IM(c3);
                IM(ch[ah+2*l1]) = IM(c2) + RE(c3);
            }
        }
    } else {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (3*k+1)*ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);

                    RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
                    IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);

                    RE(d2) = RE(c2) - IM(c3);
                    IM(d3) = IM(c2) - RE(c3);
                    RE(d3) = RE(c2) + IM(c3);
                    IM(d2) = IM(c2) + RE(c3);

                    ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
                        IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
                        IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
                }
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (3*k+1)*ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);

                    RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
                    IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);

                    RE(d2) = RE(c2) + IM(c3);
                    IM(d3) = IM(c2) + RE(c3);
                    RE(d3) = RE(c2) - IM(c3);
                    IM(d2) = IM(c2) - RE(c3);

                    ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
                        RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
                        RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
                }
            }
        }
    }
}

#ifdef USE_SSE
static void passf4pos_sse(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                          complex_t *ch, const complex_t *wa1, const complex_t *wa2,
                          const complex_t *wa3)
{
    uint16_t i, k, ac, ah;

    if (ido == 1)
    {
        for (k = 0; k < l1; k+=2)
        {
            __m128 m1, m2, m3, m4, m5, m6, m7, m8, m9, m10;
            __m128 n1, n2, n3, n4, n5, n6, n7, n8, n9, n10;
            __m128 neg1 = _mm_set_ps(-1.0, 1.0, 1.0, 1.0);

            m1 = _mm_load_ps(&RE(cc[4*k]));
            m2 = _mm_load_ps(&RE(cc[4*k+2]));
            n1 = _mm_load_ps(&RE(cc[4*k+4]));
            n2 = _mm_load_ps(&RE(cc[4*k+6]));

            m3 = _mm_add_ps(m1, m2);

            n4 = _mm_mul_ps(neg1, n1);
            n5 = _mm_mul_ps(neg1, n2);
            m4 = _mm_mul_ps(neg1, m1);
            m5 = _mm_mul_ps(neg1, m2);

            n3 = _mm_add_ps(n1, n2);
            m6 = _mm_sub_ps(m4, m5);

            m7 = _mm_shuffle_ps(m3, n3, _MM_SHUFFLE(1, 0, 1, 0));
            n6 = _mm_sub_ps(n4, n5);
            m8 = _mm_shuffle_ps(m3, n3, _MM_SHUFFLE(3, 2, 3, 2));

            n7 = _mm_shuffle_ps(m6, n6, _MM_SHUFFLE(1, 0, 1, 0));
            m9 = _mm_add_ps(m7, m8);
            n8 = _mm_shuffle_ps(m6, n6, _MM_SHUFFLE(2, 3, 2, 3));

            m10 = _mm_sub_ps(m7, m8);
            n9 = _mm_add_ps(n7, n8);

            _mm_store_ps(&RE(ch[k]), m9);
            n10 = _mm_sub_ps(n7, n8);
            _mm_store_ps(&RE(ch[k+l1]), n9);
            _mm_store_ps(&RE(ch[k+2*l1]), m10);
            _mm_store_ps(&RE(ch[k+3*l1]), n10);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ac = 4*k*ido;
            ah = k*ido;

            for (i = 0; i < ido; i+=2)
            {
                __m128 m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15, m16;
                __m128 n1, n2, n3, n4, n5, n6, n7, n8, n9, m17, m18, m19, m20, m21, m22, m23;
                __m128 w1, w2, w3, w4, w5, w6, m24, m25, m26, m27, m28, m29, m30;
                __m128 neg1 = _mm_set_ps(-1.0, 1.0, -1.0, 1.0);

                m1 = _mm_load_ps(&RE(cc[ac+i]));
                m2 = _mm_load_ps(&RE(cc[ac+i+2*ido]));
                m3 = _mm_add_ps(m1, m2);
                m4 = _mm_sub_ps(m1, m2);

                n1 = _mm_load_ps(&RE(cc[ac+i+ido]));
                n2 = _mm_load_ps(&RE(cc[ac+i+3*ido]));
                n3 = _mm_add_ps(n1, n2);

                n4 = _mm_mul_ps(neg1, n1);
                n5 = _mm_mul_ps(neg1, n2);
                n6 = _mm_sub_ps(n4, n5);

                m5 = _mm_add_ps(m3, n3);

                n7 = _mm_shuffle_ps(n6, n6, _MM_SHUFFLE(2, 3, 0, 1));
                n8 = _mm_add_ps(m4, n7);

                m6 = _mm_sub_ps(m3, n3);
                n9 = _mm_sub_ps(m4, n7);

                _mm_store_ps(&RE(ch[ah+i]), m5);

#if 0
  static INLINE void ComplexMult(real_t *y1, real_t *y2,
      real_t x1, real_t x2, real_t c1, real_t c2)
  {
      *y1 = MUL_F(x1, c1) + MUL_F(x2, c2);
      *y2 = MUL_F(x2, c1) - MUL_F(x1, c2);
  }

  m7.0 = RE(c2)*RE(wa1[i])
  m7.1 = IM(c2)*IM(wa1[i])
  m7.2 = RE(c6)*RE(wa1[i+1])
  m7.3 = IM(c6)*IM(wa1[i+1])

  m8.0 = RE(c2)*IM(wa1[i])
  m8.1 = IM(c2)*RE(wa1[i])
  m8.2 = RE(c6)*IM(wa1[i+1])
  m8.3 = IM(c6)*RE(wa1[i+1])

  RE(0) = m7.0 - m7.1
  IM(0) = m8.0 + m8.1
  RE(1) = m7.2 - m7.3
  IM(1) = m8.2 + m8.3

////
  RE(0) = RE(c2)*RE(wa1[i])   - IM(c2)*IM(wa1[i])
  IM(0) = RE(c2)*IM(wa1[i])   + IM(c2)*RE(wa1[i])
  RE(1) = RE(c6)*RE(wa1[i+1]) - IM(c6)*IM(wa1[i+1])
  IM(1) = RE(c6)*IM(wa1[i+1]) + IM(c6)*RE(wa1[i+1])
#endif

                w1 = _mm_load_ps(&RE(wa1[i]));
                w3 = _mm_load_ps(&RE(wa2[i]));
                w5 = _mm_load_ps(&RE(wa3[i]));

                w2 = _mm_shuffle_ps(w1, w1, _MM_SHUFFLE(2, 3, 0, 1));
                w4 = _mm_shuffle_ps(w3, w3, _MM_SHUFFLE(2, 3, 0, 1));
                w6 = _mm_shuffle_ps(w5, w5, _MM_SHUFFLE(2, 3, 0, 1));

                m7 = _mm_mul_ps(n8, w1);
                m15 = _mm_mul_ps(m6, w3);
                m23 = _mm_mul_ps(n9, w5);
                m8 = _mm_mul_ps(n8, w2);
                m16 = _mm_mul_ps(m6, w4);
                m24 = _mm_mul_ps(n9, w6);

                m9  = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(2, 0, 2, 0));
                m17 = _mm_shuffle_ps(m15, m16, _MM_SHUFFLE(2, 0, 2, 0));
                m25 = _mm_shuffle_ps(m23, m24, _MM_SHUFFLE(2, 0, 2, 0));
                m10 = _mm_shuffle_ps(m7, m8, _MM_SHUFFLE(3, 1, 3, 1));
                m18 = _mm_shuffle_ps(m15, m16, _MM_SHUFFLE(3, 1, 3, 1));
                m26 = _mm_shuffle_ps(m23, m24, _MM_SHUFFLE(3, 1, 3, 1));

                m11 = _mm_add_ps(m9, m10);
                m19 = _mm_add_ps(m17, m18);
                m27 = _mm_add_ps(m25, m26);
                m12 = _mm_sub_ps(m9, m10);
                m20 = _mm_sub_ps(m17, m18);
                m28 = _mm_sub_ps(m25, m26);

                m13 = _mm_shuffle_ps(m11, m11, _MM_SHUFFLE(0, 0, 3, 2));
                m21 = _mm_shuffle_ps(m19, m19, _MM_SHUFFLE(0, 0, 3, 2));
                m29 = _mm_shuffle_ps(m27, m27, _MM_SHUFFLE(0, 0, 3, 2));
                m14 = _mm_unpacklo_ps(m12, m13);
                m22 = _mm_unpacklo_ps(m20, m21);
                m30 = _mm_unpacklo_ps(m28, m29);

                _mm_store_ps(&RE(ch[ah+i+l1*ido]), m14);
                _mm_store_ps(&RE(ch[ah+i+2*l1*ido]), m22);
                _mm_store_ps(&RE(ch[ah+i+3*l1*ido]), m30);
            }
        }
    }
}
#endif

static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa1, const complex_t *wa2,
                      const complex_t *wa3)
{
    uint16_t i, k, ac, ah;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            complex_t t1, t2, t3, t4;

            ac = 4*k;
            ah = k;

            RE(t2) = RE(cc[ac])   + RE(cc[ac+2]);
            RE(t1) = RE(cc[ac])   - RE(cc[ac+2]);
            IM(t2) = IM(cc[ac])   + IM(cc[ac+2]);
            IM(t1) = IM(cc[ac])   - IM(cc[ac+2]);
            RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
            IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
            IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
            RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);

            RE(ch[ah])      = RE(t2) + RE(t3);
            RE(ch[ah+2*l1]) = RE(t2) - RE(t3);

            IM(ch[ah])      = IM(t2) + IM(t3);
            IM(ch[ah+2*l1]) = IM(t2) - IM(t3);

            RE(ch[ah+l1])   = RE(t1) + RE(t4);
            RE(ch[ah+3*l1]) = RE(t1) - RE(t4);

            IM(ch[ah+l1])   = IM(t1) + IM(t4);
            IM(ch[ah+3*l1]) = IM(t1) - IM(t4);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ac = 4*k*ido;
            ah = k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t c2, c3, c4, t1, t2, t3, t4;

                RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
                RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
                IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
                IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
                RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
                IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
                IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
                RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);

                RE(c2) = RE(t1) + RE(t4);
                RE(c4) = RE(t1) - RE(t4);

                IM(c2) = IM(t1) + IM(t4);
                IM(c4) = IM(t1) - IM(t4);

                RE(ch[ah+i]) = RE(t2) + RE(t3);
                RE(c3)       = RE(t2) - RE(t3);

                IM(ch[ah+i]) = IM(t2) + IM(t3);
                IM(c3)       = IM(t2) - IM(t3);

                ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
                    IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
                ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
                    IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
                ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
                    IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
            }
        }
    }
}

static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                      complex_t *ch, const complex_t *wa1, const complex_t *wa2,
                      const complex_t *wa3)
{
    uint16_t i, k, ac, ah;

    if (ido == 1)
    {
        for (k = 0; k < l1; k++)
        {
            complex_t t1, t2, t3, t4;

            ac = 4*k;
            ah = k;

            RE(t2) = RE(cc[ac])   + RE(cc[ac+2]);
            RE(t1) = RE(cc[ac])   - RE(cc[ac+2]);
            IM(t2) = IM(cc[ac])   + IM(cc[ac+2]);
            IM(t1) = IM(cc[ac])   - IM(cc[ac+2]);
            RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
            IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
            IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
            RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);

            RE(ch[ah])      = RE(t2) + RE(t3);
            RE(ch[ah+2*l1]) = RE(t2) - RE(t3);

            IM(ch[ah])      = IM(t2) + IM(t3);
            IM(ch[ah+2*l1]) = IM(t2) - IM(t3);

            RE(ch[ah+l1])   = RE(t1) - RE(t4);
            RE(ch[ah+3*l1]) = RE(t1) + RE(t4);

            IM(ch[ah+l1])   = IM(t1) - IM(t4);
            IM(ch[ah+3*l1]) = IM(t1) + IM(t4);
        }
    } else {
        for (k = 0; k < l1; k++)
        {
            ac = 4*k*ido;
            ah = k*ido;

            for (i = 0; i < ido; i++)
            {
                complex_t c2, c3, c4, t1, t2, t3, t4;

                RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
                RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
                IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
                IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
                RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
                IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
                IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
                RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);

                RE(c2) = RE(t1) - RE(t4);
                RE(c4) = RE(t1) + RE(t4);

                IM(c2) = IM(t1) - IM(t4);
                IM(c4) = IM(t1) + IM(t4);

                RE(ch[ah+i]) = RE(t2) + RE(t3);
                RE(c3)       = RE(t2) - RE(t3);

                IM(ch[ah+i]) = IM(t2) + IM(t3);
                IM(c3)       = IM(t2) - IM(t3);

                ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
                    RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
                ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
                    RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
                ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
                    RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
            }
        }
    }
}

static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,
                   complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
                   const complex_t *wa4, const int8_t isign)
{
    static real_t tr11 = FRAC_CONST(0.309016994374947);
    static real_t ti11 = FRAC_CONST(0.951056516295154);
    static real_t tr12 = FRAC_CONST(-0.809016994374947);
    static real_t ti12 = FRAC_CONST(0.587785252292473);
    uint16_t i, k, ac, ah;
    complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;

    if (ido == 1)
    {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                ac = 5*k + 1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
                RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
                IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
                RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
                IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
                RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
                IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);

                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                ComplexMult(&RE(c5), &RE(c4),
                    ti11, ti12, RE(t5), RE(t4));
                ComplexMult(&IM(c5), &IM(c4),
                    ti11, ti12, IM(t5), IM(t4));

                RE(ch[ah+l1]) = RE(c2) - IM(c5);
                IM(ch[ah+l1]) = IM(c2) + RE(c5);
                RE(ch[ah+2*l1]) = RE(c3) - IM(c4);
                IM(ch[ah+2*l1]) = IM(c3) + RE(c4);
                RE(ch[ah+3*l1]) = RE(c3) + IM(c4);
                IM(ch[ah+3*l1]) = IM(c3) - RE(c4);
                RE(ch[ah+4*l1]) = RE(c2) + IM(c5);
                IM(ch[ah+4*l1]) = IM(c2) - RE(c5);
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                ac = 5*k + 1;
                ah = k;

                RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
                IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
                RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
                IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
                RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
                IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
                RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
                IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);

                RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
                IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);

                RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                ComplexMult(&RE(c4), &RE(c5),
                    ti12, ti11, RE(t5), RE(t4));
                ComplexMult(&IM(c4), &IM(c5),
                    ti12, ti12, IM(t5), IM(t4));

                RE(ch[ah+l1]) = RE(c2) + IM(c5);
                IM(ch[ah+l1]) = IM(c2) - RE(c5);
                RE(ch[ah+2*l1]) = RE(c3) + IM(c4);
                IM(ch[ah+2*l1]) = IM(c3) - RE(c4);
                RE(ch[ah+3*l1]) = RE(c3) - IM(c4);
                IM(ch[ah+3*l1]) = IM(c3) + RE(c4);
                RE(ch[ah+4*l1]) = RE(c2) - IM(c5);
                IM(ch[ah+4*l1]) = IM(c2) + RE(c5);
            }
        }
    } else {
        if (isign == 1)
        {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (k*5 + 1) * ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
                    RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
                    IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
                    RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
                    IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
                    RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
                    IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);

                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                    RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                    IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                    ComplexMult(&RE(c5), &RE(c4),
                        ti11, ti12, RE(t5), RE(t4));
                    ComplexMult(&IM(c5), &IM(c4),
                        ti11, ti12, IM(t5), IM(t4));

                    IM(d2) = IM(c2) + RE(c5);
                    IM(d3) = IM(c3) + RE(c4);
                    RE(d4) = RE(c3) + IM(c4);
                    RE(d5) = RE(c2) + IM(c5);
                    RE(d2) = RE(c2) - IM(c5);
                    IM(d5) = IM(c2) - RE(c5);
                    RE(d3) = RE(c3) - IM(c4);
                    IM(d4) = IM(c3) - RE(c4);

                    ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
                        IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
                        IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
                    ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
                        IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
                    ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
                        IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
                }
            }
        } else {
            for (k = 0; k < l1; k++)
            {
                for (i = 0; i < ido; i++)
                {
                    ac = i + (k*5 + 1) * ido;
                    ah = i + k * ido;

                    RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
                    IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
                    RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
                    IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
                    RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
                    IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
                    RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
                    IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);

                    RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
                    IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);

                    RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
                    IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
                    RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
                    IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);

                    ComplexMult(&RE(c4), &RE(c5),
                        ti12, ti11, RE(t5), RE(t4));
                    ComplexMult(&IM(c4), &IM(c5),
                        ti12, ti12, IM(t5), IM(t4));

                    IM(d2) = IM(c2) - RE(c5);
                    IM(d3) = IM(c3) - RE(c4);
                    RE(d4) = RE(c3) - IM(c4);
                    RE(d5) = RE(c2) - IM(c5);
                    RE(d2) = RE(c2) + IM(c5);
                    IM(d5) = IM(c2) + RE(c5);
                    RE(d3) = RE(c3) + IM(c4);
                    IM(d4) = IM(c3) + RE(c4);

                    ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
                        RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
                    ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
                        RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
                    ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
                        RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
                    ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
                        RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
                }
            }
        }
    }
}


/*----------------------------------------------------------------------
   cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.
  ----------------------------------------------------------------------*/

#ifdef USE_SSE
INLINE void cfftf1pos_sse(uint16_t n, complex_t *c, complex_t *ch,
                          const uint16_t *ifac, const complex_t *wa, const int8_t isign)
{
    uint16_t i;
    uint16_t k1, l1, l2;
    uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;

    nf = ifac[1];
    na = 0;
    l1 = 1;
    iw = 0;

    for (k1 = 2; k1 <= nf+1; k1++)
    {
        ip = ifac[k1];
        l2 = ip*l1;
        ido = n / l2;
        idl1 = ido*l1;

        switch (ip)
        {
        case 4:
            ix2 = iw + ido;
            ix3 = ix2 + ido;

            if (na == 0)
                passf4pos_sse((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
            else
                passf4pos_sse((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);

            na = 1 - na;
            break;
        case 2:
            if (na == 0)
                passf2pos_sse((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
            else
                passf2pos_sse((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);

            na = 1 - na;
            break;
        case 3:
            ix2 = iw + ido;

            if (na == 0)
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
            else
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);

            na = 1 - na;
            break;
        case 5:
            ix2 = iw + ido;
            ix3 = ix2 + ido;
            ix4 = ix3 + ido;

            if (na == 0)
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
            else
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);

            na = 1 - na;
            break;
        }

        l1 = l2;
        iw += (ip-1) * ido;
    }

    if (na == 0)
        return;

    for (i = 0; i < n; i++)
    {
        RE(c[i]) = RE(ch[i]);
        IM(c[i]) = IM(ch[i]);
    }
}
#endif

INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,
                      const uint16_t *ifac, const complex_t *wa, const int8_t isign)
{
    uint16_t i;
    uint16_t k1, l1, l2;
    uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;

    nf = ifac[1];
    na = 0;
    l1 = 1;
    iw = 0;

    for (k1 = 2; k1 <= nf+1; k1++)
    {
        ip = ifac[k1];
        l2 = ip*l1;
        ido = n / l2;
        idl1 = ido*l1;

        switch (ip)
        {
        case 4:
            ix2 = iw + ido;
            ix3 = ix2 + ido;

            if (na == 0)
                passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
            else
                passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);

            na = 1 - na;
            break;
        case 2:
            if (na == 0)
                passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
            else
                passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);

            na = 1 - na;
            break;
        case 3:
            ix2 = iw + ido;

            if (na == 0)
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
            else
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);

            na = 1 - na;
            break;
        case 5:
            ix2 = iw + ido;
            ix3 = ix2 + ido;
            ix4 = ix3 + ido;

            if (na == 0)
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
            else
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);

            na = 1 - na;
            break;
        }

        l1 = l2;
        iw += (ip-1) * ido;
    }

    if (na == 0)
        return;

    for (i = 0; i < n; i++)
    {
        RE(c[i]) = RE(ch[i]);
        IM(c[i]) = IM(ch[i]);
    }
}

INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,
                      const uint16_t *ifac, const complex_t *wa, const int8_t isign)
{
    uint16_t i;
    uint16_t k1, l1, l2;
    uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;

    nf = ifac[1];
    na = 0;
    l1 = 1;
    iw = 0;

    for (k1 = 2; k1 <= nf+1; k1++)
    {
        ip = ifac[k1];
        l2 = ip*l1;
        ido = n / l2;
        idl1 = ido*l1;

        switch (ip)
        {
        case 4:
            ix2 = iw + ido;
            ix3 = ix2 + ido;

            if (na == 0)
                passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
            else
                passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);

            na = 1 - na;
            break;
        case 2:
            if (na == 0)
                passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
            else
                passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);

            na = 1 - na;
            break;
        case 3:
            ix2 = iw + ido;

            if (na == 0)
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
            else
                passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);

            na = 1 - na;
            break;
        case 5:
            ix2 = iw + ido;
            ix3 = ix2 + ido;
            ix4 = ix3 + ido;

            if (na == 0)
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
            else
                passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);

            na = 1 - na;
            break;
        }

        l1 = l2;
        iw += (ip-1) * ido;
    }

    if (na == 0)
        return;

    for (i = 0; i < n; i++)
    {
        RE(c[i]) = RE(ch[i]);
        IM(c[i]) = IM(ch[i]);
    }
}

void cfftf(cfft_info *cfft, complex_t *c)
{
    cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, -1);
}

void cfftb(cfft_info *cfft, complex_t *c)
{
    cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
}

#ifdef USE_SSE
void cfftb_sse(cfft_info *cfft, complex_t *c)
{
    cfftf1pos_sse(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, +1);
}
#endif

static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac)
{
    static uint16_t ntryh[4] = {3, 4, 2, 5};
#ifndef FIXED_POINT
    real_t arg, argh, argld, fi;
    uint16_t ido, ipm;
    uint16_t i1, k1, l1, l2;
    uint16_t ld, ii, ip;
#endif
    uint16_t ntry, i, j;
    uint16_t ib;
    uint16_t nf, nl, nq, nr;

    nl = n;
    nf = 0;
    j = 0;

startloop:
    j++;

    if (j <= 4)
        ntry = ntryh[j-1];
    else
        ntry += 2;

    do
    {
        nq = nl / ntry;
        nr = nl - ntry*nq;

        if (nr != 0)
            goto startloop;

        nf++;
        ifac[nf+1] = ntry;
        nl = nq;

        if (ntry == 2 && nf != 1)
        {
            for (i = 2; i <= nf; i++)
            {
                ib = nf - i + 2;
                ifac[ib+1] = ifac[ib];
            }
            ifac[2] = 2;
        }
    } while (nl != 1);

    ifac[0] = n;
    ifac[1] = nf;

#ifndef FIXED_POINT
    argh = (real_t)2.0*(real_t)M_PI / (real_t)n;
    i = 0;
    l1 = 1;

    for (k1 = 1; k1 <= nf; k1++)
    {
        ip = ifac[k1+1];
        ld = 0;
        l2 = l1*ip;
        ido = n / l2;
        ipm = ip - 1;

        for (j = 0; j < ipm; j++)
        {
            i1 = i;
            RE(wa[i]) = 1.0;
            IM(wa[i]) = 0.0;
            ld += l1;
            fi = 0;
            argld = ld*argh;

            for (ii = 0; ii < ido; ii++)
            {
                i++;
                fi++;
                arg = fi * argld;
                RE(wa[i]) = (real_t)cos(arg);
                IM(wa[i]) = (real_t)sin(arg);
            }

            if (ip > 5)
            {
                RE(wa[i1]) = RE(wa[i]);
                IM(wa[i1]) = IM(wa[i]);
            }
        }
        l1 = l2;
    }
#endif
}

cfft_info *cffti(uint16_t n)
{
    cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));

    cfft->n = n;
    cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t));

#ifndef FIXED_POINT
    cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t));

    cffti1(n, cfft->tab, cfft->ifac);
#else
    cffti1(n, NULL, cfft->ifac);

    switch (n)
    {
    case 64: cfft->tab = cfft_tab_64; break;
    case 512: cfft->tab = cfft_tab_512; break;
#ifdef LD_DEC
    case 256: cfft->tab = cfft_tab_256; break;
#endif

#ifdef ALLOW_SMALL_FRAMELENGTH
    case 60: cfft->tab = cfft_tab_60; break;
    case 480: cfft->tab = cfft_tab_480; break;
#ifdef LD_DEC
    case 240: cfft->tab = cfft_tab_240; break;
#endif
#endif
    }
#endif

    return cfft;
}

void cfftu(cfft_info *cfft)
{
    if (cfft->work) faad_free(cfft->work);
#ifndef FIXED_POINT
    if (cfft->tab) faad_free(cfft->tab);
#endif

    if (cfft) faad_free(cfft);
}