ref: 6c93b4fdda100e449e25d57102a44d9bb63318b0
dir: /libfaad/decoder.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id: decoder.c,v 1.62 2003/07/29 08:20:12 menno Exp $ **/ #include "common.h" #include "structs.h" #include <stdlib.h> #include <string.h> #include "decoder.h" #include "mp4.h" #include "syntax.h" #include "specrec.h" #include "tns.h" #include "pns.h" #include "is.h" #include "ms.h" #include "ic_predict.h" #include "lt_predict.h" #include "drc.h" #include "error.h" #include "output.h" #include "dither.h" #ifdef SSR_DEC #include "ssr.h" #include "ssr_fb.h" #endif #ifdef SBR_DEC #include "sbr_dec.h" #endif #ifdef ANALYSIS uint16_t dbg_count; #endif int8_t* FAADAPI faacDecGetErrorMessage(uint8_t errcode) { if (errcode >= NUM_ERROR_MESSAGES) return NULL; return err_msg[errcode]; } uint32_t FAADAPI faacDecGetCapabilities() { uint32_t cap = 0; /* can't do without it */ cap += LC_DEC_CAP; #ifdef MAIN_DEC cap += MAIN_DEC_CAP; #endif #ifdef LTP_DEC cap += LTP_DEC_CAP; #endif #ifdef LD_DEC cap += LD_DEC_CAP; #endif #ifdef ERROR_RESILIENCE cap += ERROR_RESILIENCE_CAP; #endif #ifdef FIXED_POINT cap += FIXED_POINT_CAP; #endif return cap; } faacDecHandle FAADAPI faacDecOpen() { uint8_t i; faacDecHandle hDecoder = NULL; if ((hDecoder = (faacDecHandle)malloc(sizeof(faacDecStruct))) == NULL) return NULL; memset(hDecoder, 0, sizeof(faacDecStruct)); hDecoder->config.outputFormat = FAAD_FMT_16BIT; hDecoder->config.defObjectType = MAIN; hDecoder->config.defSampleRate = 44100; /* Default: 44.1kHz */ hDecoder->adts_header_present = 0; hDecoder->adif_header_present = 0; #ifdef ERROR_RESILIENCE hDecoder->aacSectionDataResilienceFlag = 0; hDecoder->aacScalefactorDataResilienceFlag = 0; hDecoder->aacSpectralDataResilienceFlag = 0; #endif hDecoder->frameLength = 1024; hDecoder->frame = 0; hDecoder->sample_buffer = NULL; for (i = 0; i < MAX_CHANNELS; i++) { hDecoder->window_shape_prev[i] = 0; hDecoder->time_out[i] = NULL; #ifdef SBR_DEC hDecoder->time_out2[i] = NULL; #endif #ifdef SSR_DEC hDecoder->ssr_overlap[i] = NULL; hDecoder->prev_fmd[i] = NULL; #endif #ifdef MAIN_DEC hDecoder->pred_stat[i] = NULL; #endif #ifdef LTP_DEC hDecoder->ltp_lag[i] = 0; hDecoder->lt_pred_stat[i] = NULL; #endif } #ifdef SBR_DEC for (i = 0; i < 32; i++) { hDecoder->sbr[i] = NULL; } #endif hDecoder->drc = drc_init(REAL_CONST(1.0), REAL_CONST(1.0)); #if POW_TABLE_SIZE hDecoder->pow2_table = (real_t*)malloc(POW_TABLE_SIZE*sizeof(real_t)); build_tables(hDecoder->pow2_table); #endif return hDecoder; } faacDecConfigurationPtr FAADAPI faacDecGetCurrentConfiguration(faacDecHandle hDecoder) { faacDecConfigurationPtr config = &(hDecoder->config); return config; } uint8_t FAADAPI faacDecSetConfiguration(faacDecHandle hDecoder, faacDecConfigurationPtr config) { hDecoder->config.defObjectType = config->defObjectType; hDecoder->config.defSampleRate = config->defSampleRate; hDecoder->config.outputFormat = config->outputFormat; hDecoder->config.downMatrix = config->downMatrix; /* OK */ return 1; } int32_t FAADAPI faacDecInit(faacDecHandle hDecoder, uint8_t *buffer, uint32_t buffer_size, uint32_t *samplerate, uint8_t *channels) { uint32_t bits = 0; bitfile ld; adif_header adif; adts_header adts; hDecoder->sf_index = get_sr_index(hDecoder->config.defSampleRate); hDecoder->object_type = hDecoder->config.defObjectType; *samplerate = sample_rates[hDecoder->sf_index]; *channels = 1; if (buffer != NULL) { faad_initbits(&ld, buffer, buffer_size); /* Check if an ADIF header is present */ if ((buffer[0] == 'A') && (buffer[1] == 'D') && (buffer[2] == 'I') && (buffer[3] == 'F')) { hDecoder->adif_header_present = 1; get_adif_header(&adif, &ld); faad_byte_align(&ld); hDecoder->sf_index = adif.pce[0].sf_index; hDecoder->object_type = adif.pce[0].object_type; *samplerate = sample_rates[hDecoder->sf_index]; *channels = adif.pce[0].channels; memcpy(&(hDecoder->pce), &(adif.pce[0]), sizeof(program_config)); hDecoder->pce_set = 1; bits = bit2byte(faad_get_processed_bits(&ld)); /* Check if an ADTS header is present */ } else if (faad_showbits(&ld, 12) == 0xfff) { hDecoder->adts_header_present = 1; adts_frame(&adts, &ld); hDecoder->sf_index = adts.sf_index; hDecoder->object_type = adts.profile; *samplerate = sample_rates[hDecoder->sf_index]; *channels = (adts.channel_configuration > 6) ? 2 : adts.channel_configuration; } if (ld.error) { faad_endbits(&ld); return -1; } faad_endbits(&ld); } hDecoder->channelConfiguration = *channels; /* must be done before frameLength is divided by 2 for LD */ #ifdef SSR_DEC if (hDecoder->object_type == SSR) hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS); else #endif hDecoder->fb = filter_bank_init(hDecoder->frameLength); #ifdef LD_DEC if (hDecoder->object_type == LD) hDecoder->frameLength >>= 1; #endif if (can_decode_ot(hDecoder->object_type) < 0) return -1; #ifndef FIXED_POINT if (hDecoder->config.outputFormat >= FAAD_FMT_DITHER_LOWEST) Init_Dither(16, hDecoder->config.outputFormat - FAAD_FMT_DITHER_LOWEST); #endif return bits; } /* Init the library using a DecoderSpecificInfo */ int8_t FAADAPI faacDecInit2(faacDecHandle hDecoder, uint8_t *pBuffer, uint32_t SizeOfDecoderSpecificInfo, uint32_t *samplerate, uint8_t *channels) { int8_t rc; mp4AudioSpecificConfig mp4ASC; hDecoder->adif_header_present = 0; hDecoder->adts_header_present = 0; if((hDecoder == NULL) || (pBuffer == NULL) || (SizeOfDecoderSpecificInfo < 2) || (samplerate == NULL) || (channels == NULL)) { return -1; } /* decode the audio specific config */ rc = AudioSpecificConfig2(pBuffer, SizeOfDecoderSpecificInfo, &mp4ASC, &(hDecoder->pce)); /* copy the relevant info to the decoder handle */ *samplerate = mp4ASC.samplingFrequency; if (mp4ASC.channelsConfiguration) { *channels = mp4ASC.channelsConfiguration; } else { *channels = hDecoder->pce.channels; hDecoder->pce_set = 1; } hDecoder->sf_index = mp4ASC.samplingFrequencyIndex; hDecoder->object_type = mp4ASC.objectTypeIndex; hDecoder->aacSectionDataResilienceFlag = mp4ASC.aacSectionDataResilienceFlag; hDecoder->aacScalefactorDataResilienceFlag = mp4ASC.aacScalefactorDataResilienceFlag; hDecoder->aacSpectralDataResilienceFlag = mp4ASC.aacSpectralDataResilienceFlag; #ifdef SBR_DEC hDecoder->sbr_present_flag = mp4ASC.sbr_present_flag; /* AAC core decoder samplerate is 2 times as low */ if (hDecoder->sbr_present_flag == 1) { hDecoder->sf_index = get_sr_index(mp4ASC.samplingFrequency / 2); } #endif if (hDecoder->object_type < 5) hDecoder->object_type--; /* For AAC differs from MPEG-4 */ if (rc != 0) { return rc; } hDecoder->channelConfiguration = mp4ASC.channelsConfiguration; if (mp4ASC.frameLengthFlag) hDecoder->frameLength = 960; /* must be done before frameLength is divided by 2 for LD */ #ifdef SSR_DEC if (hDecoder->object_type == SSR) hDecoder->fb = ssr_filter_bank_init(hDecoder->frameLength/SSR_BANDS); else #endif hDecoder->fb = filter_bank_init(hDecoder->frameLength); #ifdef LD_DEC if (hDecoder->object_type == LD) hDecoder->frameLength >>= 1; #endif #ifndef FIXED_POINT if (hDecoder->config.outputFormat >= FAAD_FMT_DITHER_LOWEST) Init_Dither(16, hDecoder->config.outputFormat - FAAD_FMT_DITHER_LOWEST); #endif return 0; } int8_t FAADAPI faacDecInitDRM(faacDecHandle hDecoder, uint32_t samplerate, uint8_t channels) { /* Special object type defined for DRM */ hDecoder->config.defObjectType = DRM_ER_LC; hDecoder->config.defSampleRate = samplerate; hDecoder->aacSectionDataResilienceFlag = 1; /* VCB11 */ hDecoder->aacScalefactorDataResilienceFlag = 0; /* no RVLC */ hDecoder->aacSpectralDataResilienceFlag = 1; /* HCR */ hDecoder->frameLength = 960; hDecoder->sf_index = get_sr_index(hDecoder->config.defSampleRate); hDecoder->object_type = hDecoder->config.defObjectType; hDecoder->channelConfiguration = channels; /* must be done before frameLength is divided by 2 for LD */ hDecoder->fb = filter_bank_init(hDecoder->frameLength); #ifndef FIXED_POINT if (hDecoder->config.outputFormat >= FAAD_FMT_DITHER_LOWEST) Init_Dither(16, hDecoder->config.outputFormat - FAAD_FMT_DITHER_LOWEST); #endif return 0; } void FAADAPI faacDecClose(faacDecHandle hDecoder) { uint8_t i; if (hDecoder == NULL) return; for (i = 0; i < MAX_CHANNELS; i++) { if (hDecoder->time_out[i]) free(hDecoder->time_out[i]); #ifdef SBR_DEC if (hDecoder->time_out2[i]) free(hDecoder->time_out2[i]); #endif #ifdef SSR_DEC if (hDecoder->ssr_overlap[i]) free(hDecoder->ssr_overlap[i]); if (hDecoder->prev_fmd[i]) free(hDecoder->prev_fmd[i]); #endif #ifdef MAIN_DEC if (hDecoder->pred_stat[i]) free(hDecoder->pred_stat[i]); #endif #ifdef LTP_DEC if (hDecoder->lt_pred_stat[i]) free(hDecoder->lt_pred_stat[i]); #endif } #ifdef SSR_DEC if (hDecoder->object_type == SSR) ssr_filter_bank_end(hDecoder->fb); else #endif filter_bank_end(hDecoder->fb); drc_end(hDecoder->drc); #ifndef FIXED_POINT #if POW_TABLE_SIZE if (hDecoder->pow2_table) free(hDecoder->pow2_table); #endif #endif if (hDecoder->sample_buffer) free(hDecoder->sample_buffer); #ifdef SBR_DEC for (i = 0; i < 32; i++) { if (hDecoder->sbr[i]) sbrDecodeEnd(hDecoder->sbr[i]); } #endif if (hDecoder) free(hDecoder); } void FAADAPI faacDecPostSeekReset(faacDecHandle hDecoder, int32_t frame) { if (hDecoder) { hDecoder->postSeekResetFlag = 1; if (frame != -1) hDecoder->frame = frame; } } void create_channel_config(faacDecHandle hDecoder, faacDecFrameInfo *hInfo) { hInfo->num_front_channels = 0; hInfo->num_side_channels = 0; hInfo->num_back_channels = 0; hInfo->num_lfe_channels = 0; memset(hInfo->channel_position, 0, MAX_CHANNELS*sizeof(uint8_t)); if (hDecoder->downMatrix) { hInfo->num_front_channels = 2; hInfo->channel_position[0] = FRONT_CHANNEL_LEFT; hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT; return; } /* check if there is a PCE */ if (hDecoder->pce_set) { uint8_t i, chpos = 0; uint8_t chdir, back_center = 0; hInfo->num_front_channels = hDecoder->pce.num_front_channels; hInfo->num_side_channels = hDecoder->pce.num_side_channels; hInfo->num_back_channels = hDecoder->pce.num_back_channels; hInfo->num_lfe_channels = hDecoder->pce.num_lfe_channels; chdir = hInfo->num_front_channels; if (chdir & 1) { hInfo->channel_position[chpos++] = FRONT_CHANNEL_CENTER; chdir--; } for (i = 0; i < chdir; i += 2) { hInfo->channel_position[chpos++] = FRONT_CHANNEL_LEFT; hInfo->channel_position[chpos++] = FRONT_CHANNEL_RIGHT; } for (i = 0; i < hInfo->num_side_channels; i += 2) { hInfo->channel_position[chpos++] = SIDE_CHANNEL_LEFT; hInfo->channel_position[chpos++] = SIDE_CHANNEL_RIGHT; } chdir = hInfo->num_back_channels; if (chdir & 1) { back_center = 1; chdir--; } for (i = 0; i < chdir; i += 2) { hInfo->channel_position[chpos++] = BACK_CHANNEL_LEFT; hInfo->channel_position[chpos++] = BACK_CHANNEL_RIGHT; } if (back_center) { hInfo->channel_position[chpos++] = BACK_CHANNEL_CENTER; } for (i = 0; i < hInfo->num_lfe_channels; i++) { hInfo->channel_position[chpos++] = LFE_CHANNEL; } } else { switch (hDecoder->channelConfiguration) { case 1: hInfo->num_front_channels = 1; hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; break; case 2: hInfo->num_front_channels = 2; hInfo->channel_position[0] = FRONT_CHANNEL_LEFT; hInfo->channel_position[1] = FRONT_CHANNEL_RIGHT; break; case 3: hInfo->num_front_channels = 3; hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; hInfo->channel_position[1] = FRONT_CHANNEL_LEFT; hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT; break; case 4: hInfo->num_front_channels = 3; hInfo->num_back_channels = 1; hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; hInfo->channel_position[1] = FRONT_CHANNEL_LEFT; hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT; hInfo->channel_position[3] = BACK_CHANNEL_CENTER; break; case 5: hInfo->num_front_channels = 3; hInfo->num_back_channels = 2; hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; hInfo->channel_position[1] = FRONT_CHANNEL_LEFT; hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT; hInfo->channel_position[3] = BACK_CHANNEL_LEFT; hInfo->channel_position[4] = BACK_CHANNEL_RIGHT; break; case 6: hInfo->num_front_channels = 3; hInfo->num_back_channels = 2; hInfo->num_lfe_channels = 1; hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; hInfo->channel_position[1] = FRONT_CHANNEL_LEFT; hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT; hInfo->channel_position[3] = BACK_CHANNEL_LEFT; hInfo->channel_position[4] = BACK_CHANNEL_RIGHT; hInfo->channel_position[5] = LFE_CHANNEL; break; case 7: hInfo->num_front_channels = 3; hInfo->num_side_channels = 2; hInfo->num_back_channels = 2; hInfo->num_lfe_channels = 1; hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; hInfo->channel_position[1] = FRONT_CHANNEL_LEFT; hInfo->channel_position[2] = FRONT_CHANNEL_RIGHT; hInfo->channel_position[3] = SIDE_CHANNEL_LEFT; hInfo->channel_position[4] = SIDE_CHANNEL_RIGHT; hInfo->channel_position[5] = BACK_CHANNEL_LEFT; hInfo->channel_position[6] = BACK_CHANNEL_RIGHT; hInfo->channel_position[7] = LFE_CHANNEL; break; default: /* channelConfiguration == 0 || channelConfiguration > 7 */ { uint8_t i; uint8_t ch = hDecoder->fr_channels - hDecoder->has_lfe; if (ch & 1) /* there's either a center front or a center back channel */ { uint8_t ch1 = (ch-1)/2; if (hDecoder->first_syn_ele == ID_SCE) { hInfo->num_front_channels = ch1 + 1; hInfo->num_back_channels = ch1; hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; for (i = 1; i <= ch1; i+=2) { hInfo->channel_position[i] = FRONT_CHANNEL_LEFT; hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT; } for (i = ch1+1; i < ch; i+=2) { hInfo->channel_position[i] = BACK_CHANNEL_LEFT; hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT; } } else { hInfo->num_front_channels = ch1; hInfo->num_back_channels = ch1 + 1; for (i = 0; i < ch1; i+=2) { hInfo->channel_position[i] = FRONT_CHANNEL_LEFT; hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT; } for (i = ch1; i < ch-1; i+=2) { hInfo->channel_position[i] = BACK_CHANNEL_LEFT; hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT; } hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER; } } else { uint8_t ch1 = (ch)/2; hInfo->num_front_channels = ch1; hInfo->num_back_channels = ch1; if (ch1 & 1) { hInfo->channel_position[0] = FRONT_CHANNEL_CENTER; for (i = 1; i <= ch1; i+=2) { hInfo->channel_position[i] = FRONT_CHANNEL_LEFT; hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT; } for (i = ch1+1; i < ch-1; i+=2) { hInfo->channel_position[i] = BACK_CHANNEL_LEFT; hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT; } hInfo->channel_position[ch-1] = BACK_CHANNEL_CENTER; } else { for (i = 0; i < ch1; i+=2) { hInfo->channel_position[i] = FRONT_CHANNEL_LEFT; hInfo->channel_position[i+1] = FRONT_CHANNEL_RIGHT; } for (i = ch1; i < ch; i+=2) { hInfo->channel_position[i] = BACK_CHANNEL_LEFT; hInfo->channel_position[i+1] = BACK_CHANNEL_RIGHT; } } } hInfo->num_lfe_channels = hDecoder->has_lfe; for (i = ch; i < hDecoder->fr_channels; i++) { hInfo->channel_position[i] = LFE_CHANNEL; } } break; } } } void* FAADAPI faacDecDecode(faacDecHandle hDecoder, faacDecFrameInfo *hInfo, uint8_t *buffer, uint32_t buffer_size) { int32_t i; uint8_t ch; adts_header adts; uint8_t channels = 0, ch_ele = 0; uint8_t output_channels = 0; bitfile *ld = (bitfile*)malloc(sizeof(bitfile)); /* local copys of globals */ uint8_t sf_index = hDecoder->sf_index; uint8_t object_type = hDecoder->object_type; uint8_t channelConfiguration = hDecoder->channelConfiguration; #ifdef MAIN_DEC pred_state **pred_stat = hDecoder->pred_stat; #endif #ifdef LTP_DEC real_t **lt_pred_stat = hDecoder->lt_pred_stat; #endif #ifndef FIXED_POINT #if POW_TABLE_SIZE real_t *pow2_table = hDecoder->pow2_table; #else real_t *pow2_table = NULL; #endif #endif uint8_t *window_shape_prev = hDecoder->window_shape_prev; real_t **time_out = hDecoder->time_out; #ifdef SBR_DEC real_t **time_out2 = hDecoder->time_out2; #endif #ifdef SSR_DEC real_t **ssr_overlap = hDecoder->ssr_overlap; real_t **prev_fmd = hDecoder->prev_fmd; #endif fb_info *fb = hDecoder->fb; drc_info *drc = hDecoder->drc; uint8_t outputFormat = hDecoder->config.outputFormat; #ifdef LTP_DEC uint16_t *ltp_lag = hDecoder->ltp_lag; #endif program_config *pce = &hDecoder->pce; element *syntax_elements[MAX_SYNTAX_ELEMENTS]; element **elements; int16_t *spec_data[MAX_CHANNELS]; real_t *spec_coef[MAX_CHANNELS]; uint16_t frame_len = hDecoder->frameLength; void *sample_buffer; memset(hInfo, 0, sizeof(faacDecFrameInfo)); /* initialize the bitstream */ faad_initbits(ld, buffer, buffer_size); #ifdef DRM if (object_type == DRM_ER_LC) { faad_getbits(ld, 8 DEBUGVAR(1,1,"faacDecDecode(): skip CRC")); } #endif if (hDecoder->adts_header_present) { if ((hInfo->error = adts_frame(&adts, ld)) > 0) goto error; /* MPEG2 does byte_alignment() here, * but ADTS header is always multiple of 8 bits in MPEG2 * so not needed to actually do it. */ } #ifdef ANALYSIS dbg_count = 0; #endif elements = syntax_elements; /* decode the complete bitstream */ elements = raw_data_block(hDecoder, hInfo, ld, syntax_elements, spec_data, spec_coef, pce, drc); ch_ele = hDecoder->fr_ch_ele; channels = hDecoder->fr_channels; if (hInfo->error > 0) goto error; /* no more bit reading after this */ hInfo->bytesconsumed = bit2byte(faad_get_processed_bits(ld)); if (ld->error) { hInfo->error = 14; goto error; } faad_endbits(ld); if (ld) free(ld); ld = NULL; if (!hDecoder->adts_header_present && !hDecoder->adif_header_present) { if (channels != hDecoder->channelConfiguration) hDecoder->channelConfiguration = channels; if (channels == 8) /* 7.1 */ hDecoder->channelConfiguration = 7; if (channels == 7) /* not a standard channelConfiguration */ hDecoder->channelConfiguration = 0; } if ((channels == 5 || channels == 6) && hDecoder->config.downMatrix) { hDecoder->downMatrix = 1; output_channels = 2; } else { output_channels = channels; } /* Make a channel configuration based on either a PCE or a channelConfiguration */ create_channel_config(hDecoder, hInfo); /* number of samples in this frame */ hInfo->samples = frame_len*output_channels; /* number of channels in this frame */ hInfo->channels = output_channels; /* samplerate */ hInfo->samplerate = sample_rates[hDecoder->sf_index]; /* check if frame has channel elements */ if (channels == 0) { hDecoder->frame++; return NULL; } if (hDecoder->sample_buffer == NULL) { #ifdef SBR_DEC if (hDecoder->sbr_present_flag == 1) { if (hDecoder->config.outputFormat == FAAD_FMT_DOUBLE) hDecoder->sample_buffer = malloc(2*frame_len*channels*sizeof(double)); else hDecoder->sample_buffer = malloc(2*frame_len*channels*sizeof(real_t)); } else { #endif if (hDecoder->config.outputFormat == FAAD_FMT_DOUBLE) hDecoder->sample_buffer = malloc(frame_len*channels*sizeof(double)); else hDecoder->sample_buffer = malloc(frame_len*channels*sizeof(real_t)); #ifdef SBR_DEC } #endif } sample_buffer = hDecoder->sample_buffer; /* noiseless coding is done, the rest of the tools come now */ for (ch = 0; ch < channels; ch++) { ic_stream *ics; /* find the syntax element to which this channel belongs */ if (syntax_elements[hDecoder->channel_element[ch]]->channel == ch) ics = &(syntax_elements[hDecoder->channel_element[ch]]->ics1); else if (syntax_elements[hDecoder->channel_element[ch]]->paired_channel == ch) ics = &(syntax_elements[hDecoder->channel_element[ch]]->ics2); /* inverse quantization */ inverse_quantization(spec_coef[ch], spec_data[ch], frame_len); /* apply scalefactors */ #ifdef FIXED_POINT apply_scalefactors(hDecoder, ics, spec_coef[ch], frame_len); #else apply_scalefactors(ics, spec_coef[ch], pow2_table, frame_len); #endif /* deinterleave short block grouping */ if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) quant_to_spec(ics, spec_coef[ch], frame_len); } /* Because for ms, is and pns both channels spectral coefficients are needed we have to restart running through all channels here. */ for (ch = 0; ch < channels; ch++) { int16_t pch = -1; uint8_t right_channel; ic_stream *ics, *icsr; ltp_info *ltp; /* find the syntax element to which this channel belongs */ if (syntax_elements[hDecoder->channel_element[ch]]->channel == ch) { ics = &(syntax_elements[hDecoder->channel_element[ch]]->ics1); icsr = &(syntax_elements[hDecoder->channel_element[ch]]->ics2); ltp = &(ics->ltp); pch = syntax_elements[hDecoder->channel_element[ch]]->paired_channel; right_channel = 0; } else if (syntax_elements[hDecoder->channel_element[ch]]->paired_channel == ch) { ics = &(syntax_elements[hDecoder->channel_element[ch]]->ics2); if (syntax_elements[hDecoder->channel_element[ch]]->common_window) ltp = &(ics->ltp2); else ltp = &(ics->ltp); right_channel = 1; } /* pns decoding */ if ((!right_channel) && (pch != -1) && (ics->ms_mask_present)) pns_decode(ics, icsr, spec_coef[ch], spec_coef[pch], frame_len, 1); else if ((pch == -1) || ((pch != -1) && (!ics->ms_mask_present))) pns_decode(ics, NULL, spec_coef[ch], NULL, frame_len, 0); if (!right_channel && (pch != -1)) { /* mid/side decoding */ ms_decode(ics, icsr, spec_coef[ch], spec_coef[pch], frame_len); /* intensity stereo decoding */ is_decode(ics, icsr, spec_coef[ch], spec_coef[pch], frame_len); } #ifdef MAIN_DEC /* MAIN object type prediction */ if (object_type == MAIN) { /* allocate the state only when needed */ if (pred_stat[ch] == NULL) { pred_stat[ch] = (pred_state*)malloc(frame_len * sizeof(pred_state)); reset_all_predictors(pred_stat[ch], frame_len); } /* intra channel prediction */ ic_prediction(ics, spec_coef[ch], pred_stat[ch], frame_len); /* In addition, for scalefactor bands coded by perceptual noise substitution the predictors belonging to the corresponding spectral coefficients are reset. */ pns_reset_pred_state(ics, pred_stat[ch]); } #endif #ifdef LTP_DEC if ((object_type == LTP) #ifdef ERROR_RESILIENCE || (object_type == ER_LTP) #endif #ifdef LD_DEC || (object_type == LD) #endif ) { #ifdef LD_DEC if (object_type == LD) { if (ltp->data_present) { if (ltp->lag_update) ltp_lag[ch] = ltp->lag; } ltp->lag = ltp_lag[ch]; } #endif /* allocate the state only when needed */ if (lt_pred_stat[ch] == NULL) { lt_pred_stat[ch] = (real_t*)malloc(frame_len*4 * sizeof(real_t)); memset(lt_pred_stat[ch], 0, frame_len*4 * sizeof(real_t)); } /* long term prediction */ lt_prediction(ics, ltp, spec_coef[ch], lt_pred_stat[ch], fb, ics->window_shape, window_shape_prev[ch], sf_index, object_type, frame_len); } #endif /* tns decoding */ tns_decode_frame(ics, &(ics->tns), sf_index, object_type, spec_coef[ch], frame_len); /* drc decoding */ if (drc->present) { if (!drc->exclude_mask[ch] || !drc->excluded_chns_present) drc_decode(drc, spec_coef[ch]); } if (time_out[ch] == NULL) { time_out[ch] = (real_t*)malloc(frame_len*2*sizeof(real_t)); memset(time_out[ch], 0, frame_len*2*sizeof(real_t)); } #ifdef SBR_DEC if (time_out2[ch] == NULL) { time_out2[ch] = (real_t*)malloc(frame_len*2*sizeof(real_t)); memset(time_out2[ch], 0, frame_len*2*sizeof(real_t)); } #endif /* filter bank */ #ifdef SSR_DEC if (object_type != SSR) { #endif ifilter_bank(fb, ics->window_sequence, ics->window_shape, window_shape_prev[ch], spec_coef[ch], time_out[ch], object_type, frame_len); #ifdef SSR_DEC } else { if (ssr_overlap[ch] == NULL) { ssr_overlap[ch] = (real_t*)malloc(2*frame_len*sizeof(real_t)); memset(ssr_overlap[ch], 0, 2*frame_len*sizeof(real_t)); } if (prev_fmd[ch] == NULL) { uint16_t k; prev_fmd[ch] = (real_t*)malloc(2*frame_len*sizeof(real_t)); for (k = 0; k < 2*frame_len; k++) prev_fmd[ch][k] = REAL_CONST(-1); } ssr_decode(&(ics->ssr), fb, ics->window_sequence, ics->window_shape, window_shape_prev[ch], spec_coef[ch], time_out[ch], ssr_overlap[ch], hDecoder->ipqf_buffer[ch], prev_fmd[ch], frame_len); } #endif /* save window shape for next frame */ window_shape_prev[ch] = ics->window_shape; #ifdef LTP_DEC if ((object_type == LTP) #ifdef ERROR_RESILIENCE || (object_type == ER_LTP) #endif #ifdef LD_DEC || (object_type == LD) #endif ) { lt_update_state(lt_pred_stat[ch], time_out[ch], time_out[ch]+frame_len, frame_len, object_type); } #endif } #ifdef SBR_DEC if (hDecoder->sbr_present_flag == 1) { for (i = 0; i < ch_ele; i++) { if (syntax_elements[i]->paired_channel != -1) { memcpy(time_out2[syntax_elements[i]->channel], time_out[syntax_elements[i]->channel], frame_len*sizeof(real_t)); memcpy(time_out2[syntax_elements[i]->paired_channel], time_out[syntax_elements[i]->paired_channel], frame_len*sizeof(real_t)); sbrDecodeFrame(hDecoder->sbr[i], time_out2[syntax_elements[i]->channel], time_out2[syntax_elements[i]->paired_channel], ID_CPE, hDecoder->postSeekResetFlag); } else { memcpy(time_out2[syntax_elements[i]->channel], time_out[syntax_elements[i]->channel], frame_len*sizeof(real_t)); sbrDecodeFrame(hDecoder->sbr[i], time_out2[syntax_elements[i]->channel], NULL, ID_SCE, hDecoder->postSeekResetFlag); } } frame_len *= 2; hInfo->samples *= 2; hInfo->samplerate *= 2; sample_buffer = output_to_PCM(hDecoder, time_out2, sample_buffer, output_channels, frame_len, outputFormat); } else { #endif sample_buffer = output_to_PCM(hDecoder, time_out, sample_buffer, output_channels, frame_len, outputFormat); #ifdef SBR_DEC } #endif /* gapless playback */ if (hDecoder->samplesLeft != 0) { hInfo->samples = hDecoder->samplesLeft*channels; } hDecoder->samplesLeft = 0; hDecoder->postSeekResetFlag = 0; hDecoder->frame++; #ifdef LD_DEC if (object_type != LD) { #endif if (hDecoder->frame <= 1) hInfo->samples = 0; #if 0 if (hDecoder->frame == 2 && hDecoder->sbr_present_flag == 1) { uint8_t samplesize; switch (outputFormat) { case FAAD_FMT_16BIT: case FAAD_FMT_16BIT_DITHER: case FAAD_FMT_16BIT_L_SHAPE: case FAAD_FMT_16BIT_M_SHAPE: case FAAD_FMT_16BIT_H_SHAPE: samplesize = 2; break; case FAAD_FMT_24BIT: case FAAD_FMT_32BIT: case FAAD_FMT_FLOAT: samplesize = 4; break; case FAAD_FMT_DOUBLE: samplesize = 8; break; } hInfo->samples = 512*channels; memmove(sample_buffer, (void*)((char*)sample_buffer + 1536*channels*samplesize), hInfo->samples*samplesize); } #endif #ifdef LD_DEC } else { /* LD encoders will give lower delay */ if (hDecoder->frame <= 0) hInfo->samples = 0; } #endif /* cleanup */ for (ch = 0; ch < channels; ch++) { if (spec_coef[ch]) free(spec_coef[ch]); if (spec_data[ch]) free(spec_data[ch]); } for (i = 0; i < ch_ele; i++) { if (syntax_elements[i]) free(syntax_elements[i]); } #ifdef ANALYSIS fflush(stdout); #endif return sample_buffer; error: /* free all memory that could have been allocated */ faad_endbits(ld); if (ld) free(ld); /* cleanup */ for (ch = 0; ch < channels; ch++) { if (spec_coef[ch]) free(spec_coef[ch]); if (spec_data[ch]) free(spec_data[ch]); } for (i = 0; i < ch_ele; i++) { if (syntax_elements[i]) free(syntax_elements[i]); } #ifdef ANALYSIS fflush(stdout); #endif return NULL; }