ref: dea62248dc147184c47d922e9a449d5e6440eee0
dir: /libfaad/mdct.c/
/* ** FAAD - Freeware Advanced Audio Decoder ** Copyright (C) 2002 M. Bakker ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** $Id: mdct.c,v 1.19 2002/09/08 18:14:37 menno Exp $ **/ /* * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform) * and consists of three steps: pre-(I)FFT complex multiplication, complex * (I)FFT, post-(I)FFT complex multiplication, * * As described in: * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the * Implementation of Filter Banks Based on 'Time Domain Aliasing * Cancellation�," IEEE Proc. on ICASSP�91, 1991, pp. 2209-2212. * * * As of April 6th 2002 completely rewritten. * This (I)MDCT can now be used for any data size n, where n is divisible by 8. * */ #include "common.h" #include <stdlib.h> #include <assert.h> #include "cfft.h" #include "mdct.h" mdct_info *faad_mdct_init(uint16_t N) { uint16_t k; real_t cangle, sangle, c, s, cold; real_t scale = COEF_CONST(sqrt(2.0/(float32_t)N)); mdct_info *mdct = (mdct_info*)malloc(sizeof(mdct_info)); assert(N % 8 == 0); mdct->N = N; mdct->sincos = (faad_sincos*)malloc(N/4*sizeof(faad_sincos)); mdct->Z1 = (real_t*)malloc(N/2*sizeof(real_t)); mdct->Z2 = (complex_t*)malloc(N/4*sizeof(complex_t)); cangle = COEF_CONST(cos(2.0 * M_PI / (float32_t)N)); sangle = COEF_CONST(sin(2.0 * M_PI / (float32_t)N)); c = COEF_CONST(cos(2.0 * M_PI * 0.125 / (float32_t)N)); s = COEF_CONST(sin(2.0 * M_PI * 0.125 / (float32_t)N)); for (k = 0; k < N/4; k++) { mdct->sincos[k].sin = -1*MUL_C_C(s,scale); mdct->sincos[k].cos = -1*MUL_C_C(c,scale); cold = c; c = MUL_C_C(c,cangle) - MUL_C_C(s,sangle); s = MUL_C_C(s,cangle) + MUL_C_C(cold,sangle); } /* initialise fft */ mdct->cfft = cffti(N/4); return mdct; } void faad_mdct_end(mdct_info *mdct) { cfftu(mdct->cfft); if (mdct->Z2) free(mdct->Z2); if (mdct->Z1) free(mdct->Z1); if (mdct->sincos) free(mdct->sincos); if (mdct) free(mdct); } void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; real_t *Z1 = mdct->Z1; complex_t *Z2 = mdct->Z2; faad_sincos *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; /* pre-IFFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; real_t x0 = X_in[ n]; real_t x1 = X_in[N2 - 1 - n]; Z1[n] = MUL_R_C(x1, sincos[k].cos) - MUL_R_C(x0, sincos[k].sin); Z1[n+1] = MUL_R_C(x0, sincos[k].cos) + MUL_R_C(x1, sincos[k].sin); } /* complex IFFT */ cfftb(mdct->cfft, Z1); /* post-IFFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; real_t zr = Z1[n]; real_t zi = Z1[n+1]; Z2[k].re = MUL_R_C(zr, sincos[k].cos) - MUL_R_C(zi, sincos[k].sin); Z2[k].im = MUL_R_C(zi, sincos[k].cos) + MUL_R_C(zr, sincos[k].sin); } /* reordering */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; X_out[ n] = Z2[N8 + k].im; X_out[ 1 + n] = -Z2[N8 - 1 - k].re; X_out[N4 + n] = Z2[ k].re; X_out[N4 + 1 + n] = -Z2[N4 - 1 - k].im; X_out[N2 + n] = Z2[N8 + k].re; X_out[N2 + 1 + n] = -Z2[N8 - 1 - k].im; X_out[N2 + N4 + n] = -Z2[ k].im; X_out[N2 + N4 + 1 + n] = Z2[N4 - 1 - k].re; } } #ifdef LTP_DEC void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; real_t *Z1 = mdct->Z1; faad_sincos *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; real_t scale = REAL_CONST(N); /* pre-FFT complex multiplication */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; real_t zr = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; real_t zi = X_in[ N4 + n] - X_in[ N4 - 1 - n]; Z1[n] = -MUL_R_C(zr, sincos[k].cos) - MUL_R_C(zi, sincos[k].sin); Z1[n+1] = -MUL_R_C(zi, sincos[k].cos) + MUL_R_C(zr, sincos[k].sin); zr = X_in[N2 - 1 - n] - X_in[ n]; zi = X_in[N2 + n] + X_in[N - 1 - n]; Z1[n + N4] = -MUL_R_C(zr, sincos[k + N8].cos) - MUL_R_C(zi, sincos[k + N8].sin); Z1[n+1 + N4] = -MUL_R_C(zi, sincos[k + N8].cos) + MUL_R_C(zr, sincos[k + N8].sin); } /* complex FFT */ cfftf(mdct->cfft, Z1); /* post-FFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; real_t zr = MUL(MUL_R_C(Z1[n], sincos[k].cos) + MUL_R_C(Z1[n+1], sincos[k].sin), scale); real_t zi = MUL(MUL_R_C(Z1[n+1], sincos[k].cos) - MUL_R_C(Z1[n], sincos[k].sin), scale); X_out[ n] = zr; X_out[N2 - 1 - n] = -zi; X_out[N2 + n] = zi; X_out[N - 1 - n] = -zr; } } #endif