ref: e4b87483df3b5a4cb2a42d69fbfea649908aa71b
dir: /libfaad/sbr_hfgen.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id: sbr_hfgen.c,v 1.2 2003/08/02 18:07:39 menno Exp $ **/ /* High Frequency generation */ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include "sbr_syntax.h" #include "sbr_hfgen.h" #include "sbr_fbt.h" void hf_generation(sbr_info *sbr, qmf_t *Xlow, qmf_t *Xhigh #ifdef SBR_LOW_POWER ,real_t *deg #endif ,uint8_t ch) { uint8_t l, i, x; complex_t alpha_0[64], alpha_1[64]; #ifdef SBR_LOW_POWER real_t rxx[64]; #endif calc_chirp_factors(sbr, ch); if ((ch == 0) && (sbr->Reset)) patch_construction(sbr); /* calculate the prediction coefficients */ calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1 #ifdef SBR_LOW_POWER , rxx #endif ); #ifdef SBR_LOW_POWER calc_aliasing_degree(sbr, rxx, deg); #endif /* actual HF generation */ for (i = 0; i < sbr->noPatches; i++) { for (x = 0; x < sbr->patchNoSubbands[i]; x++) { complex_t a0, a1; real_t bw, bw2; uint8_t q, p, k, g; /* find the low and high band for patching */ k = sbr->kx + x; for (q = 0; q < i; q++) { k += sbr->patchNoSubbands[q]; } p = sbr->patchStartSubband[i] + x; #ifdef SBR_LOW_POWER if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/) deg[k] = deg[p]; else deg[k] = 0; #endif g = sbr->table_map_k_to_g[k]; bw = sbr->bwArray[ch][g]; bw2 = MUL_C_C(bw, bw); /* do the patching */ /* with or without filtering */ if (bw2 > 0) { RE(a0) = MUL_R_C(RE(alpha_0[p]), bw); RE(a1) = MUL_R_C(RE(alpha_1[p]), bw2); #ifndef SBR_LOW_POWER IM(a0) = MUL_R_C(IM(alpha_0[p]), bw); IM(a1) = MUL_R_C(IM(alpha_1[p]), bw2); #endif for (l = sbr->t_E[ch][0]; l < sbr->t_E[ch][sbr->L_E[ch]]; l++) { QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_RE(Xlow[((l + tHFAdj)<<5) + p]); #ifndef SBR_LOW_POWER QMF_IM(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_IM(Xlow[((l + tHFAdj)<<5) + p]); #endif #ifdef SBR_LOW_POWER QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) += ( MUL(RE(a0), QMF_RE(Xlow[((l - 1 + tHFAdj)<<5) + p])) + MUL(RE(a1), QMF_RE(Xlow[((l - 2 + tHFAdj)<<5) + p]))); #else QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) += ( RE(a0) * QMF_RE(Xlow[((l - 1 + tHFAdj)<<5) + p]) - IM(a0) * QMF_IM(Xlow[((l - 1 + tHFAdj)<<5) + p]) + RE(a1) * QMF_RE(Xlow[((l - 2 + tHFAdj)<<5) + p]) - IM(a1) * QMF_IM(Xlow[((l - 2 + tHFAdj)<<5) + p])); QMF_IM(Xhigh[((l + tHFAdj)<<6) + k]) += ( IM(a0) * QMF_RE(Xlow[((l - 1 + tHFAdj)<<5) + p]) + RE(a0) * QMF_IM(Xlow[((l - 1 + tHFAdj)<<5) + p]) + IM(a1) * QMF_RE(Xlow[((l - 2 + tHFAdj)<<5) + p]) + RE(a1) * QMF_IM(Xlow[((l - 2 + tHFAdj)<<5) + p])); #endif } } else { for (l = sbr->t_E[ch][0]; l < sbr->t_E[ch][sbr->L_E[ch]]; l++) { QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_RE(Xlow[((l + tHFAdj)<<5) + p]); #ifndef SBR_LOW_POWER QMF_IM(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_IM(Xlow[((l + tHFAdj)<<5) + p]); #endif } } } } #if 0 if (sbr->frame == 179) { for (l = 0; l < 64; l++) { printf("%d %.3f\n", l, deg[l]); } } #endif if (sbr->Reset) { limiter_frequency_table(sbr); } } typedef struct { complex_t r01; complex_t r02; complex_t r11; complex_t r12; complex_t r22; real_t det; } acorr_coef; #define SBR_ABS(A) ((A) < 0) ? -(A) : (A) static void auto_correlation(acorr_coef *ac, qmf_t *buffer, uint8_t bd, uint8_t len) { int8_t j, jminus1, jminus2; const real_t rel = COEF_CONST(0.9999999999999); // 1 / (1 + 1e-6f); memset(ac, 0, sizeof(acorr_coef)); for (j = tHFAdj; j < len + tHFAdj; j++) { jminus1 = j - 1; jminus2 = jminus1 - 1; #ifdef SBR_LOW_POWER RE(ac->r01) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]); RE(ac->r02) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]); RE(ac->r11) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]); RE(ac->r12) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]); RE(ac->r22) += QMF_RE(buffer[jminus2*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]); #else RE(ac->r01) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]) + QMF_IM(buffer[j*32 + bd]) * QMF_IM(buffer[jminus1*32 + bd]); IM(ac->r01) += QMF_IM(buffer[j*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]) - QMF_RE(buffer[j*32 + bd]) * QMF_IM(buffer[jminus1*32 + bd]); RE(ac->r02) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) + QMF_IM(buffer[j*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]); IM(ac->r02) += QMF_IM(buffer[j*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) - QMF_RE(buffer[j*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]); RE(ac->r11) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]) + QMF_IM(buffer[jminus1*32 + bd]) * QMF_IM(buffer[jminus1*32 + bd]); RE(ac->r12) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) + QMF_IM(buffer[jminus1*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]); IM(ac->r12) += QMF_IM(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) - QMF_RE(buffer[jminus1*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]); RE(ac->r22) += QMF_RE(buffer[jminus2*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) + QMF_IM(buffer[jminus2*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]); #endif } #ifdef SBR_LOW_POWER ac->det = MUL(RE(ac->r11), RE(ac->r22)) - MUL_R_C(MUL(RE(ac->r12), RE(ac->r12)), rel); #else ac->det = RE(ac->r11) * RE(ac->r22) - rel * (RE(ac->r12) * RE(ac->r12) + IM(ac->r12) * IM(ac->r12)); #endif #if 0 if (ac->det != 0) printf("%f %f\n", ac->det, max); #endif } static void calc_prediction_coef(sbr_info *sbr, qmf_t *Xlow, complex_t *alpha_0, complex_t *alpha_1 #ifdef SBR_LOW_POWER , real_t *rxx #endif ) { uint8_t k; real_t tmp; acorr_coef ac; for (k = 1; k < sbr->kx; k++) { auto_correlation(&ac, Xlow, k, 38); #ifdef SBR_LOW_POWER if (ac.det == 0) { RE(alpha_1[k]) = 0; } else { tmp = MUL(RE(ac.r01), RE(ac.r12)) - MUL(RE(ac.r02), RE(ac.r11)); RE(alpha_1[k]) = SBR_DIV(tmp, ac.det); } if (RE(ac.r11) == 0) { RE(alpha_0[k]) = 0; } else { tmp = RE(ac.r01) + MUL(RE(alpha_1[k]), RE(ac.r12)); RE(alpha_0[k]) = -SBR_DIV(tmp, RE(ac.r11)); } if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) { RE(alpha_0[k]) = REAL_CONST(0); RE(alpha_1[k]) = REAL_CONST(0); } /* reflection coefficient */ if (RE(ac.r11) == REAL_CONST(0.0)) { rxx[k] = REAL_CONST(0.0); } else { rxx[k] = -SBR_DIV(RE(ac.r01), RE(ac.r11)); if (rxx[k] > REAL_CONST(1.0)) rxx[k] = REAL_CONST(1.0); if (rxx[k] < REAL_CONST(-1.0)) rxx[k] = REAL_CONST(-1.0); } #else if (ac.det == 0) { RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } else { tmp = 1.0 / ac.det; RE(alpha_1[k]) = (RE(ac.r01) * RE(ac.r12) - IM(ac.r01) * IM(ac.r12) - RE(ac.r02) * RE(ac.r11)) * tmp; IM(alpha_1[k]) = (IM(ac.r01) * RE(ac.r12) + RE(ac.r01) * IM(ac.r12) - IM(ac.r02) * RE(ac.r11)) * tmp; } if (RE(ac.r11) == 0) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; } else { tmp = 1.0f / RE(ac.r11); RE(alpha_0[k]) = -(RE(ac.r01) + RE(alpha_1[k]) * RE(ac.r12) + IM(alpha_1[k]) * IM(ac.r12)) * tmp; IM(alpha_0[k]) = -(IM(ac.r01) + IM(alpha_1[k]) * RE(ac.r12) - RE(alpha_1[k]) * IM(ac.r12)) * tmp; } if ((RE(alpha_0[k])*RE(alpha_0[k]) + IM(alpha_0[k])*IM(alpha_0[k]) >= 16) || (RE(alpha_1[k])*RE(alpha_1[k]) + IM(alpha_1[k])*IM(alpha_1[k]) >= 16)) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } #endif } } #ifdef SBR_LOW_POWER static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) { uint8_t k; rxx[0] = REAL_CONST(0.0); deg[1] = REAL_CONST(0.0); for (k = 2; k < sbr->k0; k++) { deg[k] = 0.0; if ((k % 2 == 0) && (rxx[k] < REAL_CONST(0.0))) { if (rxx[k-1] < 0.0) { deg[k] = REAL_CONST(1.0); if (rxx[k-2] > REAL_CONST(0.0)) { deg[k-1] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] > REAL_CONST(0.0)) { deg[k] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]); } } if ((k % 2 == 1) && (rxx[k] > REAL_CONST(0.0))) { if (rxx[k-1] > REAL_CONST(0.0)) { deg[k] = REAL_CONST(1.0); if (rxx[k-2] < REAL_CONST(0.0)) { deg[k-1] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] < REAL_CONST(0.0)) { deg[k] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]); } } } } #endif static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev) { switch (invf_mode) { case 1: /* LOW */ if (invf_mode_prev == 0) /* NONE */ return COEF_CONST(0.6); else return COEF_CONST(0.75); case 2: /* MID */ return COEF_CONST(0.9); case 3: /* HIGH */ return COEF_CONST(0.98); default: /* NONE */ if (invf_mode_prev == 1) /* LOW */ return COEF_CONST(0.6); else return COEF_CONST(0.0); } } static void calc_chirp_factors(sbr_info *sbr, uint8_t ch) { uint8_t i; for (i = 0; i < sbr->N_Q; i++) { sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]); if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i]) sbr->bwArray[ch][i] = MUL_C_C(COEF_CONST(0.75), sbr->bwArray[ch][i]) + MUL_C_C(COEF_CONST(0.25), sbr->bwArray_prev[ch][i]); else sbr->bwArray[ch][i] = MUL_C_C(COEF_CONST(0.90625), sbr->bwArray[ch][i]) + MUL_C_C(COEF_CONST(0.09375), sbr->bwArray_prev[ch][i]); if (sbr->bwArray[ch][i] < COEF_CONST(0.015625)) sbr->bwArray[ch][i] = COEF_CONST(0.0); if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375)) sbr->bwArray[ch][i] = COEF_CONST(0.99609375); sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i]; sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i]; } } static void patch_construction(sbr_info *sbr) { uint8_t i, k; uint8_t odd, sb; uint8_t msb = sbr->k0; uint8_t usb = sbr->kx; uint32_t goalSb = (uint32_t)(2.048e6/sbr->sample_rate + 0.5); sbr->noPatches = 0; if (goalSb < (sbr->kx + sbr->M)) { for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++) k = i+1; } else { k = sbr->N_master; } do { uint8_t j = k + 1; do { j--; sb = sbr->f_master[j]; odd = (sb - 2 + sbr->k0) % 2; } while (sb > (sbr->k0 - 1 + msb - odd)); sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0); sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd - sbr->patchNoSubbands[sbr->noPatches]; if (sbr->patchNoSubbands[sbr->noPatches] > 0) { usb = sb; msb = sb; sbr->noPatches++; } else { msb = sbr->kx; } if (sb == sbr->f_master[k]) k = sbr->N_master; } while (sb != (sbr->kx + sbr->M)); if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1)) { sbr->noPatches--; } sbr->noPatches = min(sbr->noPatches, 5); } #endif