ref: e4b87483df3b5a4cb2a42d69fbfea649908aa71b
dir: /libfaad/sbr_qmf.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id: sbr_qmf.c,v 1.5 2003/07/29 08:20:13 menno Exp $ **/ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include <stdlib.h> #include <string.h> #include "sbr_dct.h" #include "sbr_qmf.h" #include "sbr_syntax.h" qmfa_info *qmfa_init(uint8_t channels) { #if 0 int16_t n; #endif int size = 0; qmfa_info *qmfa = (qmfa_info*)malloc(sizeof(qmfa_info)); qmfa->x = (real_t*)malloc(channels * 10 * sizeof(real_t)); memset(qmfa->x, 0, channels * 10 * sizeof(real_t)); qmfa->channels = channels; if (channels == 32) { #if 0 for (n = 0; n < 32; n++) { qmfa->post_exp_re[n] = cos((M_PI/32.)*(0.75*n + 0.375)); qmfa->post_exp_im[n] = sin((M_PI/32.)*(0.75*n + 0.375)); } #endif } else if (channels == 64) { #if 0 for (n = 0; n < 2*channels; n++) { qmfa->pre_exp_re[n] = cos(M_PI*n/(2.*channels)); qmfa->pre_exp_im[n] = sin(M_PI*n/(2.*channels)); } for (n = 0; n < 64; n++) { qmfa->post_exp_re[n] = cos(M_PI*(2*n+1)/(2.*128.)); qmfa->post_exp_im[n] = sin(M_PI*(2*n+1)/(2.*128.)); } #endif } return qmfa; } void qmfa_end(qmfa_info *qmfa) { if (qmfa) { if (qmfa->x) free(qmfa->x); free(qmfa); } } void sbr_qmf_analysis_32(qmfa_info *qmfa, const real_t *input, qmf_t *X, uint8_t offset) { uint8_t l; real_t u[64]; #ifndef SBR_LOW_POWER real_t x[64], y[64]; #else real_t y[32]; #endif const real_t *inptr = input; /* qmf subsample l */ for (l = 0; l < 32; l++) { int16_t n; /* shift input buffer x */ memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t)); /* add new samples to input buffer x */ for (n = 32 - 1; n >= 0; n--) { #ifdef FIXED_POINT qmfa->x[n] = (*inptr++) >> 5; #else qmfa->x[n] = *inptr++; #endif } /* window and summation to create array u */ for (n = 0; n < 64; n++) { u[n] = MUL_R_C(qmfa->x[n], qmf_c_2[n]) + MUL_R_C(qmfa->x[n + 64], qmf_c_2[n + 64]) + MUL_R_C(qmfa->x[n + 128], qmf_c_2[n + 128]) + MUL_R_C(qmfa->x[n + 192], qmf_c_2[n + 192]) + MUL_R_C(qmfa->x[n + 256], qmf_c_2[n + 256]); } /* calculate 32 subband samples by introducing X */ #ifdef SBR_LOW_POWER y[0] = u[48]; for (n = 1; n < 16; n++) y[n] = u[n+48] + u[48-n]; for (n = 16; n < 32; n++) y[n] = -u[n-16] + u[48-n]; DCT3_32_unscaled(u, y); for (n = 0; n < 32; n++) { #ifdef FIXED_POINT QMF_RE(X[((l + offset)<<5) + n]) = u[n] << 1; #else QMF_RE(X[((l + offset)<<5) + n]) = 2. * u[n]; #endif #if 0 if (fabs(QMF_RE(X[((l + offset)<<5) + n])) > pow(2,20)) { printf("%f\n", QMF_RE(X[((l + offset)<<5) + n])); } #endif } #else x[0] = u[0]; x[63] = u[32]; for (n = 2; n < 64; n += 2) { x[n-1] = u[(n>>1)]; x[n] = -u[64-(n>>1)]; } DCT4_64(y, x); for (n = 0; n < 32; n++) { #ifdef FIXED_POINT QMF_RE(X[((l + offset)<<5) + n]) = y[n] << 1; QMF_IM(X[((l + offset)<<5) + n]) = -y[63-n] << 1; #else QMF_RE(X[((l + offset)<<5) + n]) = 2. * y[n]; QMF_IM(X[((l + offset)<<5) + n]) = -2. * y[63-n]; #endif #if 0 if (fabs(QMF_RE(X[((l + offset)<<5) + n])) > pow(2,20)) { printf("%f\n", QMF_RE(X[((l + offset)<<5) + n])); } if (fabs(QMF_IM(X[((l + offset)<<5) + n])) > pow(2,20)) { printf("%f\n", QMF_IM(X[((l + offset)<<5) + n])); } #endif } #endif } } qmfs_info *qmfs_init(uint8_t channels) { int size = 0; qmfs_info *qmfs = (qmfs_info*)malloc(sizeof(qmfs_info)); qmfs->v = (real_t*)malloc(channels * 20 * sizeof(real_t)); memset(qmfs->v, 0, channels * 20 * sizeof(real_t)); qmfs->channels = channels; return qmfs; } void qmfs_end(qmfs_info *qmfs) { if (qmfs) { if (qmfs->v) free(qmfs->v); free(qmfs); } } #if 0 void sbr_qmf_synthesis_32(qmfs_info *qmfs, const complex_t *X, real_t *output) { uint8_t l; int16_t n, k; real_t w[320]; complex_t x[128]; real_t *outptr = output; /* qmf subsample l */ for (l = 0; l < 32; l++) { /* shift buffer */ for (n = 640 - 1; n >= 64; n--) { qmfs->v[n] = qmfs->v[n - 64]; } /* calculate 64 samples */ memset(x, 0, 2*64*sizeof(real_t)); for (k = 0; k < 32; k++) { real_t er, ei, Xr, Xi; er = qmfs->pre_exp_re[k]; ei = qmfs->pre_exp_im[k]; Xr = RE(X[l * 32 + k]); Xi = IM(X[l * 32 + k]); RE(x[k]) = Xr * er - Xi * ei; IM(x[k]) = Xi * er + Xr * ei; } cfftb(qmfs->cffts, x); for (n = 0; n < 64; n++) { real_t er, ei; er = qmfs->post_exp_re[n]; ei = qmfs->post_exp_im[n]; qmfs->v[n] = RE(x[n]) * er - IM(x[n]) * ei; } for (n = 0; n < 5; n++) { for (k = 0; k < 32; k++) { w[64 * n + k] = qmfs->v[128 * n + k]; w[64 * n + 32 + k] = qmfs->v[128 * n + 96 + k]; } } /* window */ for (n = 0; n < 320; n++) { w[n] *= qmf_c_2[n]; } /* calculate 32 output samples */ for (k = 0; k < 32; k++) { real_t sample = 0.0; for (n = 0; n < 10; n++) { sample += w[32 * n + k]; } *outptr++ = sample; } } } #endif void sbr_qmf_synthesis_64(qmfs_info *qmfs, const qmf_t *X, real_t *output) { uint8_t l; int16_t n, k; #ifdef SBR_LOW_POWER real_t x[64]; #else real_t x1[64], x2[64]; #endif real_t *outptr = output; /* qmf subsample l */ for (l = 0; l < 32; l++) { /* shift buffer */ memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t)); /* calculate 128 samples */ #ifdef SBR_LOW_POWER for (k = 0; k < 64; k++) { #ifdef FIXED_POINT x[k] = QMF_RE(X[(l<<6) + k]); #else x[k] = QMF_RE(X[(l<<6) + k]) / 32.; #endif } DCT2_64_unscaled(x, x); for (n = 0; n < 64; n++) { qmfs->v[n+32] = x[n]; } qmfs->v[0] = qmfs->v[64]; for (n = 1; n < 32; n++) { qmfs->v[32 - n] = qmfs->v[n + 32]; qmfs->v[n + 96] = -qmfs->v[96 - n]; } #else for (k = 0; k < 64; k++) { x1[k] = QMF_RE(X[(l<<6) + k])/64.; x2[k] = QMF_IM(X[(l<<6) + k])/64.; } DCT4_64(x1, x1); DST4_64(x2, x2); for (n = 0; n < 64; n++) { qmfs->v[n] = x2[n] - x1[n]; qmfs->v[127-n] = x2[n] + x1[n]; } #endif /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { *outptr++ = MUL_R_C(qmfs->v[k], qmf_c[k]) + MUL_R_C(qmfs->v[192 + k], qmf_c[64 + k]) + MUL_R_C(qmfs->v[256 + k], qmf_c[128 + k]) + MUL_R_C(qmfs->v[256 + 192 + k], qmf_c[128 + 64 + k]) + MUL_R_C(qmfs->v[512 + k], qmf_c[256 + k]) + MUL_R_C(qmfs->v[512 + 192 + k], qmf_c[256 + 64 + k]) + MUL_R_C(qmfs->v[768 + k], qmf_c[384 + k]) + MUL_R_C(qmfs->v[768 + 192 + k], qmf_c[384 + 64 + k]) + MUL_R_C(qmfs->v[1024 + k], qmf_c[512 + k]) + MUL_R_C(qmfs->v[1024 + 192 + k], qmf_c[512 + 64 + k]); } } } #endif