ref: 220bcea9c6eadd6378afaba28a3f3db6bad75c21
dir: /libfaac/aacquant.c/
/* * FAAC - Freeware Advanced Audio Coder * Copyright (C) 2001 Menno Bakker * Copyright (C) 2002 Krzysztof Nikiel * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: aacquant.c,v 1.13 2002/11/23 17:31:52 knik Exp $ */ #include <math.h> #include <stdlib.h> #include "aacquant.h" #include "coder.h" #include "huffman.h" #include "psych.h" #include "util.h" #define XRPOW_FTOI(src,dest) ((dest) = (int)(src)) #define QUANTFAC(rx) adj43[rx] #define ROUNDFAC 0.4054 static int FixNoise(CoderInfo *coderInfo, const double *xr, double *xr_pow, int *xi, double *xmin); static int SortForGrouping(CoderInfo* coderInfo, PsyInfo *psyInfo, ChannelInfo *channelInfo, int *sfb_width_table, double *xr); static int SearchStepSize(CoderInfo *coderInfo, const int desired_rate, const double *xr, int *xi); static void CalcAllowedDist(PsyInfo *psyInfo, int *cb_offset, int num_cb, double *xr, double *xmin, int bits); static int CountBits(CoderInfo *coderInfo, int *ix, const double *xr); static int CountBitsLong(CoderInfo *coderInfo, int *xi); double *pow43; double *adj43; double *adj43asm; void AACQuantizeInit(CoderInfo *coderInfo, unsigned int numChannels) { unsigned int channel, i; pow43 = (double*)AllocMemory(PRECALC_SIZE*sizeof(double)); adj43 = (double*)AllocMemory(PRECALC_SIZE*sizeof(double)); adj43asm = (double*)AllocMemory(PRECALC_SIZE*sizeof(double)); pow43[0] = 0.0; for(i=1;i<PRECALC_SIZE;i++) pow43[i] = pow((double)i, 4.0/3.0); adj43asm[0] = 0.0; for (i = 1; i < PRECALC_SIZE; i++) adj43asm[i] = i - 0.5 - pow(0.5 * (pow43[i - 1] + pow43[i]),0.75); for (i = 0; i < PRECALC_SIZE-1; i++) adj43[i] = (i + 1) - pow(0.5 * (pow43[i] + pow43[i + 1]), 0.75); adj43[i] = 0.5; for (channel = 0; channel < numChannels; channel++) { coderInfo[channel].old_value = 0; coderInfo[channel].CurrentStep = 4; coderInfo[channel].requantFreq = (double*)AllocMemory(BLOCK_LEN_LONG*sizeof(double)); } } void AACQuantizeEnd(CoderInfo *coderInfo, unsigned int numChannels) { unsigned int channel; if (pow43) FreeMemory(pow43); if (adj43) FreeMemory(adj43); if (adj43asm) FreeMemory(adj43asm); for (channel = 0; channel < numChannels; channel++) { if (coderInfo[channel].requantFreq) FreeMemory(coderInfo[channel].requantFreq); } } static void BalanceEnergy(CoderInfo *coderInfo, const double *xr, const int *xi) { const double ifqstep = pow(2.0, 0.25); const double logstep_1 = 1.0 / log(ifqstep); const int sfcmax = 40; const int sfcmin = -10; int sb; int nsfb = coderInfo->nr_of_sfb; int start, end; int l; double en0, enq; int shift; for (sb = 0; sb < nsfb; sb++) { double qfac_1 = pow(2.0, -0.25*(coderInfo->scale_factor[sb] - coderInfo->global_gain)); start = coderInfo->sfb_offset[sb]; end = coderInfo->sfb_offset[sb+1]; en0 = 0.0; enq = 0.0; for (l = start; l < end; l++) { double xq = pow43[xi[l]]; en0 += xr[l] * xr[l]; enq += xq * xq; } if (enq == 0.0) continue; enq *= qfac_1 * qfac_1; shift = log(sqrt(enq / en0)) * logstep_1 + 1000.5; shift -= 1000; shift += coderInfo->scale_factor[sb]; if (shift < sfcmin) shift = sfcmin; if (shift > sfcmax) shift = sfcmax; coderInfo->scale_factor[sb] = shift; } } static void UpdateRequant(CoderInfo *coderInfo, int *xi) { double *requant_xr = coderInfo->requantFreq; int sb; int i; for (sb = 0; sb < coderInfo->nr_of_sfb; sb++) { double invQuantFac = pow(2.0, -0.25*(coderInfo->scale_factor[sb] - coderInfo->global_gain)); int start = coderInfo->sfb_offset[sb]; int end = coderInfo->sfb_offset[sb + 1]; for (i = start; i < end; i++) requant_xr[i] = pow43[xi[i]] * invQuantFac; } } int AACQuantize(CoderInfo *coderInfo, PsyInfo *psyInfo, ChannelInfo *channelInfo, int *cb_width, int num_cb, double *xr, int desired_rate) { int sb, i, do_q = 0; int bits, sign; double xr_pow[FRAME_LEN]; double xmin[MAX_SCFAC_BANDS]; int xi[FRAME_LEN]; /* Use local copy's */ int *scale_factor = coderInfo->scale_factor; if (coderInfo->block_type == ONLY_SHORT_WINDOW) { SortForGrouping(coderInfo, psyInfo, channelInfo, cb_width, xr); } else { for (sb = 0; sb < coderInfo->nr_of_sfb; sb++) { if (channelInfo->msInfo.is_present && channelInfo->msInfo.ms_used[sb]) { psyInfo->maskThr[sb] = psyInfo->maskThrMS[sb]; psyInfo->maskEn[sb] = psyInfo->maskEnMS[sb]; } } } /* Set all scalefactors to 0 */ coderInfo->global_gain = 0; for (sb = 0; sb < coderInfo->nr_of_sfb; sb++) scale_factor[sb] = 0; /* Compute xr_pow */ for (i = 0; i < FRAME_LEN; i++) { double temp = fabs(xr[i]); xr_pow[i] = sqrt(temp * sqrt(temp)); do_q += (temp > 1E-20); } if (do_q) { CalcAllowedDist(psyInfo, coderInfo->sfb_offset, coderInfo->nr_of_sfb, xr, xmin, desired_rate); bits = SearchStepSize(coderInfo, 0.8 * desired_rate, xr_pow, xi); FixNoise(coderInfo, xr, xr_pow, xi, xmin); BalanceEnergy(coderInfo, xr, xi); UpdateRequant(coderInfo, xi); #if 0 printf("global gain: %d\n", coderInfo->global_gain); for (i = 0; i < coderInfo->nr_of_sfb; i++) printf("sf %d: %d\n", i, coderInfo->scale_factor[i]); #endif for ( i = 0; i < FRAME_LEN; i++ ) { sign = (xr[i] < 0) ? -1 : 1; xi[i] *= sign; coderInfo->requantFreq[i] *= sign; } } else { coderInfo->global_gain = 0; SetMemory(xi, 0, FRAME_LEN*sizeof(int)); } CountBitsLong(coderInfo, xi); /* offset the difference of common_scalefac and scalefactors by SF_OFFSET */ for (i = 0; i < coderInfo->nr_of_sfb; i++) { if ((coderInfo->book_vector[i]!=INTENSITY_HCB)&&(coderInfo->book_vector[i]!=INTENSITY_HCB2)) { scale_factor[i] = coderInfo->global_gain - scale_factor[i] + SF_OFFSET; } } coderInfo->global_gain = scale_factor[0]; /* place the codewords and their respective lengths in arrays data[] and len[] respectively */ /* there are 'counter' elements in each array, and these are variable length arrays depending on the input */ coderInfo->spectral_count = 0; for(i = 0; i < coderInfo->nr_of_sfb; i++) { OutputBits( coderInfo, coderInfo->book_vector[i], xi, coderInfo->sfb_offset[i], coderInfo->sfb_offset[i+1]-coderInfo->sfb_offset[i]); } return bits; } static int SearchStepSize(CoderInfo *coderInfo, const int desired_rate, const double *xr, int *xi) { int flag_GoneOver = 0; int CurrentStep = coderInfo->CurrentStep & 0xf; int lastshort = coderInfo->CurrentStep & 0x10; int thisshort = (coderInfo->block_type == ONLY_SHORT_WINDOW) ? 0x10 : 0; int nBits; int StepSize = coderInfo->old_value; int Direction = 0; int blockshift = 0; if (thisshort > lastshort) blockshift = -7; if (thisshort < lastshort) blockshift = +7; if (blockshift && (StepSize + blockshift) >= 0) StepSize += blockshift; do { coderInfo->global_gain = StepSize; nBits = CountBits(coderInfo, xi, xr); if (CurrentStep == 1 ) { break; /* nothing to adjust anymore */ } if (flag_GoneOver) { CurrentStep /= 2; } if (nBits > desired_rate) { /* increase Quantize_StepSize */ if (Direction == -1 && !flag_GoneOver) { flag_GoneOver = 1; CurrentStep /= 2; /* late adjust */ } Direction = 1; StepSize += CurrentStep; } else if (nBits < desired_rate) { if (Direction == 1 && !flag_GoneOver) { flag_GoneOver = 1; CurrentStep /= 2; /* late adjust */ } Direction = -1; StepSize -= CurrentStep; } else break; } while (1); while (nBits > desired_rate) { StepSize++; coderInfo->global_gain = StepSize; nBits = CountBits(coderInfo, xi, xr); } CurrentStep = coderInfo->old_value - StepSize; CurrentStep += blockshift; coderInfo->CurrentStep = CurrentStep/4 != 0 ? 4 : 2; coderInfo->old_value = coderInfo->global_gain; coderInfo->CurrentStep |= thisshort; return nBits; } #if 1 /* TAKEHIRO_IEEE754_HACK */ #pragma warning( disable : 4244 4307 ) typedef union { float f; int i; } fi_union; #define MAGIC_FLOAT (65536*(128)) #define MAGIC_INT 0x4b000000 static void Quantize(const double *xp, int *pi, double istep) { int j; fi_union *fi; fi = (fi_union *)pi; for (j = FRAME_LEN/4 - 1; j >= 0; --j) { double x0 = istep * xp[0]; double x1 = istep * xp[1]; double x2 = istep * xp[2]; double x3 = istep * xp[3]; x0 += MAGIC_FLOAT; fi[0].f = x0; x1 += MAGIC_FLOAT; fi[1].f = x1; x2 += MAGIC_FLOAT; fi[2].f = x2; x3 += MAGIC_FLOAT; fi[3].f = x3; fi[0].f = x0 + (adj43asm - MAGIC_INT)[fi[0].i]; fi[1].f = x1 + (adj43asm - MAGIC_INT)[fi[1].i]; fi[2].f = x2 + (adj43asm - MAGIC_INT)[fi[2].i]; fi[3].f = x3 + (adj43asm - MAGIC_INT)[fi[3].i]; fi[0].i -= MAGIC_INT; fi[1].i -= MAGIC_INT; fi[2].i -= MAGIC_INT; fi[3].i -= MAGIC_INT; fi += 4; xp += 4; } } static double QuantizeBand(const double *xp, int *pi, double istep, int offset, int end) { int j; double energy = 0.0; double xtmp; fi_union *fi; fi = (fi_union *)pi; for (j = offset; j < end; j++) { double x0 = istep * xp[j]; x0 += MAGIC_FLOAT; fi[j].f = x0; fi[j].f = x0 + (adj43asm - MAGIC_INT)[fi[j].i]; fi[j].i -= MAGIC_INT; xtmp = pow43[pi[j]]; energy += xtmp * xtmp; } return energy; } #else static void Quantize(const double *xr, int *ix, double istep) { int j; for (j = FRAME_LEN/8; j > 0; --j) { double x1, x2, x3, x4, x5, x6, x7, x8; int rx1, rx2, rx3, rx4, rx5, rx6, rx7, rx8; x1 = *xr++ * istep; x2 = *xr++ * istep; XRPOW_FTOI(x1, rx1); x3 = *xr++ * istep; XRPOW_FTOI(x2, rx2); x4 = *xr++ * istep; XRPOW_FTOI(x3, rx3); x5 = *xr++ * istep; XRPOW_FTOI(x4, rx4); x6 = *xr++ * istep; XRPOW_FTOI(x5, rx5); x7 = *xr++ * istep; XRPOW_FTOI(x6, rx6); x8 = *xr++ * istep; XRPOW_FTOI(x7, rx7); x1 += QUANTFAC(rx1); XRPOW_FTOI(x8, rx8); x2 += QUANTFAC(rx2); XRPOW_FTOI(x1,*ix++); x3 += QUANTFAC(rx3); XRPOW_FTOI(x2,*ix++); x4 += QUANTFAC(rx4); XRPOW_FTOI(x3,*ix++); x5 += QUANTFAC(rx5); XRPOW_FTOI(x4,*ix++); x6 += QUANTFAC(rx6); XRPOW_FTOI(x5,*ix++); x7 += QUANTFAC(rx7); XRPOW_FTOI(x6,*ix++); x8 += QUANTFAC(rx8); XRPOW_FTOI(x7,*ix++); XRPOW_FTOI(x8,*ix++); } } #endif static int CountBitsLong(CoderInfo *coderInfo, int *xi) { int i, bits = 0; /* find a good method to section the scalefactor bands into huffman codebook sections */ BitSearch(coderInfo, xi); /* calculate the amount of bits needed for encoding the huffman codebook numbers */ bits += SortBookNumbers(coderInfo, NULL, 0); /* calculate the amount of bits needed for the spectral values */ coderInfo->spectral_count = 0; for(i = 0; i < coderInfo->nr_of_sfb; i++) { bits += CalcBits(coderInfo, coderInfo->book_vector[i], xi, coderInfo->sfb_offset[i], coderInfo->sfb_offset[i+1] - coderInfo->sfb_offset[i]); } /* the number of bits for the scalefactors */ bits += WriteScalefactors(coderInfo, NULL, 0); /* the total amount of bits required */ return bits; } static int CountBits(CoderInfo *coderInfo, int *ix, const double *xr) { int bits = 0, i; /* since quantize uses table lookup, we need to check this first: */ double w = (IXMAX_VAL) / IPOW20(coderInfo->global_gain); for ( i = 0; i < FRAME_LEN; i++ ) { if (xr[i] > w) return LARGE_BITS; } Quantize(xr, ix, IPOW20(coderInfo->global_gain)); bits = CountBitsLong(coderInfo, ix); return bits; } static void CalcAllowedDist(PsyInfo *psyInfo, int *cb_offset, int num_cb, double *xr, double *xmin, int bits) { int sfb, start, end; double xmin0; double amp = pow(2.0, 3.5 / 1420.0 * (double)bits) * 0.08; for (sfb = 0; sfb < num_cb; sfb++) { start = cb_offset[sfb]; end = cb_offset[sfb + 1]; xmin0 = psyInfo->maskThr[sfb]; if (xmin0 > 0.0) xmin0 = psyInfo->maskEn[sfb] / xmin0; xmin[sfb] = xmin0 * amp; } } static double AmpBand(CoderInfo *coderInfo, double *xr_pow, int *xi, int sfb, double origen, double enmin) { double ifqstep; const double logstep_1 = 1.0 / log(pow(2.0, 0.25)); double amp0 = sqrt(origen / enmin); double quanten; int i; int sfac, sfacadd; int start = coderInfo->sfb_offset[sfb]; int end = coderInfo->sfb_offset[sfb + 1]; const int sfacmax = 30; if (amp0 < 1e-3) // 1e-3 = -60dB return 0; amp0 = 1.0 / amp0; sfacadd = log(amp0) * logstep_1 + 0.5; sfac = coderInfo->scale_factor[sfb] + sfacadd; if (sfac > sfacmax) { sfac = sfacmax; sfacadd = sfac - coderInfo->scale_factor[sfb]; } if (sfacadd < 1) return 0; ifqstep = pow(2.0, sfacadd * 0.1875); l0: for (i = start; i < end; i++) xr_pow[i] *= ifqstep; ifqstep = pow(2.0, 0.1875); if ((quanten = QuantizeBand(xr_pow, xi, IPOW20(coderInfo->global_gain), start, end)) < enmin) { if (sfac < sfacmax) { sfac++; goto l0; } } sfacadd = sfac - coderInfo->scale_factor[sfb]; coderInfo->scale_factor[sfb] = sfac; return quanten; } static int FixNoise(CoderInfo *coderInfo, const double *xr, double *xr_pow, int *xi, double *xmin) { int i, sb; int start, end; double quanten, origen; double quantfac; double noise = 0.0; double tmp; int notdone = 0; for (sb = 0; sb < coderInfo->nr_of_sfb; sb++) { if (!xmin[sb]) continue; start = coderInfo->sfb_offset[sb]; end = coderInfo->sfb_offset[sb+1]; quantfac = pow(2.0, 0.25*(coderInfo->scale_factor[sb] - coderInfo->global_gain)); quanten = 0.0; origen = 0.0; for (i = start; i < end; i++) { tmp = pow43[xi[i]]; quanten += tmp * tmp; tmp = xr[i] * quantfac; origen += tmp * tmp; } if (quanten < xmin[sb]) // band energy to low noise += AmpBand(coderInfo, xr_pow, xi, sb, origen, xmin[sb]) - origen; else notdone++; //printf("%d: %g - %g(%d)\n", sb, quanten, xmin[sb], coderInfo->scale_factor[sb]); } return notdone; } static int SortForGrouping(CoderInfo* coderInfo, PsyInfo *psyInfo, ChannelInfo *channelInfo, int *sfb_width_table, double *xr) { int i,j,ii; int index = 0; double xr_tmp[1024]; double thr_tmp[150]; double en_tmp[150]; int book=1; int group_offset=0; int k=0; int windowOffset = 0; /* set up local variables for used quantInfo elements */ int* sfb_offset = coderInfo->sfb_offset; int* nr_of_sfb = &(coderInfo->nr_of_sfb); int* window_group_length; int num_window_groups; *nr_of_sfb = coderInfo->max_sfb; /* Init to max_sfb */ window_group_length = coderInfo->window_group_length; num_window_groups = coderInfo->num_window_groups; /* calc org sfb_offset just for shortblock */ sfb_offset[k]=0; for (k=1 ; k <*nr_of_sfb+1; k++) { sfb_offset[k] = sfb_offset[k-1] + sfb_width_table[k-1]; } /* sort the input spectral coefficients */ index = 0; group_offset=0; for (i=0; i< num_window_groups; i++) { for (k=0; k<*nr_of_sfb; k++) { for (j=0; j < window_group_length[i]; j++) { for (ii=0;ii< sfb_width_table[k];ii++) xr_tmp[index++] = xr[ii+ sfb_offset[k] + 128*j +group_offset]; } } group_offset += 128*window_group_length[i]; } for (k=0; k<1024; k++){ xr[k] = xr_tmp[k]; } /* now calc the new sfb_offset table for the whole p_spectrum vector*/ index = 0; sfb_offset[index++] = 0; windowOffset = 0; for (i=0; i < num_window_groups; i++) { for (k=0 ; k <*nr_of_sfb; k++) { int w; double worstTHR; double worstEN; /* for this window group and this band, find worst case inverse sig-mask-ratio */ if (channelInfo->msInfo.is_present && channelInfo->msInfo.ms_usedS[windowOffset][k]) { worstTHR = psyInfo->maskThrSMS[windowOffset][k]; worstEN = psyInfo->maskEnSMS[windowOffset][k]; } else { worstTHR = psyInfo->maskThrS[windowOffset][k]; worstEN = psyInfo->maskEnS[windowOffset][k]; } for (w=1;w<window_group_length[i];w++) { if (channelInfo->msInfo.is_present && channelInfo->msInfo.ms_usedS[w+windowOffset][k]) { if (psyInfo->maskThrSMS[w+windowOffset][k] < worstTHR) { worstTHR = psyInfo->maskThrSMS[w+windowOffset][k]; worstEN = psyInfo->maskEnSMS[w+windowOffset][k]; } } else { if (psyInfo->maskThrS[w+windowOffset][k] < worstTHR) { worstTHR = psyInfo->maskThrS[w+windowOffset][k]; worstEN = psyInfo->maskEnS[w+windowOffset][k]; } } } thr_tmp[k+ i* *nr_of_sfb] = worstTHR; en_tmp[k+ i* *nr_of_sfb] = worstEN; sfb_offset[index] = sfb_offset[index-1] + sfb_width_table[k]*window_group_length[i] ; index++; } windowOffset += window_group_length[i]; } *nr_of_sfb = *nr_of_sfb * num_window_groups; /* Number interleaved bands. */ for (k = 0; k < *nr_of_sfb; k++){ psyInfo->maskThr[k] = thr_tmp[k]; psyInfo->maskEn[k] = en_tmp[k]; } return 0; }