ref: 5df05050ee2d287b4dc9adb71dd4639f4c652013
dir: /enc_tf.c/
#include <math.h> #include <stdlib.h> #include <memory.h> #include "aacenc.h" #include "bitstream.h" #include "interface.h" #include "enc.h" #include "block.h" #include "tf_main.h" #include "psych.h" #include "mc_enc.h" #include "ms.h" #include "is.h" #include "aac_qc.h" #include "all.h" #include "aac_se_enc.h" #include "nok_ltp_enc.h" #include "winswitch.h" #define SQRT2 sqrt(2) /* AAC tables */ /* First attempt at supporting multiple sampling rates * * and bitrates correctly. */ /* Tables for maximum nomber of scalefactor bands */ /* Needs more fine-tuning. Only the values for 44.1kHz have been changed on lower bitrates. */ int max_sfb_s[] = { 12, 12, 12, 13, 14, 13, 15, 15, 15, 15, 15, 15 }; int max_sfb_l[] = { 49, 49, 47, 48, 49, 51, 47, 47, 43, 43, 43, 40 }; int block_size_samples = 1024; /* nr of samples per block in one! audio channel */ int short_win_in_long = 8; int max_ch; /* no of of audio channels */ double *spectral_line_vector[MAX_TIME_CHANNELS]; double *reconstructed_spectrum[MAX_TIME_CHANNELS]; double *overlap_buffer[MAX_TIME_CHANNELS]; double *DTimeSigBuf[MAX_TIME_CHANNELS]; double *DTimeSigLookAheadBuf[MAX_TIME_CHANNELS+2]; double *nok_tmp_DTimeSigBuf[MAX_TIME_CHANNELS]; /* temporary fix to the buffer size problem. */ /* variables used by the T/F mapping */ enum QC_MOD_SELECT qc_select = AAC_QC; /* later f(encPara) */ enum AAC_PROFILE profile = MAIN; enum WINDOW_TYPE block_type[MAX_TIME_CHANNELS]; enum WINDOW_TYPE desired_block_type[MAX_TIME_CHANNELS]; enum WINDOW_TYPE next_desired_block_type[MAX_TIME_CHANNELS+2]; /* Additional variables for AAC */ int aacAllowScalefacs = 1; /* Allow AAC scalefactors to be nonconstant */ TNS_INFO tnsInfo[MAX_TIME_CHANNELS]; NOK_LT_PRED_STATUS nok_lt_status[MAX_TIME_CHANNELS]; AACQuantInfo quantInfo[MAX_TIME_CHANNELS]; /* Info structure for AAC quantization and coding */ /* Channel information */ Ch_Info channelInfo[MAX_TIME_CHANNELS]; /* AAC shorter windows 960-480-120 */ int useShortWindows=0; /* don't use shorter windows */ // TEMPORARY HACK int srate_idx; int sampling_rate; int bit_rate; // END OF HACK /* EncTfFree() */ /* Free memory allocated by t/f-based encoder core. */ void EncTfFree (void) { int chanNum; for (chanNum=0;chanNum<MAX_TIME_CHANNELS;chanNum++) { if (DTimeSigBuf[chanNum]) free(DTimeSigBuf[chanNum]); if (spectral_line_vector[chanNum]) free(spectral_line_vector[chanNum]); if (reconstructed_spectrum[chanNum]) free(reconstructed_spectrum[chanNum]); if (overlap_buffer[chanNum]) free(overlap_buffer[chanNum]); if (nok_lt_status[chanNum].delay) free(nok_lt_status[chanNum].delay); if (nok_tmp_DTimeSigBuf[chanNum]) free(nok_tmp_DTimeSigBuf[chanNum]); } for (chanNum=0;chanNum<MAX_TIME_CHANNELS+2;chanNum++) { if (DTimeSigLookAheadBuf[chanNum]) free(DTimeSigLookAheadBuf[chanNum]); } } /***************************************************************************************** *** *** Function: EncTfInit *** *** Purpose: Initialize the T/F-part and the macro blocks of the T/F part of the VM *** *** Description: *** *** *** Parameters: *** *** *** Return Value: *** *** **** MPEG-4 VM **** *** ****************************************************************************************/ void EncTfInit (faacAACConfig *ac, int VBR_setting) { int chanNum, i; int SampleRates[] = { 96000,88200,64000,48000,44100,32000,24000,22050,16000,12000,11025,8000,0 }; // int BitRates[] = { // 64000,80000,96000,112000,128000,160000,192000,224000,256000,0 // }; sampling_rate = ac->out_sampling_rate; bit_rate = ac->bit_rate; for (i = 0; ; i++) { if (SampleRates[i] == sampling_rate) { srate_idx = i; break; } } profile = MAIN; qc_select = AAC_PRED; /* enable prediction */ if (ac->profile == LOW) { profile = LOW; qc_select = AAC_QC; /* disable prediction */ } if (ac->use_PNS) pns_sfb_start = 0; else pns_sfb_start = 60; /* set the return values */ max_ch = ac->channels; /* some global initializations */ for (chanNum=0;chanNum<MAX_TIME_CHANNELS;chanNum++) { DTimeSigBuf[chanNum] = (double*)malloc(block_size_samples*sizeof(double)); spectral_line_vector[chanNum] = (double*)malloc(2*block_size_samples*sizeof(double)); reconstructed_spectrum[chanNum] = (double*)malloc(block_size_samples*sizeof(double)); memset(reconstructed_spectrum[chanNum], 0, block_size_samples*sizeof(double)); overlap_buffer[chanNum] = (double*)malloc(sizeof(double)*block_size_samples); memset(overlap_buffer[chanNum],0,(block_size_samples)*sizeof(double)); block_type[chanNum] = ONLY_LONG_WINDOW; nok_lt_status[chanNum].delay = (int*)malloc(MAX_SHORT_WINDOWS*sizeof(int)); nok_tmp_DTimeSigBuf[chanNum] = (double*)malloc(2*block_size_samples*sizeof(double)); memset(nok_tmp_DTimeSigBuf[chanNum],0,(2*block_size_samples)*sizeof(double)); } for (chanNum=0;chanNum<MAX_TIME_CHANNELS+2;chanNum++) { DTimeSigLookAheadBuf[chanNum] = (double*)malloc((block_size_samples)*sizeof(double)); memset(DTimeSigLookAheadBuf[chanNum],0,(block_size_samples)*sizeof(double)); } /* initialize psychoacoustic module */ EncTf_psycho_acoustic_init(); winSwitchInit(max_ch); /* initialize spectrum processing */ /* initialize quantization and coding */ tf_init_encode_spectrum_aac(0); /* Init TNS */ for (chanNum=0;chanNum<MAX_TIME_CHANNELS;chanNum++) { TnsInit(sampling_rate,profile,&tnsInfo[chanNum]); quantInfo[chanNum].tnsInfo = &tnsInfo[chanNum]; /* Set pointer to TNS data */ } /* Init LTP predictor */ for (chanNum=0;chanNum<MAX_TIME_CHANNELS;chanNum++) { nok_init_lt_pred (&nok_lt_status[chanNum]); quantInfo[chanNum].ltpInfo = &nok_lt_status[chanNum]; /* Set pointer to LTP data */ } make_MDCT_windows(); } /***************************************************************************************** *** *** Function: EncTfFrame *** *** Purpose: processes a block of time signal input samples into a bitstream *** based on T/F encoding *** *** Description: *** *** *** Parameters: *** *** *** Return Value: returns the number of used bits *** *** **** MPEG-4 VM **** *** ****************************************************************************************/ int EncTfFrame (faacAACStream *as, BsBitStream *fixed_stream) { int used_bits; int error; /* Energy array (computed before prediction for long windows) */ double energy[MAX_TIME_CHANNELS][MAX_SCFAC_BANDS]; /* determine the function parameters used earlier: HP 21-aug-96 */ int average_bits = as->frame_bits; int available_bitreservoir_bits = as->available_bits-as->frame_bits; /* actual amount of bits currently in the bit reservoir */ /* it is the job of this module to determine the no of bits to use in addition to average_block_bits max. available: average_block_bits + available_bitreservoir_bits */ int max_bitreservoir_bits = 8184; /* max. allowed amount of bits in the reservoir (used to avoid padding bits) */ long num_bits_available; double *p_ratio[MAX_TIME_CHANNELS], allowed_distortion[MAX_TIME_CHANNELS][MAX_SCFAC_BANDS]; double p_ratio_long[MAX_TIME_CHANNELS][MAX_SCFAC_BANDS]; double p_ratio_short[MAX_TIME_CHANNELS][MAX_SCFAC_BANDS]; int nr_of_sfb[MAX_TIME_CHANNELS], sfb_width_table[MAX_TIME_CHANNELS][MAX_SCFAC_BANDS]; int sfb_offset_table[MAX_TIME_CHANNELS][MAX_SCFAC_BANDS+1]; // int no_sub_win, sub_win_size; /* structures holding the output of the psychoacoustic model */ CH_PSYCH_OUTPUT_LONG chpo_long[MAX_TIME_CHANNELS+2]; CH_PSYCH_OUTPUT_SHORT chpo_short[MAX_TIME_CHANNELS+2][MAX_SHORT_WINDOWS]; { /* store input data in look ahead buffer which may be necessary for the window switching decision */ int i; int chanNum; for (chanNum=0;chanNum<max_ch;chanNum++) { if(as->use_LTP) for( i=0; i<block_size_samples; i++ ) { /* temporary fix: a linear buffer for LTP containing the whole time frame */ nok_tmp_DTimeSigBuf[chanNum][i] = DTimeSigBuf[chanNum][i]; nok_tmp_DTimeSigBuf[chanNum][block_size_samples + i] = DTimeSigLookAheadBuf[chanNum][i]; } for( i=0; i<block_size_samples; i++ ) { /* last frame input data are encoded now */ DTimeSigBuf[chanNum][i] = DTimeSigLookAheadBuf[chanNum][i]; DTimeSigLookAheadBuf[chanNum][i] = as->inputBuffer[chanNum][i]; } /* end for(i ..) */ } /* end for(chanNum ... ) */ if (as->use_MS == 1) { for (chanNum=0;chanNum<2;chanNum++) { if (chanNum == 0) { for(i = 0; i < block_size_samples; i++){ DTimeSigLookAheadBuf[chanNum][i] = (as->inputBuffer[0][i]+as->inputBuffer[1][i])*0.5; } } else { for(i = 0; i < block_size_samples; i++){ DTimeSigLookAheadBuf[chanNum][i] = (as->inputBuffer[0][i]-as->inputBuffer[1][i])*0.5; } } } } } if (fixed_stream == NULL) { psy_fill_lookahead(DTimeSigLookAheadBuf, max_ch); return FNO_ERROR; /* quick'n'dirty fix for encoder startup HP 21-aug-96 */ } /* Keep track of number of bits used */ used_bits = 0; /***********************************************************************/ /* Determine channel elements */ /***********************************************************************/ DetermineChInfo(channelInfo,max_ch); /****************************************************************************************************************************** * * psychoacoustic * ******************************************************************************************************************************/ { int chanNum, channels; if (as->use_MS == 0) channels = max_ch+2; else channels = max_ch; for (chanNum = 0; chanNum < channels; chanNum++) { EncTf_psycho_acoustic( sampling_rate, chanNum, &DTimeSigLookAheadBuf[chanNum], &next_desired_block_type[chanNum], (int)qc_select, block_size_samples, chpo_long, chpo_short ); } } /****************************************************************************************************************************** * * block_switch processing * ******************************************************************************************************************************/ #if 0 /* Window switching taken from the NTT source code in the MPEG4 VM. */ { static int ntt_InitFlag = 1; static double *sig_tmptmp, *sig_tmp; int ismp, i_ch, top; /* initialize */ if (ntt_InitFlag){ sig_tmptmp = malloc(max_ch*block_size_samples*3*sizeof(double)); sig_tmp = sig_tmptmp + block_size_samples * max_ch; for (i_ch=0; i_ch<max_ch; i_ch++){ top = i_ch * block_size_samples; for (ismp=0; ismp<block_size_samples; ismp++){ sig_tmp[ismp+top] = DTimeSigBuf[i_ch][ismp]; } } } for (i_ch=0; i_ch<max_ch; i_ch++){ top = i_ch * block_size_samples; for (ismp=0; ismp<block_size_samples; ismp++){ sig_tmp[ismp+block_size_samples*max_ch+top] = DTimeSigLookAheadBuf[i_ch][ismp]; } } /* automatic switching module */ winSwitch(sig_tmp, &block_type[0], ntt_InitFlag); for (ismp=0; ismp<block_size_samples*2*max_ch; ismp++){ sig_tmp[ismp-block_size_samples*max_ch] = sig_tmp[ismp]; } ntt_InitFlag = 0; } #else { int chanNum; for (chanNum=0;chanNum<max_ch;chanNum++) { /* A few definitions: */ /* block_type: Initially, the block_type used in the previous frame. */ /* Will be set to the block_type to use this frame. */ /* A block type will be selected to ensure a meaningful */ /* window transition. */ /* next_desired_block_type: Block_type (LONG or SHORT) which the psycho */ /* model wants to use next frame. The psycho model is */ /* using a look-ahead buffer. */ /* desired_block_type: Block_type (LONG or SHORT) which the psycho */ /* previously wanted to use. It is the desired block_type */ /* for this frame. */ if ( (block_type[chanNum]==ONLY_SHORT_WINDOW)||(block_type[chanNum]==LONG_SHORT_WINDOW) ) { if ( (desired_block_type[chanNum]==ONLY_LONG_WINDOW)&&(next_desired_block_type[chanNum]==ONLY_LONG_WINDOW) ) { block_type[chanNum]=SHORT_LONG_WINDOW; } else { block_type[chanNum]=ONLY_SHORT_WINDOW; } } else if (next_desired_block_type[chanNum]==ONLY_SHORT_WINDOW) { block_type[chanNum]=LONG_SHORT_WINDOW; } else { block_type[chanNum]=ONLY_LONG_WINDOW; } desired_block_type[chanNum]=next_desired_block_type[chanNum]; } } #endif // printf("%d\t\n", block_type[0]); // block_type[0] = ONLY_LONG_WINDOW; // block_type[1] = ONLY_LONG_WINDOW; // block_type[0] = ONLY_SHORT_WINDOW; // block_type[1] = ONLY_SHORT_WINDOW; block_type[1] = block_type[0]; { int chanNum; for (chanNum=0;chanNum<max_ch;chanNum++) { /* Set window shape paremeter in quantInfo */ // quantInfo[chanNum].window_shape = WS_DOLBY; quantInfo[chanNum].window_shape = WS_FHG; switch( block_type[chanNum] ) { case ONLY_SHORT_WINDOW : // no_sub_win = short_win_in_long; // sub_win_size = block_size_samples/short_win_in_long; quantInfo[chanNum].max_sfb = max_sfb_s[srate_idx]; #if 0 quantInfo[chanNum].num_window_groups = 4; quantInfo[chanNum].window_group_length[0] = 1; quantInfo[chanNum].window_group_length[1] = 2; quantInfo[chanNum].window_group_length[2] = 3; quantInfo[chanNum].window_group_length[3] = 2; #else quantInfo[chanNum].num_window_groups = 1; quantInfo[chanNum].window_group_length[0] = 8; quantInfo[chanNum].window_group_length[1] = 0; quantInfo[chanNum].window_group_length[2] = 0; quantInfo[chanNum].window_group_length[3] = 0; quantInfo[chanNum].window_group_length[4] = 0; quantInfo[chanNum].window_group_length[5] = 0; quantInfo[chanNum].window_group_length[6] = 0; quantInfo[chanNum].window_group_length[7] = 0; #endif break; default: // no_sub_win = 1; // sub_win_size = block_size_samples; quantInfo[chanNum].max_sfb = max_sfb_l[srate_idx]; quantInfo[chanNum].num_window_groups = 1; quantInfo[chanNum].window_group_length[0]=1; break; } } } { int chanNum; for (chanNum=0;chanNum<max_ch;chanNum++) { /* Count number of bits used for gain_control_data */ used_bits += WriteGainControlData(&quantInfo[chanNum], /* quantInfo contains packed gain control data */ NULL, /* NULL BsBitStream. Only counting bits, no need to write yet */ 0); /* Zero write flag means don't write */ } } /****************************************************************************************************************************** * * T/F mapping * ******************************************************************************************************************************/ { int chanNum, k; for (chanNum=0;chanNum<max_ch;chanNum++) { buffer2freq( DTimeSigBuf[chanNum], spectral_line_vector[chanNum], overlap_buffer[chanNum], block_type[chanNum], // quantInfo[chanNum].window_shape, // block_size_samples, // block_size_samples/2, // block_size_samples/short_win_in_long, MOVERLAPPED ); if (block_type[chanNum] == ONLY_SHORT_WINDOW) { for (k = 0; k < 8; k++) { specFilter(spectral_line_vector[chanNum]+k*BLOCK_LEN_SHORT, spectral_line_vector[chanNum]+k*BLOCK_LEN_SHORT, as->out_sampling_rate, as->cut_off, BLOCK_LEN_SHORT); } } else { specFilter(spectral_line_vector[chanNum], spectral_line_vector[chanNum], as->out_sampling_rate, as->cut_off, BLOCK_LEN_LONG); } } } /****************************************************************************************************************************** * * adapt ratios of psychoacoustic module to codec scale factor bands * ******************************************************************************************************************************/ { int chanNum; for (chanNum=0;chanNum<max_ch;chanNum++) { switch( block_type[chanNum] ) { case ONLY_LONG_WINDOW: memcpy( (char*)sfb_width_table[chanNum], (char*)chpo_long[chanNum].cb_width, (NSFB_LONG+1)*sizeof(int) ); nr_of_sfb[chanNum] = chpo_long[chanNum].no_of_cb; p_ratio[chanNum] = p_ratio_long[chanNum]; break; case LONG_SHORT_WINDOW: memcpy( (char*)sfb_width_table[chanNum], (char*)chpo_long[chanNum].cb_width, (NSFB_LONG+1)*sizeof(int) ); nr_of_sfb[chanNum] = chpo_long[chanNum].no_of_cb; p_ratio[chanNum] = p_ratio_long[chanNum]; break; case ONLY_SHORT_WINDOW: memcpy( (char*)sfb_width_table[chanNum], (char*)chpo_short[chanNum][0].cb_width, (NSFB_SHORT+1)*sizeof(int) ); nr_of_sfb[chanNum] = chpo_short[chanNum][0].no_of_cb; p_ratio[chanNum] = p_ratio_short[chanNum]; break; case SHORT_LONG_WINDOW: memcpy( (char*)sfb_width_table[chanNum], (char*)chpo_long[chanNum].cb_width, (NSFB_LONG+1)*sizeof(int) ); nr_of_sfb[chanNum] = chpo_long[chanNum].no_of_cb; p_ratio[chanNum] = p_ratio_long[chanNum]; break; } } } MSPreprocess(p_ratio_long, p_ratio_short, chpo_long, chpo_short, channelInfo, block_type, quantInfo, as->use_MS, as->use_IS, max_ch); MSEnergy(spectral_line_vector, energy, chpo_long, chpo_short, sfb_width_table, channelInfo, block_type, quantInfo, as->use_MS, max_ch); { int chanNum; for (chanNum=0;chanNum<max_ch;chanNum++) { /* Construct sf band offset table */ int offset=0; int sfb; for (sfb=0;sfb<nr_of_sfb[chanNum];sfb++) { sfb_offset_table[chanNum][sfb] = offset; offset+=sfb_width_table[chanNum][sfb]; } sfb_offset_table[chanNum][nr_of_sfb[chanNum]]=offset; } } /****************************************************************************************************************************** * * quantization and coding * ******************************************************************************************************************************/ { int padding_limit = max_bitreservoir_bits; int maxNumBitsByteAligned; int chanNum; int numFillBits; int bitsLeftAfterFill; /* bit budget */ num_bits_available = (long)(average_bits + available_bitreservoir_bits - used_bits); /* find the largest byte-aligned section with fewer bits than num_bits_available */ maxNumBitsByteAligned = ((num_bits_available >> 3) << 3); /* Compute how many reservoir bits can be used and still be able to byte */ /* align without exceeding num_bits_available, and have room for an ID_END marker */ available_bitreservoir_bits = maxNumBitsByteAligned - LEN_SE_ID - average_bits; /******************************************/ /* Perform TNS analysis and filtering */ /******************************************/ for (chanNum=0;chanNum<max_ch;chanNum++) { error = TnsEncode(nr_of_sfb[chanNum], /* Number of bands per window */ quantInfo[chanNum].max_sfb, /* max_sfb */ block_type[chanNum], sfb_offset_table[chanNum], spectral_line_vector[chanNum], &tnsInfo[chanNum], as->use_TNS); if (error == FERROR) return FERROR; } /******************************************/ /* Apply Intensity Stereo */ /******************************************/ if (as->use_IS && (as->use_MS != 1)) { ISEncode(spectral_line_vector, channelInfo, sfb_offset_table, block_type, quantInfo, max_ch); } /*******************************************************************************/ /* If LTP prediction is used, compute LTP predictor info and residual spectrum */ /*******************************************************************************/ for(chanNum=0;chanNum<max_ch;chanNum++) { if(as->use_LTP && (block_type[chanNum] != ONLY_SHORT_WINDOW)) { if(channelInfo[chanNum].cpe) { if(channelInfo[chanNum].ch_is_left) { int i; int leftChan=chanNum; int rightChan=channelInfo[chanNum].paired_ch; nok_ltp_enc(spectral_line_vector[leftChan], nok_tmp_DTimeSigBuf[leftChan], block_type[leftChan], WS_FHG, block_size_samples, 1, block_size_samples/short_win_in_long, &sfb_offset_table[leftChan][0], nr_of_sfb[leftChan], &nok_lt_status[leftChan]); nok_lt_status[rightChan].global_pred_flag = nok_lt_status[leftChan].global_pred_flag; for(i = 0; i < NOK_MAX_BLOCK_LEN_LONG; i++) nok_lt_status[rightChan].pred_mdct[i] = nok_lt_status[leftChan].pred_mdct[i]; for(i = 0; i < MAX_SCFAC_BANDS; i++) nok_lt_status[rightChan].sfb_prediction_used[i] = nok_lt_status[leftChan].sfb_prediction_used[i]; nok_lt_status[rightChan].weight = nok_lt_status[leftChan].weight; nok_lt_status[rightChan].delay[0] = nok_lt_status[leftChan].delay[0]; if (!channelInfo[leftChan].common_window) { nok_ltp_enc(spectral_line_vector[rightChan], nok_tmp_DTimeSigBuf[rightChan], block_type[rightChan], WS_FHG, block_size_samples, 1, block_size_samples/short_win_in_long, &sfb_offset_table[rightChan][0], nr_of_sfb[rightChan], &nok_lt_status[rightChan]); } } /* if(channelInfo[chanNum].ch_is_left) */ } /* if(channelInfo[chanNum].cpe) */ else nok_ltp_enc(spectral_line_vector[chanNum], nok_tmp_DTimeSigBuf[chanNum], block_type[chanNum], WS_FHG, block_size_samples, 1, block_size_samples/short_win_in_long, &sfb_offset_table[chanNum][0], nr_of_sfb[chanNum], &nok_lt_status[chanNum]); } /* if(channelInfo[chanNum].present... */ else quantInfo[chanNum].ltpInfo->global_pred_flag = 0; } /* for(chanNum... */ /******************************************/ /* Apply MS stereo */ /******************************************/ if (as->use_MS == 1) { MSEncode(spectral_line_vector, channelInfo, sfb_offset_table, block_type, quantInfo, max_ch); } else if (as->use_MS == 0) { MSEncodeSwitch(spectral_line_vector, channelInfo, sfb_offset_table, block_type, quantInfo, max_ch); } /************************************************/ /* Call the AAC quantization and coding module. */ /************************************************/ for (chanNum = 0; chanNum < max_ch; chanNum++) { int bitsToUse; bitsToUse = (int)((average_bits - used_bits)/max_ch); bitsToUse += (int)(0.2*available_bitreservoir_bits/max_ch); error = tf_encode_spectrum_aac( &spectral_line_vector[chanNum], &p_ratio[chanNum], &allowed_distortion[chanNum], &energy[chanNum], &block_type[chanNum], &sfb_width_table[chanNum], &nr_of_sfb[chanNum], bitsToUse, available_bitreservoir_bits, padding_limit, fixed_stream, NULL, 1, /* nr of audio channels */ &reconstructed_spectrum[chanNum], useShortWindows, aacAllowScalefacs, &quantInfo[chanNum], &(channelInfo[chanNum]), 0/*no vbr*/, bit_rate); if (error == FERROR) return error; } /**********************************************************/ /* Reconstruct MS Stereo bands for prediction */ /**********************************************************/ if (as->use_MS != -1) { MSReconstruct(reconstructed_spectrum, channelInfo, sfb_offset_table, block_type, quantInfo, max_ch); } /**********************************************************/ /* Reconstruct Intensity Stereo bands for prediction */ /**********************************************************/ if ((as->use_IS)&& (pns_sfb_start > 51)) { /* do intensity only if pns is off */ ISReconstruct(reconstructed_spectrum, channelInfo, sfb_offset_table, block_type, quantInfo, max_ch); } /**********************************************************/ /* Update LTP history buffer */ /**********************************************************/ if(as->use_LTP) for (chanNum=0;chanNum<max_ch;chanNum++) { nok_ltp_reconstruct(reconstructed_spectrum[chanNum], block_type[chanNum], WS_FHG, block_size_samples, block_size_samples/2, block_size_samples/short_win_in_long, &sfb_offset_table[chanNum][0], nr_of_sfb[chanNum], &nok_lt_status[chanNum]); } /**********************************/ /* Write out all encoded channels */ /**********************************/ for (chanNum=0;chanNum<max_ch;chanNum++) { if (channelInfo[chanNum].present) { /* Write out a single_channel_element */ if (!channelInfo[chanNum].cpe) { /* Write out sce */ /* BugFix by YT '+=' sould be '=' */ used_bits = WriteSCE(&quantInfo[chanNum], /* Quantization information */ channelInfo[chanNum].tag, fixed_stream, /* Bitstream */ 1); /* Write flag, 1 means write */ } else { if (channelInfo[chanNum].ch_is_left) { /* Write out cpe */ used_bits = WriteCPE(&quantInfo[chanNum], /* Quantization information,left */ &quantInfo[channelInfo[chanNum].paired_ch], /* Right */ channelInfo[chanNum].tag, channelInfo[chanNum].common_window, /* common window */ &(channelInfo[chanNum].ms_info), fixed_stream, /* Bitstream */ 1); /* Write flag, 1 means write */ } } /* if (!channelInfo[chanNum].cpe) else */ } /* if (chann...*/ } /* for (chanNum...*/ /* Compute how many fill bits are needed to avoid overflowing bit reservoir */ /* Save room for ID_END terminator */ if (used_bits < (8 - LEN_SE_ID) ) { numFillBits = 8 - LEN_SE_ID - used_bits; } else { numFillBits = 0; } /* Write AAC fill_elements, smallest fill element is 7 bits. */ /* Function may leave up to 6 bits left after fill, so tell it to fill a few extra */ numFillBits += 6; bitsLeftAfterFill=WriteAACFillBits(fixed_stream,numFillBits); used_bits += (numFillBits - bitsLeftAfterFill); /* Write ID_END terminator */ BsPutBit(fixed_stream,ID_END,LEN_SE_ID); used_bits += LEN_SE_ID; /* Now byte align the bitstream */ used_bits += ByteAlign(fixed_stream); } /* Quantization and coding block */ return FNO_ERROR; }