ref: 6f79ca78311751e60e9f545448b19a810aa598c5
dir: /libfaac/psych.c/
/*
* FAAC - Freeware Advanced Audio Coder
* Copyright (C) 2001 Menno Bakker
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id: psych.c,v 1.11 2001/06/08 18:01:09 menno Exp $
*/
#include <math.h>
#ifdef _DEBUG
#include <stdio.h>
#endif
#include "psych.h"
#include "coder.h"
#include "fft.h"
#include "util.h"
#define NS_INTERP(x,y,r) (pow((x),(r))*pow((y),1-(r)))
#define SQRT2 1.41421356237309504880
void PsyInit(GlobalPsyInfo *gpsyInfo, PsyInfo *psyInfo, unsigned int numChannels,
unsigned int sampleRate, unsigned int sampleRateIdx)
{
unsigned int channel;
int i, j, b, bb, high, low, size;
double tmpx,tmpy,tmp,x;
double bval[MAX_NPART], SNR;
gpsyInfo->ath = (double*)AllocMemory(NPART_LONG*sizeof(double));
gpsyInfo->athS = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
gpsyInfo->mld = (double*)AllocMemory(NPART_LONG*sizeof(double));
gpsyInfo->mldS = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
gpsyInfo->window = (double*)AllocMemory(2*BLOCK_LEN_LONG*sizeof(double));
gpsyInfo->windowS = (double*)AllocMemory(2*BLOCK_LEN_SHORT*sizeof(double));
for(i = 0; i < BLOCK_LEN_LONG*2; i++)
gpsyInfo->window[i] = 0.42-0.5*cos(2*M_PI*(i+.5)/(BLOCK_LEN_LONG*2))+
0.08*cos(4*M_PI*(i+.5)/(BLOCK_LEN_LONG*2));
for(i = 0; i < BLOCK_LEN_SHORT*2; i++)
gpsyInfo->windowS[i] = 0.5 * (1-cos(2.0*M_PI*(i+0.5)/(BLOCK_LEN_SHORT*2)));
gpsyInfo->sampleRate = (double)sampleRate;
size = BLOCK_LEN_LONG;
for (channel = 0; channel < numChannels; channel++) {
psyInfo[channel].size = size;
psyInfo[channel].lastPe = 0.0;
psyInfo[channel].lastEnr = 0.0;
psyInfo[channel].threeInARow = 0;
psyInfo[channel].tonality = (double*)AllocMemory(NPART_LONG*sizeof(double));
psyInfo[channel].nb = (double*)AllocMemory(NPART_LONG*sizeof(double));
psyInfo[channel].maskThr = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEn = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskThrNext = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEnNext = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskThrMS = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEnMS = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskThrNextMS = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEnNextMS = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].prevSamples = (double*)AllocMemory(size*sizeof(double));
SetMemory(psyInfo[channel].prevSamples, 0, size*sizeof(double));
psyInfo[channel].lastNb = (double*)AllocMemory(NPART_LONG*sizeof(double));
psyInfo[channel].lastNbMS = (double*)AllocMemory(NPART_LONG*sizeof(double));
for (j = 0; j < NPART_LONG; j++) {
psyInfo[channel].lastNb[j] = 2.;
psyInfo[channel].lastNbMS[j] = 2.;
}
psyInfo[channel].energy = (double*)AllocMemory(size*sizeof(double));
psyInfo[channel].energyMS = (double*)AllocMemory(size*sizeof(double));
psyInfo[channel].transBuff = (double*)AllocMemory(2*size*sizeof(double));
}
gpsyInfo->psyPart = &psyPartTableLong[sampleRateIdx];
gpsyInfo->psyPartS = &psyPartTableShort[sampleRateIdx];
size = BLOCK_LEN_SHORT;
for (channel = 0; channel < numChannels; channel++) {
psyInfo[channel].sizeS = size;
psyInfo[channel].prevSamplesS = (double*)AllocMemory(size*sizeof(double));
SetMemory(psyInfo[channel].prevSamplesS, 0, size*sizeof(double));
for (j = 0; j < 8; j++) {
psyInfo[channel].nbS[j] = (double*)AllocMemory(NPART_SHORT*sizeof(double));
psyInfo[channel].maskThrS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEnS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskThrNextS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEnNextS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskThrSMS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEnSMS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskThrNextSMS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].maskEnNextSMS[j] = (double*)AllocMemory(MAX_SCFAC_BANDS*sizeof(double));
psyInfo[channel].energyS[j] = (double*)AllocMemory(size*sizeof(double));
psyInfo[channel].energySMS[j] = (double*)AllocMemory(size*sizeof(double));
psyInfo[channel].transBuffS[j] = (double*)AllocMemory(2*size*sizeof(double));
}
}
size = BLOCK_LEN_LONG;
high = 0;
for(b = 0; b < gpsyInfo->psyPart->len; b++) {
low = high;
high += gpsyInfo->psyPart->width[b];
bval[b] = 0.5 * (freq2bark(gpsyInfo->sampleRate*low/(2*size)) +
freq2bark(gpsyInfo->sampleRate*(high-1)/(2*size)));
}
for(b = 0; b < gpsyInfo->psyPart->len; b++) {
for(bb = 0; bb < gpsyInfo->psyPart->len; bb++) {
if (bval[b] >= bval[bb]) tmpx = (bval[b] - bval[bb])*3.0;
else tmpx = (bval[b] - bval[bb])*1.5;
if(tmpx >= 0.5 && tmpx <= 2.5)
{
tmp = tmpx - 0.5;
x = 8.0 * (tmp*tmp - 2.0 * tmp);
} else
x = 0.0;
tmpx += 0.474;
tmpy = 15.811389 + 7.5*tmpx - 17.5*sqrt(1.0+tmpx*tmpx);
if (tmpy < -100.0) gpsyInfo->spreading[b][bb] = 0.0;
else gpsyInfo->spreading[b][bb] = exp((x + tmpy)*0.2302585093);
}
}
for(b = 0; b < gpsyInfo->psyPart->len; b++) {
for(bb = 0; bb < gpsyInfo->psyPart->len; bb++) {
if (gpsyInfo->spreading[b][bb] != 0.0)
break;
}
gpsyInfo->sprInd[b][0] = bb;
for(bb = gpsyInfo->psyPart->len-1; bb > 0; bb--) {
if (gpsyInfo->spreading[b][bb] != 0.0)
break;
}
gpsyInfo->sprInd[b][1] = bb;
}
for( b = 0; b < gpsyInfo->psyPart->len; b++){
tmp = 0.0;
for( bb = gpsyInfo->sprInd[b][0]; bb < gpsyInfo->sprInd[b][1]; bb++)
tmp += gpsyInfo->spreading[b][bb];
for( bb = gpsyInfo->sprInd[b][0]; bb < gpsyInfo->sprInd[b][1]; bb++)
gpsyInfo->spreading[b][bb] /= tmp;
}
j = 0;
for( b = 0; b < gpsyInfo->psyPart->len; b++){
gpsyInfo->ath[b] = 1.e37;
for (bb = 0; bb < gpsyInfo->psyPart->width[b]; bb++, j++) {
double freq = gpsyInfo->sampleRate*j/(1000.0*2*size);
double level;
level = ATHformula(freq*1000.0) - 20.0;
level = pow(10., 0.1*level);
level *= gpsyInfo->psyPart->width[b];
if (level < gpsyInfo->ath[b])
gpsyInfo->ath[b] = level;
}
}
low = 0;
for (b = 0; b < gpsyInfo->psyPart->len; b++) {
tmp = freq2bark(gpsyInfo->sampleRate*low/(2*size));
tmp = (min(tmp, 15.5)/15.5);
gpsyInfo->mld[b] = pow(10.0, 1.25*(1-cos(M_PI*tmp))-2.5);
low += gpsyInfo->psyPart->width[b];
}
size = BLOCK_LEN_SHORT;
high = 0;
for(b = 0; b < gpsyInfo->psyPartS->len; b++) {
low = high;
high += gpsyInfo->psyPartS->width[b];
bval[b] = 0.5 * (freq2bark(gpsyInfo->sampleRate*low/(2*size)) +
freq2bark(gpsyInfo->sampleRate*(high-1)/(2*size)));
}
for(b = 0; b < gpsyInfo->psyPartS->len; b++) {
for(bb = 0; bb < gpsyInfo->psyPartS->len; bb++) {
if (bval[b] >= bval[bb]) tmpx = (bval[b] - bval[bb])*3.0;
else tmpx = (bval[b] - bval[bb])*1.5;
if(tmpx >= 0.5 && tmpx <= 2.5)
{
tmp = tmpx - 0.5;
x = 8.0 * (tmp*tmp - 2.0 * tmp);
} else
x = 0.0;
tmpx += 0.474;
tmpy = 15.811389 + 7.5*tmpx - 17.5*sqrt(1.0+tmpx*tmpx);
if (tmpy < -100.0) gpsyInfo->spreadingS[b][bb] = 0.0;
else gpsyInfo->spreadingS[b][bb] = exp((x + tmpy)*0.2302585093);
}
}
for(b = 0; b < gpsyInfo->psyPartS->len; b++) {
for(bb = 0; bb < gpsyInfo->psyPartS->len; bb++) {
if (gpsyInfo->spreadingS[b][bb] != 0.0)
break;
}
gpsyInfo->sprIndS[b][0] = bb;
for(bb = gpsyInfo->psyPartS->len-1; bb > 0; bb--) {
if (gpsyInfo->spreadingS[b][bb] != 0.0)
break;
}
gpsyInfo->sprIndS[b][1] = bb;
}
j = 0;
for( b = 0; b < gpsyInfo->psyPartS->len; b++){
gpsyInfo->athS[b] = 1.e37;
for (bb = 0; bb < gpsyInfo->psyPartS->width[b]; bb++, j++) {
double freq = gpsyInfo->sampleRate*j/(1000.0*2*size);
double level;
level = ATHformula(freq*1000.0) - 20.0;
level = pow(10., 0.1*level);
level *= gpsyInfo->psyPartS->width[b];
if (level < gpsyInfo->athS[b])
gpsyInfo->athS[b] = level;
}
}
for( b = 0; b < gpsyInfo->psyPartS->len; b++){
tmp = 0.0;
for( bb = gpsyInfo->sprIndS[b][0]; bb < gpsyInfo->sprIndS[b][1]; bb++)
tmp += gpsyInfo->spreadingS[b][bb];
/* SNR formula */
if (bval[b] < 13) SNR = -8.25;
else SNR = -4.5 * (bval[b]-13)/(24.0-13.0) +
-8.25*(bval[b]-24)/(13.0-24.0);
SNR = pow(10.0, SNR/10.0);
for( bb = gpsyInfo->sprIndS[b][0]; bb < gpsyInfo->sprIndS[b][1]; bb++)
gpsyInfo->spreadingS[b][bb] *= SNR / tmp;
}
low = 0;
for (b = 0; b < gpsyInfo->psyPartS->len; b++) {
tmp = freq2bark(gpsyInfo->sampleRate*low/(2*size));
tmp = (min(tmp, 15.5)/15.5);
gpsyInfo->mldS[b] = pow(10.0, 1.25*(1-cos(M_PI*tmp))-2.5);
low += gpsyInfo->psyPartS->width[b];
}
}
void PsyEnd(GlobalPsyInfo *gpsyInfo, PsyInfo *psyInfo, unsigned int numChannels)
{
unsigned int channel;
int j;
if (gpsyInfo->ath) FreeMemory(gpsyInfo->ath);
if (gpsyInfo->athS) FreeMemory(gpsyInfo->athS);
if (gpsyInfo->mld) FreeMemory(gpsyInfo->mld);
if (gpsyInfo->mldS) FreeMemory(gpsyInfo->mldS);
if (gpsyInfo->window) FreeMemory(gpsyInfo->window);
if (gpsyInfo->windowS) FreeMemory(gpsyInfo->windowS);
for (channel = 0; channel < numChannels; channel++) {
if (psyInfo[channel].nb) FreeMemory(psyInfo[channel].nb);
if (psyInfo[channel].tonality) FreeMemory(psyInfo[channel].tonality);
if (psyInfo[channel].prevSamples) FreeMemory(psyInfo[channel].prevSamples);
if (psyInfo[channel].maskThr) FreeMemory(psyInfo[channel].maskThr);
if (psyInfo[channel].maskEn) FreeMemory(psyInfo[channel].maskEn);
if (psyInfo[channel].maskThrNext) FreeMemory(psyInfo[channel].maskThrNext);
if (psyInfo[channel].maskEnNext) FreeMemory(psyInfo[channel].maskEnNext);
if (psyInfo[channel].maskThrMS) FreeMemory(psyInfo[channel].maskThrMS);
if (psyInfo[channel].maskEnMS) FreeMemory(psyInfo[channel].maskEnMS);
if (psyInfo[channel].maskThrNextMS) FreeMemory(psyInfo[channel].maskThrNextMS);
if (psyInfo[channel].maskEnNextMS) FreeMemory(psyInfo[channel].maskEnNextMS);
if (psyInfo[channel].lastNb) FreeMemory(psyInfo[channel].lastNb);
if (psyInfo[channel].lastNbMS) FreeMemory(psyInfo[channel].lastNbMS);
if (psyInfo[channel].energy) FreeMemory(psyInfo[channel].energy);
if (psyInfo[channel].energyMS) FreeMemory(psyInfo[channel].energyMS);
if (psyInfo[channel].transBuff) FreeMemory(psyInfo[channel].transBuff);
}
for (channel = 0; channel < numChannels; channel++) {
if(psyInfo[channel].prevSamplesS) FreeMemory(psyInfo[channel].prevSamplesS);
for (j = 0; j < 8; j++) {
if (psyInfo[channel].nbS[j]) FreeMemory(psyInfo[channel].nbS[j]);
if (psyInfo[channel].maskThrS[j]) FreeMemory(psyInfo[channel].maskThrS[j]);
if (psyInfo[channel].maskEnS[j]) FreeMemory(psyInfo[channel].maskEnS[j]);
if (psyInfo[channel].maskThrNextS[j]) FreeMemory(psyInfo[channel].maskThrNextS[j]);
if (psyInfo[channel].maskEnNextS[j]) FreeMemory(psyInfo[channel].maskEnNextS[j]);
if (psyInfo[channel].maskThrSMS[j]) FreeMemory(psyInfo[channel].maskThrSMS[j]);
if (psyInfo[channel].maskEnSMS[j]) FreeMemory(psyInfo[channel].maskEnSMS[j]);
if (psyInfo[channel].maskThrNextSMS[j]) FreeMemory(psyInfo[channel].maskThrNextSMS[j]);
if (psyInfo[channel].maskEnNextSMS[j]) FreeMemory(psyInfo[channel].maskEnNextSMS[j]);
if (psyInfo[channel].energyS[j]) FreeMemory(psyInfo[channel].energyS[j]);
if (psyInfo[channel].energySMS[j]) FreeMemory(psyInfo[channel].energySMS[j]);
if (psyInfo[channel].transBuffS[j]) FreeMemory(psyInfo[channel].transBuffS[j]);
}
}
}
/* Do psychoacoustical analysis */
void PsyCalculate(ChannelInfo *channelInfo, GlobalPsyInfo *gpsyInfo, PsyInfo *psyInfo,
int *cb_width_long, int num_cb_long, int *cb_width_short,
int num_cb_short, unsigned int numChannels)
{
unsigned int channel;
for (channel = 0; channel < numChannels; channel++) {
if (channelInfo[channel].present) {
if (channelInfo[channel].cpe &&
channelInfo[channel].ch_is_left) { /* CPE */
int leftChan = channel;
int rightChan = channelInfo[channel].paired_ch;
PsyBufferUpdateMS(gpsyInfo, &psyInfo[leftChan], &psyInfo[rightChan]);
/* Calculate the threshold */
PsyThreshold(gpsyInfo, &psyInfo[leftChan], cb_width_long, num_cb_long,
cb_width_short, num_cb_short);
PsyThreshold(gpsyInfo, &psyInfo[rightChan], cb_width_long, num_cb_long,
cb_width_short, num_cb_short);
/* And for MS */
PsyThresholdMS(&channelInfo[leftChan], gpsyInfo, &psyInfo[leftChan],
&psyInfo[rightChan], cb_width_long, num_cb_long, cb_width_short,
num_cb_short);
} else if (!channelInfo[channel].cpe &&
channelInfo[channel].lfe) { /* LFE */
/* NOT FINISHED */
} else if (!channelInfo[channel].cpe) { /* SCE */
/* Calculate the threshold */
PsyThreshold(gpsyInfo, &psyInfo[channel], cb_width_long, num_cb_long,
cb_width_short, num_cb_short);
}
}
}
}
static void Hann(GlobalPsyInfo *gpsyInfo, double *inSamples, int size)
{
int i;
/* Applying Hann window */
if (size == BLOCK_LEN_LONG*2) {
for(i = 0; i < size; i++)
inSamples[i] *= gpsyInfo->window[i];
} else {
for(i = 0; i < size; i++)
inSamples[i] *= gpsyInfo->windowS[i];
}
}
void PsyBufferUpdate(GlobalPsyInfo *gpsyInfo, PsyInfo *psyInfo, double *newSamples)
{
int i, j;
double a, b;
double temp[2048];
memcpy(psyInfo->transBuff, psyInfo->prevSamples, psyInfo->size*sizeof(double));
memcpy(psyInfo->transBuff + psyInfo->size, newSamples, psyInfo->size*sizeof(double));
Hann(gpsyInfo, psyInfo->transBuff, 2*psyInfo->size);
rsfft(psyInfo->transBuff, 11);
/* Calculate magnitude of new data */
for (i = 0; i < psyInfo->size; i++) {
a = psyInfo->transBuff[i];
b = psyInfo->transBuff[i+psyInfo->size];
psyInfo->energy[i] = 0.5 * (a*a + b*b);
}
memcpy(temp, psyInfo->prevSamples, psyInfo->size*sizeof(double));
memcpy(temp + psyInfo->size, newSamples, psyInfo->size*sizeof(double));
for (j = 0; j < 8; j++) {
memcpy(psyInfo->transBuffS[j], temp+(j*128)+(1024-128), 2*psyInfo->sizeS*sizeof(double));
Hann(gpsyInfo, psyInfo->transBuffS[j], 2*psyInfo->sizeS);
rsfft(psyInfo->transBuffS[j], 8);
/* Calculate magnitude of new data */
for(i = 0; i < psyInfo->sizeS; i++){
a = psyInfo->transBuffS[j][i];
b = psyInfo->transBuffS[j][i+psyInfo->sizeS];
psyInfo->energyS[j][i] = 0.5 * (a*a + b*b);
}
}
memcpy(psyInfo->prevSamples, newSamples, psyInfo->size*sizeof(double));
}
void PsyBufferUpdateMS(GlobalPsyInfo *gpsyInfo, PsyInfo *psyInfoL, PsyInfo *psyInfoR)
{
int i, j;
double a, b;
double dataL[2048], dataR[2048];
for (i = 0; i < psyInfoL->size*2; i++) {
a = psyInfoL->transBuff[i];
b = psyInfoR->transBuff[i];
dataL[i] = (a+b)*SQRT2*0.5;
dataR[i] = (a-b)*SQRT2*0.5;
}
/* Calculate magnitude of new data */
for (i = 0; i < psyInfoL->size; i++) {
a = dataL[i];
b = dataL[i+psyInfoL->size];
psyInfoL->energyMS[i] = 0.5 * (a*a + b*b);
a = dataR[i];
b = dataR[i+psyInfoL->size];
psyInfoR->energyMS[i] = 0.5 * (a*a + b*b);
}
for (j = 0; j < 8; j++) {
for (i = 0; i < psyInfoL->sizeS*2; i++) {
a = psyInfoL->transBuffS[j][i];
b = psyInfoR->transBuffS[j][i];
dataL[i] = (a+b)*SQRT2*0.5;
dataR[i] = (a-b)*SQRT2*0.5;
}
/* Calculate magnitude of new data */
for (i = 0; i < psyInfoL->sizeS; i++) {
a = dataL[i];
b = dataL[i+psyInfoL->sizeS];
psyInfoL->energySMS[j][i] = 0.5 * (a*a + b*b);
a = dataR[i];
b = dataR[i+psyInfoL->sizeS];
psyInfoR->energySMS[j][i] = 0.5 * (a*a + b*b);
}
}
}
/* addition of simultaneous masking */
__inline double mask_add(double m1, double m2, int k, int b, double *ath)
{
static const double table1[] = {
3.3246 *3.3246 ,3.23837*3.23837,3.15437*3.15437,3.00412*3.00412,2.86103*2.86103,2.65407*2.65407,2.46209*2.46209,2.284 *2.284 ,
2.11879*2.11879,1.96552*1.96552,1.82335*1.82335,1.69146*1.69146,1.56911*1.56911,1.46658*1.46658,1.37074*1.37074,1.31036*1.31036,
1.25264*1.25264,1.20648*1.20648,1.16203*1.16203,1.12765*1.12765,1.09428*1.09428,1.0659 *1.0659 ,1.03826*1.03826,1.01895*1.01895,
1
};
static const double table2[] = {
1.33352*1.33352,1.35879*1.35879,1.38454*1.38454,1.39497*1.39497,1.40548*1.40548,1.3537 *1.3537 ,1.30382*1.30382,1.22321*1.22321,
1.14758*1.14758
};
static const double table3[] = {
2.35364*2.35364,2.29259*2.29259,2.23313*2.23313,2.12675*2.12675,2.02545*2.02545,1.87894*1.87894,1.74303*1.74303,1.61695*1.61695,
1.49999*1.49999,1.39148*1.39148,1.29083*1.29083,1.19746*1.19746,1.11084*1.11084,1.03826*1.03826
};
int i;
double m;
if (m1 == 0) return m2;
if (b < 0) b = -b;
i = (int)(10*log10(m2 / m1)/10*16);
m = 10*log10((m1+m2)/ath[k]);
if (i < 0) i = -i;
if (b <= 3) { /* approximately, 1 bark = 3 partitions */
if (i > 8) return m1+m2;
return (m1+m2)*table2[i];
}
if (m<15) {
if (m > 0) {
double f=1.0,r;
if (i > 24) return m1+m2;
if (i > 13) f = 1; else f = table3[i];
r = (m-0)/15;
return (m1+m2)*(table1[i]*r+f*(1-r));
}
if (i > 13) return m1+m2;
return (m1+m2)*table3[i];
}
if (i > 24) return m1+m2;
return (m1+m2)*table1[i];
}
static void PsyThreshold(GlobalPsyInfo *gpsyInfo, PsyInfo *psyInfo, int *cb_width_long,
int num_cb_long, int *cb_width_short, int num_cb_short)
{
int b, bb, w, low, high, j;
double tmp, ecb;
double e[MAX_NPART];
double c[MAX_NPART];
double maxi[MAX_NPART];
double avg[MAX_NPART];
double eb;
double nb_tmp[1024], epart, npart;
double tot, mx, estot[8];
double pe = 0.0;
/* Energy in each partition and weighted unpredictability */
high = 0;
for (b = 0; b < gpsyInfo->psyPart->len; b++)
{
double m, a;
low = high;
high += gpsyInfo->psyPart->width[b];
eb = psyInfo->energy[low];
m = a = eb;
for (w = low+1; w < high; w++)
{
double el = psyInfo->energy[w];
eb += el;
a += el;
m = m < el ? el : m;
}
e[b] = eb;
maxi[b] = m;
avg[b] = a / gpsyInfo->psyPart->width[b];
}
for (b = 0; b < gpsyInfo->psyPart->len; b++)
{
static double tab[20] = {
1,0.79433,0.63096,0.63096,0.63096,0.63096,0.63096,0.25119,0.11749,0.11749,
0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749,0.11749
};
int c1,c2,t;
double m, a, tonality;
c1 = c2 = 0;
m = a = 0;
for(w = b-1; w <= b+1; w++)
{
if (w >= 0 && w < gpsyInfo->psyPart->len) {
c1++;
c2 += gpsyInfo->psyPart->width[w];
a += avg[w];
m = m < maxi[w] ? maxi[w] : m;
}
}
a /= c1;
tonality = (a == 0) ? 0 : (m / a - 1)/(c2-1);
t = (int)(20*tonality);
if (t > 19) t = 19;
psyInfo->tonality[b] = tab[t];
c[b] = e[b] * tab[t];
}
/* Convolve the partitioned energy and unpredictability
with the spreading function */
for (b = 0; b < gpsyInfo->psyPart->len; b++)
{
ecb = 0;
for (bb = gpsyInfo->sprInd[b][0]; bb < gpsyInfo->sprInd[b][1]; bb++)
{
ecb = mask_add(ecb, gpsyInfo->spreading[b][bb] * c[bb], bb, bb-b, gpsyInfo->ath);
}
ecb *= 0.158489319246111;
/* Actual energy threshold */
psyInfo->nb[b] = NS_INTERP(min(ecb, 2*psyInfo->lastNb[b]), ecb, 1/*pcfact*/);
/*
psyInfo->nb[b] = max(psyInfo->nb[b], gpsyInfo->ath[b]);
*/
psyInfo->lastNb[b] = ecb;
/* Perceptual entropy */
tmp = gpsyInfo->psyPart->width[b]
* log((psyInfo->nb[b] + 0.0000000001)
/ (e[b] + 0.0000000001));
tmp = min(0,tmp);
pe -= tmp;
}
high = 0;
for (b = 0; b < gpsyInfo->psyPart->len; b++)
{
low = high;
high += gpsyInfo->psyPart->width[b];
for (w = low; w < high; w++)
{
nb_tmp[w] = psyInfo->nb[b] / gpsyInfo->psyPart->width[b];
}
}
high = 0;
for (b = 0; b < num_cb_long; b++)
{
low = high;
high += cb_width_long[b];
epart = psyInfo->energy[low];
npart = nb_tmp[low];
for (w = low+1; w < high; w++)
{
epart += psyInfo->energy[w];
if (nb_tmp[w] < npart)
npart = nb_tmp[w];
}
npart *= cb_width_long[b];
psyInfo->maskThr[b] = psyInfo->maskThrNext[b];
psyInfo->maskEn[b] = psyInfo->maskEnNext[b];
tmp = npart / epart;
psyInfo->maskThrNext[b] = npart;
psyInfo->maskEnNext[b] = epart;
}
/* Short windows */
for (j = 0; j < 8; j++)
{
/* Energy in each partition and weighted unpredictability */
high = 0;
for (b = 0; b < gpsyInfo->psyPartS->len; b++)
{
low = high;
high += gpsyInfo->psyPartS->width[b];
eb = psyInfo->energyS[j][low];
for (w = low+1; w < high; w++)
{
double el = psyInfo->energyS[j][w];
eb += el;
}
e[b] = eb;
}
estot[j] = 0.0;
/* Convolve the partitioned energy and unpredictability
with the spreading function */
for (b = 0; b < gpsyInfo->psyPartS->len; b++)
{
ecb = 0;
for (bb = gpsyInfo->sprIndS[b][0]; bb <= gpsyInfo->sprIndS[b][1]; bb++)
{
ecb += gpsyInfo->spreadingS[b][bb] * e[bb];
}
/* Actual energy threshold */
psyInfo->nbS[j][b] = max(1e-6, ecb);
/*
psyInfo->nbS[j][b] = max(psyInfo->nbS[j][b], gpsyInfo->athS[b]);
*/
estot[j] += e[b];
}
if (estot[j] != 0.0)
estot[j] /= gpsyInfo->psyPartS->len;
high = 0;
for (b = 0; b < gpsyInfo->psyPartS->len; b++)
{
low = high;
high += gpsyInfo->psyPartS->width[b];
for (w = low; w < high; w++)
{
nb_tmp[w] = psyInfo->nbS[j][b] / gpsyInfo->psyPartS->width[b];
}
}
high = 0;
for (b = 0; b < num_cb_short; b++)
{
low = high;
high += cb_width_short[b];
epart = psyInfo->energyS[j][low];
npart = nb_tmp[low];
for (w = low+1; w < high; w++)
{
epart += psyInfo->energyS[j][w];
if (nb_tmp[w] < npart)
npart = nb_tmp[w];
}
npart *= cb_width_short[b];
psyInfo->maskThrS[j][b] = psyInfo->maskThrNextS[j][b];
psyInfo->maskEnS[j][b] = psyInfo->maskEnNextS[j][b];
psyInfo->maskThrNextS[j][b] = npart;
psyInfo->maskEnNextS[j][b] = epart;
}
}
tot = mx = estot[0];
for (j = 1; j < 8; j++) {
tot += estot[j];
mx = max(mx, estot[j]);
}
#ifdef _DEBUG
printf("%4f %2.2f ", pe, mx/tot);
#endif
tot = max(tot, 1.e-12);
if (((mx/tot) > 0.35) && (pe > 1800.0) || ((mx/tot) > 0.5) || (pe > 3000.0)) {
psyInfo->block_type = ONLY_SHORT_WINDOW;
psyInfo->threeInARow++;
} else if ((psyInfo->lastEnr > 0.5) || (psyInfo->lastPe > 3000.0)) {
psyInfo->block_type = ONLY_SHORT_WINDOW;
psyInfo->threeInARow++;
} else if (psyInfo->threeInARow >= 3) {
psyInfo->block_type = ONLY_SHORT_WINDOW;
psyInfo->threeInARow = 0;
} else {
psyInfo->block_type = ONLY_LONG_WINDOW;
}
psyInfo->lastEnr = mx/tot;
psyInfo->pe = psyInfo->lastPe;
psyInfo->lastPe = pe;
}
static void PsyThresholdMS(ChannelInfo *channelInfoL, GlobalPsyInfo *gpsyInfo,
PsyInfo *psyInfoL, PsyInfo *psyInfoR,
int *cb_width_long, int num_cb_long, int *cb_width_short,
int num_cb_short)
{
int b, bb, w, low, high, j;
double ecb, tmp1, tmp2;
double nb_tmpM[1024];
double nb_tmpS[1024];
double epartM, epartS, npartM, npartS;
double nbM[MAX_NPART];
double nbS[MAX_NPART];
double eM[MAX_NPART];
double eS[MAX_NPART];
double cM[MAX_NPART];
double cS[MAX_NPART];
double mld;
#ifdef _DEBUG
int ms_used = 0;
int ms_usedS = 0;
#endif
/* Energy in each partition and weighted unpredictability */
high = 0;
for (b = 0; b < gpsyInfo->psyPart->len; b++)
{
double mid, side, ebM, ebS;
low = high;
high += gpsyInfo->psyPart->width[b];
mid = psyInfoL->energyMS[low];
side = psyInfoR->energyMS[low];
ebM = mid;
ebS = side;
for (w = low+1; w < high; w++)
{
mid = psyInfoL->energyMS[w];
side = psyInfoR->energyMS[w];
ebM += mid;
ebS += side;
}
eM[b] = ebM;
eS[b] = ebS;
cM[b] = ebM * min(psyInfoL->tonality[b], psyInfoR->tonality[b]);
cS[b] = ebS * min(psyInfoL->tonality[b], psyInfoR->tonality[b]);
}
/* Convolve the partitioned energy and unpredictability
with the spreading function */
for (b = 0; b < gpsyInfo->psyPart->len; b++)
{
/* Mid channel */
ecb = 0;
for (bb = gpsyInfo->sprInd[b][0]; bb <= gpsyInfo->sprInd[b][1]; bb++)
{
ecb = mask_add(ecb, gpsyInfo->spreading[bb][b] * cM[bb], bb, bb-b, gpsyInfo->ath);
}
ecb *= 0.158489319246111;
/* Actual energy threshold */
nbM[b] = NS_INTERP(min(ecb, 2*psyInfoL->lastNbMS[b]), ecb, 1/*pcfact*/);
/*
nbM[b] = max(nbM[b], gpsyInfo->ath[b]);
*/
psyInfoL->lastNbMS[b] = ecb;
/* Side channel */
ecb = 0;
for (bb = gpsyInfo->sprInd[b][0]; bb <= gpsyInfo->sprInd[b][1]; bb++)
{
ecb = mask_add(ecb, gpsyInfo->spreading[bb][b] * cS[bb], bb, bb-b, gpsyInfo->ath);
}
ecb *= 0.158489319246111;
/* Actual energy threshold */
nbS[b] = NS_INTERP(min(ecb, 2*psyInfoR->lastNbMS[b]), ecb, 1/*pcfact*/);
/*
nbS[b] = max(nbS[b], gpsyInfo->ath[b]);
*/
psyInfoR->lastNbMS[b] = ecb;
if (psyInfoL->nb[b] <= 1.58*psyInfoR->nb[b]
&& psyInfoR->nb[b] <= 1.58*psyInfoL->nb[b]) {
mld = gpsyInfo->mld[b]*eM[b];
tmp1 = max(nbM[b], min(nbS[b],mld));
mld = gpsyInfo->mld[b]*eS[b];
tmp2 = max(nbS[b], min(nbM[b],mld));
nbM[b] = tmp1;
nbS[b] = tmp2;
}
}
high = 0;
for (b = 0; b < gpsyInfo->psyPart->len; b++)
{
low = high;
high += gpsyInfo->psyPart->width[b];
for (w = low; w < high; w++)
{
nb_tmpM[w] = nbM[b] / gpsyInfo->psyPart->width[b];
nb_tmpS[w] = nbS[b] / gpsyInfo->psyPart->width[b];
}
}
high = 0;
for (b = 0; b < num_cb_long; b++)
{
low = high;
high += cb_width_long[b];
epartM = psyInfoL->energyMS[low];
npartM = nb_tmpM[low];
epartS = psyInfoR->energyMS[low];
npartS = nb_tmpS[low];
for (w = low+1; w < high; w++)
{
epartM += psyInfoL->energyMS[w];
epartS += psyInfoR->energyMS[w];
if (nb_tmpM[w] < npartM)
npartM = nb_tmpM[w];
if (nb_tmpS[w] < npartS)
npartS = nb_tmpS[w];
}
npartM *= cb_width_long[b];
npartS *= cb_width_long[b];
psyInfoL->maskThrMS[b] = psyInfoL->maskThrNextMS[b];
psyInfoR->maskThrMS[b] = psyInfoR->maskThrNextMS[b];
psyInfoL->maskEnMS[b] = psyInfoL->maskEnNextMS[b];
psyInfoR->maskEnMS[b] = psyInfoR->maskEnNextMS[b];
psyInfoL->maskThrNextMS[b] = npartM;
psyInfoR->maskThrNextMS[b] = npartS;
psyInfoL->maskEnNextMS[b] = epartM;
psyInfoR->maskEnNextMS[b] = epartS;
{
double thmL = psyInfoL->maskThr[b];
double thmR = psyInfoR->maskThr[b];
double thmM = psyInfoL->maskThrMS[b];
double thmS = psyInfoR->maskThrMS[b];
double msfix = 3.5;
if (thmL*msfix < (thmM+thmS)/2) {
double f = thmL*msfix / ((thmM+thmS)/2);
thmM *= f;
thmS *= f;
}
if (thmR*msfix < (thmM+thmS)/2) {
double f = thmR*msfix / ((thmM+thmS)/2);
thmM *= f;
thmS *= f;
}
psyInfoL->maskThrMS[b] = min(thmM,psyInfoL->maskThrMS[b]);
psyInfoR->maskThrMS[b] = min(thmS,psyInfoR->maskThrMS[b]);
if (psyInfoL->maskThr[b] * psyInfoR->maskThr[b] < psyInfoL->maskThrMS[b] * psyInfoR->maskThrMS[b])
channelInfoL->msInfo.ms_used[b] = 0;
else
channelInfoL->msInfo.ms_used[b] = 1;
}
}
#ifdef _DEBUG
printf("MSL:%3d ", ms_used);
#endif
/* Short windows */
for (j = 0; j < 8; j++)
{
/* Energy in each partition and weighted unpredictability */
high = 0;
for (b = 0; b < gpsyInfo->psyPartS->len; b++)
{
double ebM, ebS;
low = high;
high += gpsyInfo->psyPartS->width[b];
ebM = psyInfoL->energySMS[j][low];
ebS = psyInfoR->energySMS[j][low];
for (w = low+1; w < high; w++)
{
ebM += psyInfoL->energySMS[j][w];
ebS += psyInfoR->energySMS[j][w];
}
eM[b] = ebM;
eS[b] = ebS;
}
/* Convolve the partitioned energy and unpredictability
with the spreading function */
for (b = 0; b < gpsyInfo->psyPartS->len; b++)
{
/* Mid channel */
/* Get power ratio */
ecb = 0;
for (bb = gpsyInfo->sprIndS[b][0]; bb <= gpsyInfo->sprIndS[b][1]; bb++)
{
ecb += gpsyInfo->spreadingS[b][bb] * eM[bb];
}
/* Actual energy threshold */
nbM[b] = max(1e-6, ecb);
/*
nbM[b] = max(nbM[b], gpsyInfo->athS[b]);
*/
/* Side channel */
/* Get power ratio */
ecb = 0;
for (bb = gpsyInfo->sprIndS[b][0]; bb <= gpsyInfo->sprIndS[b][1]; bb++)
{
ecb += gpsyInfo->spreadingS[b][bb] * eS[bb];
}
/* Actual energy threshold */
nbS[b] = max(1e-6, ecb);
/*
nbS[b] = max(nbS[b], gpsyInfo->athS[b]);
*/
if (psyInfoL->nbS[j][b] <= 1.58*psyInfoR->nbS[j][b]
&& psyInfoR->nbS[j][b] <= 1.58*psyInfoL->nbS[j][b]) {
mld = gpsyInfo->mldS[b]*eM[b];
tmp1 = max(nbM[b], min(nbS[b],mld));
mld = gpsyInfo->mldS[b]*eS[b];
tmp2 = max(nbS[b], min(nbM[b],mld));
nbM[b] = tmp1;
nbS[b] = tmp2;
}
}
high = 0;
for (b = 0; b < gpsyInfo->psyPartS->len; b++)
{
low = high;
high += gpsyInfo->psyPartS->width[b];
for (w = low; w < high; w++)
{
nb_tmpM[w] = nbM[b] / gpsyInfo->psyPartS->width[b];
nb_tmpS[w] = nbS[b] / gpsyInfo->psyPartS->width[b];
}
}
high = 0;
for (b = 0; b < num_cb_short; b++)
{
low = high;
high += cb_width_short[b];
epartM = psyInfoL->energySMS[j][low];
epartS = psyInfoR->energySMS[j][low];
npartM = nb_tmpM[low];
npartS = nb_tmpS[low];
for (w = low+1; w < high; w++)
{
epartM += psyInfoL->energySMS[j][w];
epartS += psyInfoR->energySMS[j][w];
if (nb_tmpM[w] < npartM)
npartM = nb_tmpM[w];
if (nb_tmpS[w] < npartS)
npartS = nb_tmpS[w];
}
npartM *= cb_width_short[b];
npartS *= cb_width_short[b];
psyInfoL->maskThrSMS[j][b] = psyInfoL->maskThrNextSMS[j][b];
psyInfoR->maskThrSMS[j][b] = psyInfoR->maskThrNextSMS[j][b];
psyInfoL->maskEnSMS[j][b] = psyInfoL->maskEnNextSMS[j][b];
psyInfoR->maskEnSMS[j][b] = psyInfoR->maskEnNextSMS[j][b];
psyInfoL->maskThrNextSMS[j][b] = npartM;
psyInfoR->maskThrNextSMS[j][b] = npartS;
psyInfoL->maskEnNextSMS[j][b] = epartM;
psyInfoR->maskEnNextSMS[j][b] = epartS;
{
double thmL = psyInfoL->maskThrS[j][b];
double thmR = psyInfoR->maskThrS[j][b];
double thmM = psyInfoL->maskThrSMS[j][b];
double thmS = psyInfoR->maskThrSMS[j][b];
double msfix = 3.5;
if (thmL*msfix < (thmM+thmS)/2) {
double f = thmL*msfix / ((thmM+thmS)/2);
thmM *= f;
thmS *= f;
}
if (thmR*msfix < (thmM+thmS)/2) {
double f = thmR*msfix / ((thmM+thmS)/2);
thmM *= f;
thmS *= f;
}
psyInfoL->maskThrSMS[j][b] = min(thmM,psyInfoL->maskThrSMS[j][b]);
psyInfoR->maskThrSMS[j][b] = min(thmS,psyInfoR->maskThrSMS[j][b]);
if (psyInfoL->maskThrS[j][b] * psyInfoR->maskThrS[j][b] <
psyInfoL->maskThrSMS[j][b] * psyInfoR->maskThrSMS[j][b])
channelInfoL->msInfo.ms_usedS[j][b] = 0;
else
channelInfoL->msInfo.ms_usedS[j][b] = 1;
}
}
}
#ifdef _DEBUG
printf("MSS:%3d ", ms_usedS);
#endif
}
void BlockSwitch(CoderInfo *coderInfo, PsyInfo *psyInfo, unsigned int numChannels)
{
unsigned int channel;
int desire = ONLY_LONG_WINDOW;
/* Use the same block type for all channels
If there is 1 channel that wants a short block,
use a short block on all channels.
*/
for (channel = 0; channel < numChannels; channel++)
{
if (psyInfo[channel].block_type == ONLY_SHORT_WINDOW)
desire = ONLY_SHORT_WINDOW;
}
for (channel = 0; channel < numChannels; channel++)
{
if ((coderInfo[channel].block_type == ONLY_SHORT_WINDOW) ||
(coderInfo[channel].block_type == LONG_SHORT_WINDOW) ) {
if ((coderInfo[channel].desired_block_type==ONLY_LONG_WINDOW) &&
(desire == ONLY_LONG_WINDOW) ) {
coderInfo[channel].block_type = SHORT_LONG_WINDOW;
} else {
coderInfo[channel].block_type = ONLY_SHORT_WINDOW;
}
} else if (desire == ONLY_SHORT_WINDOW) {
coderInfo[channel].block_type = LONG_SHORT_WINDOW;
} else {
coderInfo[channel].block_type = ONLY_LONG_WINDOW;
}
coderInfo[channel].desired_block_type = desire;
}
#ifdef _DEBUG
printf("%s ", (coderInfo[0].block_type == ONLY_SHORT_WINDOW) ? "SHORT" : "LONG ");
#endif
}
static double freq2bark(double freq)
{
double bark;
if(freq > 200.0)
bark = 26.81 / (1 + (1960 / freq)) - 0.53;
else
bark = freq / 102.9;
return (bark);
}
static double ATHformula(double f)
{
double ath;
f /= 1000; /* convert to khz */
f = max(0.01, f);
f = min(18.0,f);
/* from Painter & Spanias, 1997 */
/* modified by Gabriel Bouvigne to better fit to the reality */
ath = 3.640 * pow(f,-0.8)
- 6.800 * exp(-0.6*pow(f-3.4,2.0))
+ 6.000 * exp(-0.15*pow(f-8.7,2.0))
+ 0.6* 0.001 * pow(f,4.0);
return ath;
}
static PsyPartTable psyPartTableLong[12+1] =
{
{ 96000, 71,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,10,10,11,12,13,14,15,16,
18,19,21,24,26,30,34,39,45,53,64,78,98,127,113
}
},
{ 88200, 72,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,4,4,4,4,5,5,5,6,6,7,7,8,8,9,10,10,11,12,13,14,15,
16,18,19,21,23,26,29,32,37,42,49,58,69,85,106,137,35
}
},
{ 64000, 67,
{ /* width */
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,
4,4,4,4,5,5,5,6,6,7,7,8,8,9,10,10,11,12,13,14,15,16,17,
18,20,21,23,25,28,30,34,37,42,47,54,63,73,87,105,57
}
},
{ 48000, 69,
{ /* width */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12,
13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 28, 31, 34, 37, 40, 45, 50,
56, 63, 72, 84, 86
}
},
{ 44100, 70,
{ /* width */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 28, 30, 33, 36, 39,
43, 47, 53, 59, 67, 76, 88, 27
}
},
{ 32000, 66,
{ /* width */
3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,4,4,4,
4,4,4,4,5,5,5,5,6,6,6,
7,7,8,8,9,10,10,11,12,13,14,
15,16,17,19,20,22,23,25,27,29,31,
33,35,38,41,45,48,53,58,64,71,62
}
},
{ 24000, 66,
{ /* width */
3,3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,6,6,6,6,7,7,
7,8,8,9,9,10,11,12,12,13,14,
15,17,18,19,21,22,24,26,28,30,32,
34,37,39,42,45,49,53,57,62,67,34
}
},
{ 22050, 63,
{ /* width */
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17,
19, 20, 22, 23, 25, 27, 29, 31, 33, 36, 38, 41, 44, 47, 51, 55, 59,
64, 61
}
},
{ 16000, 60,
{ /* width */
5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,6,6,6,6,6,
6,6,7,7,7,7,8,8,8,9,
9,10,10,11,11,12,13,14,15,16,
17,18,19,21,22,24,26,28,30,33,
35,38,41,44,47,50,54,58,62,58
}
},
{ 12000, 57,
{ /* width */
6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,
8,8,8,8,8,9,9,9,10,10,11,11,12,12,13,13,
14,15,16,17,18,19,20,22,23,25,27,29,31,
34,36,39,42,45,49,53,57,61,58
}
},
{ 11025, 56,
{ /* width */
7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,
9,9,9,9,10,10,10,11,11,12,12,13,13,14,15,16,17,18,19,20,
21,23,24,26,28,30,33,35,38,41,44,48,51,55,59,64,9
}
},
{ 8000, 52,
{ /* width */
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11,
12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 23, 24,
26, 27, 29, 31, 33, 36, 38, 41, 44, 48, 52, 56, 60, 14
}
},
{ -1 }
};
static PsyPartTable psyPartTableShort[12+1] =
{
{ 96000, 36,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,4,4,5,5,
6,7,9,11,14,18,7
}
},
{ 88200, 37,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,4,4,
5,5,6,7,8,10,12,16,1
}
},
{ 64000, 39,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,
5,5,6,7,8,9,11,13,10
}
},
{ 48000, 42,
{ /* width */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 12, 1
}
},
{ 44100, 42,
{ /* width */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 12
}
},
{ 32000, 44,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,6,6,7,8,8,9,8
}
},
{ 24000, 46,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,1
}
},
{ 22050, 46,
{ /* width */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 7
}
},
{ 16000, 47,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,7
}
},
{ 12000, 48,
{ /* width */
1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,2,2,2,2,2,
2,2,2,2,2,2,3,3,3,3,3,4,
4,4,5,5,5,6,6,7,7,8,8,3
}
},
{ 11025, 47,
{ /* width */
1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,2,2,
2,2,2,2,2,2,2,2,2,3,
3,3,3,3,4,4,4,4,5,5,
5,6,6,7,7,8,8
}
},
{ 8000, 40,
{ /* width */
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 3
}
},
{ -1 }
};