ref: 7ab1c9ece6e293660fe3c81effa45058a795fc17
dir: /libfaac/psychkni.c/
/* * FAAC - Freeware Advanced Audio Coder * Copyright (C) 2002 Krzysztof Nikiel * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: psychkni.c,v 1.11 2003/08/07 08:17:00 knik Exp $ */ #include <stdio.h> #include <stdlib.h> #include <math.h> #include "psych.h" #include "coder.h" #include "fft.h" #include "util.h" #include "frame.h" #define PREPARELONGFFT 0 typedef double psyfloat; typedef struct { // bandwidth int band; int bandS; /* FFT data */ /* energy */ #if PREPARELONGFFT psyfloat *fftEnrg; psyfloat *fftEnrgNext; psyfloat *fftEnrgNext2; #endif psyfloat *fftEnrgS[8]; psyfloat *fftEnrgNextS[8]; psyfloat *fftEnrgNext2S[8]; } psydata_t; static void Hann(GlobalPsyInfo * gpsyInfo, double *inSamples, int size) { int i; /* Applying Hann window */ if (size == BLOCK_LEN_LONG * 2) { for (i = 0; i < size; i++) inSamples[i] *= gpsyInfo->hannWindow[i]; } else { for (i = 0; i < size; i++) inSamples[i] *= gpsyInfo->hannWindowS[i]; } } static void PsyThreshold(GlobalPsyInfo * gpsyInfo, PsyInfo * psyInfo, int *cb_width_long, int num_cb_long, int *cb_width_short, int num_cb_short) { double totvol = 0.0; double totchg, totchg2; int lastband; psydata_t *psydata = psyInfo->data; int firstband = 1; int first = 0; int last = 0; int sfb; /* long/short block switch */ totchg = totchg2 = 0.0; for (sfb = 0; sfb < num_cb_short; sfb++) { int win; double volb[8+1]; // 1 window comes from next frame double maxdif = 0.0; double totmaxdif = 0.0; double e; int l; first = last; last = first + cb_width_short[sfb]; if (first < 1) first = 1; if (last > psydata->bandS) // band out of range break; // 8 windows of current frame for (win = 0; win < 8; win++) { e = 0.0; for (l = first; l < last; l++) e += psydata->fftEnrgS[win][l]; volb[win] = sqrt(e); totvol += e; } // 1 window of next frame e = 0.0; for (l = first; l < last; l++) e += psydata->fftEnrgNextS[0][l]; volb[8] = sqrt(e); totvol += e; // don't calculate energy change in lowest bands if (sfb < firstband) continue; if ((volb[0] > 0.0) || (volb[8] > 0.0)) { for (win = 1; win < 8; win++) { double slowvol = (1.0 / 8.0) * ((8 - win) * volb[0] + win * volb[8]); double voldif = fabs((volb[win] - slowvol) / slowvol); double totvoldif = (volb[win] - slowvol) * (volb[win] - slowvol); if (voldif > maxdif) maxdif = voldif; if (totvoldif > totmaxdif) totmaxdif = totvoldif; } } totchg += maxdif; totchg2 += totmaxdif; } //lastband = num_cb_short; lastband = sfb; totvol = sqrt(totvol); totchg2 = sqrt(totchg2); totchg = totchg / lastband; if (totvol) totchg2 /= totvol; else totchg2 = 0.0; psyInfo->block_type = ((totchg > 0.75) && (totchg2 > 0.10)) ? ONLY_SHORT_WINDOW : ONLY_LONG_WINDOW; #if 0 { static int total = 0, shorts = 0; char *flash = " "; total++; if (psyInfo->block_type == ONLY_SHORT_WINDOW) { flash = "****"; shorts++; } printf("totchg: %s %g %g\t%g\n", flash, totchg, totchg2, (double)shorts/total); } #endif } static void PsyInit(GlobalPsyInfo * gpsyInfo, PsyInfo * psyInfo, unsigned int numChannels, unsigned int sampleRate, int *cb_width_long, int num_cb_long, int *cb_width_short, int num_cb_short) { unsigned int channel; int i, j, size; gpsyInfo->hannWindow = (double *) AllocMemory(2 * BLOCK_LEN_LONG * sizeof(double)); gpsyInfo->hannWindowS = (double *) AllocMemory(2 * BLOCK_LEN_SHORT * sizeof(double)); for (i = 0; i < BLOCK_LEN_LONG * 2; i++) gpsyInfo->hannWindow[i] = 0.5 * (1 - cos(2.0 * M_PI * (i + 0.5) / (BLOCK_LEN_LONG * 2))); for (i = 0; i < BLOCK_LEN_SHORT * 2; i++) gpsyInfo->hannWindowS[i] = 0.5 * (1 - cos(2.0 * M_PI * (i + 0.5) / (BLOCK_LEN_SHORT * 2))); gpsyInfo->sampleRate = (double) sampleRate; for (channel = 0; channel < numChannels; channel++) { psydata_t *psydata = AllocMemory(sizeof(psydata_t)); psyInfo[channel].data = psydata; } size = BLOCK_LEN_LONG; for (channel = 0; channel < numChannels; channel++) { #if PREPARELONGFFT psydata_t *psydata = psyInfo[channel].data; #endif psyInfo[channel].size = size; psyInfo[channel].prevSamples = (double *) AllocMemory(size * sizeof(double)); memset(psyInfo[channel].prevSamples, 0, size * sizeof(double)); #if PREPARELONGFFT psydata->fftEnrg = (psyfloat *) AllocMemory(size * sizeof(psyfloat)); memset(psydata->fftEnrg, 0, size * sizeof(psyfloat)); psydata->fftEnrgNext = (psyfloat *) AllocMemory(size * sizeof(psyfloat)); memset(psydata->fftEnrgNext, 0, size * sizeof(psyfloat)); psydata->fftEnrgNext2 = (psyfloat *) AllocMemory(size * sizeof(psyfloat)); memset(psydata->fftEnrgNext2, 0, size * sizeof(psyfloat)); #endif } size = BLOCK_LEN_SHORT; for (channel = 0; channel < numChannels; channel++) { psydata_t *psydata = psyInfo[channel].data; psyInfo[channel].sizeS = size; psyInfo[channel].prevSamplesS = (double *) AllocMemory(size * sizeof(double)); memset(psyInfo[channel].prevSamplesS, 0, size * sizeof(double)); for (j = 0; j < 8; j++) { psydata->fftEnrgS[j] = (psyfloat *) AllocMemory(size * sizeof(psyfloat)); memset(psydata->fftEnrgS[j], 0, size * sizeof(psyfloat)); psydata->fftEnrgNextS[j] = (psyfloat *) AllocMemory(size * sizeof(psyfloat)); memset(psydata->fftEnrgNextS[j], 0, size * sizeof(psyfloat)); psydata->fftEnrgNext2S[j] = (psyfloat *) AllocMemory(size * sizeof(psyfloat)); memset(psydata->fftEnrgNext2S[j], 0, size * sizeof(psyfloat)); } } } static void PsyEnd(GlobalPsyInfo * gpsyInfo, PsyInfo * psyInfo, unsigned int numChannels) { unsigned int channel; int j; if (gpsyInfo->hannWindow) FreeMemory(gpsyInfo->hannWindow); if (gpsyInfo->hannWindowS) FreeMemory(gpsyInfo->hannWindowS); for (channel = 0; channel < numChannels; channel++) { #if PREPARELONGFFT psydata_t *psydata = psyInfo[channel].data; #endif if (psyInfo[channel].prevSamples) FreeMemory(psyInfo[channel].prevSamples); #if PREPARELONGFFT if (psydata->fftEnrg) FreeMemory(psydata->fftEnrg); if (psydata->fftEnrgNext) FreeMemory(psydata->fftEnrgNext); if (psydata->fftEnrgNext2) FreeMemory(psydata->fftEnrgNext2); #endif } for (channel = 0; channel < numChannels; channel++) { psydata_t *psydata = psyInfo[channel].data; if (psyInfo[channel].prevSamplesS) FreeMemory(psyInfo[channel].prevSamplesS); for (j = 0; j < 8; j++) { if (psydata->fftEnrgS[j]) FreeMemory(psydata->fftEnrgS[j]); if (psydata->fftEnrgNextS[j]) FreeMemory(psydata->fftEnrgNextS[j]); if (psydata->fftEnrgNext2S[j]) FreeMemory(psydata->fftEnrgNext2S[j]); } } for (channel = 0; channel < numChannels; channel++) { if (psyInfo[channel].data) FreeMemory(psyInfo[channel].data); } } /* Do psychoacoustical analysis */ static void PsyCalculate(ChannelInfo * channelInfo, GlobalPsyInfo * gpsyInfo, PsyInfo * psyInfo, int *cb_width_long, int num_cb_long, int *cb_width_short, int num_cb_short, unsigned int numChannels) { unsigned int channel; for (channel = 0; channel < numChannels; channel++) { if (channelInfo[channel].present) { if (channelInfo[channel].cpe && channelInfo[channel].ch_is_left) { /* CPE */ int leftChan = channel; int rightChan = channelInfo[channel].paired_ch; /* Calculate the threshold */ PsyThreshold(gpsyInfo, &psyInfo[leftChan], cb_width_long, num_cb_long, cb_width_short, num_cb_short); PsyThreshold(gpsyInfo, &psyInfo[rightChan], cb_width_long, num_cb_long, cb_width_short, num_cb_short); } else if (!channelInfo[channel].cpe && channelInfo[channel].lfe) { /* LFE */ // Only set block type and it should be OK psyInfo[channel].block_type = ONLY_LONG_WINDOW; } else if (!channelInfo[channel].cpe) { /* SCE */ /* Calculate the threshold */ PsyThreshold(gpsyInfo, &psyInfo[channel], cb_width_long, num_cb_long, cb_width_short, num_cb_short); } } } } static void PsyBufferUpdate(GlobalPsyInfo * gpsyInfo, PsyInfo * psyInfo, double *newSamples, unsigned int bandwidth) { int i, j; double a, b; double transBuff[2 * BLOCK_LEN_LONG]; double transBuffS[2 * BLOCK_LEN_SHORT]; psydata_t *psydata = psyInfo->data; psyfloat *tmp; psydata->band = psyInfo->size * bandwidth * 2 / gpsyInfo->sampleRate; psydata->bandS = psyInfo->sizeS * bandwidth * 2 / gpsyInfo->sampleRate; #if PREPARELONGFFT memcpy(transBuff, psyInfo->prevSamples, psyInfo->size * sizeof(double)); memcpy(transBuff + psyInfo->size, newSamples, psyInfo->size * sizeof(double)); Hann(gpsyInfo, transBuff, 2 * psyInfo->size); rfft(transBuff, 11); // shift bufs tmp = psydata->fftEnrg; psydata->fftEnrg = psydata->fftEnrgNext; psydata->fftEnrgNext = psydata->fftEnrgNext2; psydata->fftEnrgNext2 = tmp; for (i = 0; i < psydata->band; i++) { a = transBuff[i]; b = transBuff[i + psyInfo->size]; // spectral line energy psydata->fftEnrgNext2[i] = a * a + b * b; //printf("psyInfo->fftEnrg[%d]: %g\n", i, psyInfo->fftEnrg[i]); } for (; i < psyInfo->size; i++) { psydata->fftEnrgNext2[i] = 0; //printf("psyInfo->fftEnrg[%d]: %g\n", i, psyInfo->fftEnrg[i]); } #endif memcpy(transBuff, psyInfo->prevSamples, psyInfo->size * sizeof(double)); memcpy(transBuff + psyInfo->size, newSamples, psyInfo->size * sizeof(double)); for (j = 0; j < 8; j++) { memcpy(transBuffS, transBuff + (j * 128) + (1024 - 128), 2 * psyInfo->sizeS * sizeof(double)); Hann(gpsyInfo, transBuffS, 2 * psyInfo->sizeS); rfft(transBuffS, 8); // shift bufs tmp = psydata->fftEnrgS[j]; psydata->fftEnrgS[j] = psydata->fftEnrgNextS[j]; psydata->fftEnrgNextS[j] = psydata->fftEnrgNext2S[j]; psydata->fftEnrgNext2S[j] = tmp; for (i = 0; i < psydata->bandS; i++) { a = transBuffS[i]; b = transBuffS[i + psyInfo->sizeS]; // spectral line energy psydata->fftEnrgNext2S[j][i] = a * a + b * b; //printf("psyInfo->fftEnrgS[%d][%d]: %g\n", j, i, psyInfo->fftEnrgS[j][i]); } for (; i < psyInfo->sizeS; i++) { psydata->fftEnrgNext2S[j][i] = 0; //printf("psyInfo->fftEnrgS[%d][%d]: %g\n", j, i, psyInfo->fftEnrgS[j][i]); } } memcpy(psyInfo->prevSamples, newSamples, psyInfo->size * sizeof(double)); } static void BlockSwitch(CoderInfo * coderInfo, PsyInfo * psyInfo, unsigned int numChannels) { unsigned int channel; int desire = ONLY_LONG_WINDOW; /* Use the same block type for all channels If there is 1 channel that wants a short block, use a short block on all channels. */ for (channel = 0; channel < numChannels; channel++) { if (psyInfo[channel].block_type == ONLY_SHORT_WINDOW) desire = ONLY_SHORT_WINDOW; } for (channel = 0; channel < numChannels; channel++) { int lasttype = coderInfo[channel].block_type; if (desire == ONLY_SHORT_WINDOW || coderInfo[channel].desired_block_type == ONLY_SHORT_WINDOW) { if (lasttype == ONLY_LONG_WINDOW || lasttype == SHORT_LONG_WINDOW) coderInfo[channel].block_type = LONG_SHORT_WINDOW; else coderInfo[channel].block_type = ONLY_SHORT_WINDOW; } else { if (lasttype == ONLY_SHORT_WINDOW || lasttype == LONG_SHORT_WINDOW) coderInfo[channel].block_type = SHORT_LONG_WINDOW; else coderInfo[channel].block_type = ONLY_LONG_WINDOW; } coderInfo[channel].desired_block_type = desire; } } psymodel_t psymodel2 = { PsyInit, PsyEnd, PsyCalculate, PsyBufferUpdate, BlockSwitch };