ref: 84208056bcc6fe6eb49750d5cd45fe41c4e33fbe
dir: /transfo.c/
#include <math.h> #include "transfo.h" fftw_complex_d FFTarray[512]; /* the array for in-place FFT */ extern int unscambled64[64]; /* the permutation array for FFT64*/ extern int unscambled512[512]; /* the permutation array for FFT512*/ #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_PI_2 #define M_PI_2 1.57079632679489661923 #endif /***************************** Fast MDCT Code *****************************/ void MDCT (double *data, int N) { static int init = 1; double tempr, tempi, c, s, cold, cfreq, sfreq; /* temps for pre and post twiddle */ double freq = 2.0 * M_PI / N; double fac,cosfreq8,sinfreq8; int i, n; int isign = 1; int b = N >> 1; int N4 = N >> 2; int N2 = N >> 1; int a = N - b; int a2 = a >> 1; int a4 = a >> 2; int b4 = b >> 2; int unscambled; if (init) { init = 0; MakeFFTOrder(); } /* Choosing to allocate 2/N factor to Inverse Xform! */ fac = 2.; /* 2 from MDCT inverse to forward */ /* prepare for recurrence relation in pre-twiddle */ cfreq = cos (freq); sfreq = sin (freq); cosfreq8 = cos (freq * 0.125); sinfreq8 = sin (freq * 0.125); c = cosfreq8; s = sinfreq8; for (i = 0; i < N4; i++) { /* calculate real and imaginary parts of g(n) or G(p) */ n = N / 2 - 1 - 2 * i; if (i < b4) { tempr = data [a2 + n] + data [N + a2 - 1 - n]; /* use second form of e(n) for n = N / 2 - 1 - 2i */ } else { tempr = data [a2 + n] - data [a2 - 1 - n]; /* use first form of e(n) for n = N / 2 - 1 - 2i */ } n = 2 * i; if (i < a4) { tempi = data [a2 + n] - data [a2 - 1 - n]; /* use first form of e(n) for n=2i */ } else { tempi = data [a2 + n] + data [N + a2 - 1 - n]; /* use second form of e(n) for n=2i*/ } /* calculate pre-twiddled FFT input */ FFTarray [i].re = tempr * c + tempi * s; FFTarray [i].im = tempi * c - tempr * s; /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; } /* Perform in-place complex FFT of length N/4 */ switch (N) { case 256: pfftw_d_64(FFTarray); break; case 2048:pfftw_d_512(FFTarray); } /* prepare for recurrence relations in post-twiddle */ c = cosfreq8; s = sinfreq8; /* post-twiddle FFT output and then get output data */ for (i = 0; i < N4; i++) { /* get post-twiddled FFT output */ /* Note: fac allocates 4/N factor from IFFT to forward and inverse */ switch (N) { case 256: unscambled = unscambled64[i]; break; case 2048: unscambled = unscambled512[i]; } tempr = fac * (FFTarray [unscambled].re * c + FFTarray [unscambled].im * s); tempi = fac * (FFTarray [unscambled].im * c - FFTarray [unscambled].re * s); /* fill in output values */ data [2 * i] = -tempr; /* first half even */ data [N2 - 1 - 2 * i] = tempi; /* first half odd */ data [N2 + 2 * i] = -tempi; /* second half even */ data [N - 1 - 2 * i] = tempr; /* second half odd */ /* use recurrence to prepare cosine and sine for next value of i */ cold = c; c = c * cfreq - s * sfreq; s = s * cfreq + cold * sfreq; } }