ref: 33a8fa870cd187c911072a1b093765948f103028
dir: /vpx_dsp/mips/macros_msa.h/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VPX_VPX_DSP_MIPS_MACROS_MSA_H_ #define VPX_VPX_DSP_MIPS_MACROS_MSA_H_ #include <msa.h> #include "./vpx_config.h" #include "vpx/vpx_integer.h" #define LD_V(RTYPE, psrc) *((const RTYPE *)(psrc)) #define LD_UB(...) LD_V(v16u8, __VA_ARGS__) #define LD_SB(...) LD_V(v16i8, __VA_ARGS__) #define LD_UH(...) LD_V(v8u16, __VA_ARGS__) #define LD_SH(...) LD_V(v8i16, __VA_ARGS__) #define LD_SW(...) LD_V(v4i32, __VA_ARGS__) #define ST_V(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) #define ST_UB(...) ST_V(v16u8, __VA_ARGS__) #define ST_SB(...) ST_V(v16i8, __VA_ARGS__) #define ST_SH(...) ST_V(v8i16, __VA_ARGS__) #define ST_SW(...) ST_V(v4i32, __VA_ARGS__) #if (__mips_isa_rev >= 6) #define LH(psrc) \ ({ \ uint16_t val_lh_m = *(const uint16_t *)(psrc); \ val_lh_m; \ }) #define LW(psrc) \ ({ \ uint32_t val_lw_m = *(const uint32_t *)(psrc); \ val_lw_m; \ }) #if (__mips == 64) #define LD(psrc) \ ({ \ uint64_t val_ld_m = *(const uint64_t *)(psrc); \ val_ld_m; \ }) #else // !(__mips == 64) #define LD(psrc) \ ({ \ const uint8_t *psrc_ld_m = (const uint8_t *)(psrc); \ uint32_t val0_ld_m, val1_ld_m; \ uint64_t val_ld_m = 0; \ \ val0_ld_m = LW(psrc_ld_m); \ val1_ld_m = LW(psrc_ld_m + 4); \ \ val_ld_m = (uint64_t)(val1_ld_m); \ val_ld_m = (uint64_t)((val_ld_m << 32) & 0xFFFFFFFF00000000); \ val_ld_m = (uint64_t)(val_ld_m | (uint64_t)val0_ld_m); \ \ val_ld_m; \ }) #endif // (__mips == 64) #define SH(val, pdst) *(uint16_t *)(pdst) = (val); #define SW(val, pdst) *(uint32_t *)(pdst) = (val); #define SD(val, pdst) *(uint64_t *)(pdst) = (val); #else // !(__mips_isa_rev >= 6) #define LH(psrc) \ ({ \ const uint8_t *psrc_lh_m = (const uint8_t *)(psrc); \ uint16_t val_lh_m; \ \ __asm__ __volatile__("ulh %[val_lh_m], %[psrc_lh_m] \n\t" \ \ : [val_lh_m] "=r"(val_lh_m) \ : [psrc_lh_m] "m"(*psrc_lh_m)); \ \ val_lh_m; \ }) #define LW(psrc) \ ({ \ const uint8_t *psrc_lw_m = (const uint8_t *)(psrc); \ uint32_t val_lw_m; \ \ __asm__ __volatile__("ulw %[val_lw_m], %[psrc_lw_m] \n\t" \ \ : [val_lw_m] "=r"(val_lw_m) \ : [psrc_lw_m] "m"(*psrc_lw_m)); \ \ val_lw_m; \ }) #if (__mips == 64) #define LD(psrc) \ ({ \ const uint8_t *psrc_ld_m = (const uint8_t *)(psrc); \ uint64_t val_ld_m = 0; \ \ __asm__ __volatile__("uld %[val_ld_m], %[psrc_ld_m] \n\t" \ \ : [val_ld_m] "=r"(val_ld_m) \ : [psrc_ld_m] "m"(*psrc_ld_m)); \ \ val_ld_m; \ }) #else // !(__mips == 64) #define LD(psrc) \ ({ \ const uint8_t *psrc_ld_m = (const uint8_t *)(psrc); \ uint32_t val0_ld_m, val1_ld_m; \ uint64_t val_ld_m = 0; \ \ val0_ld_m = LW(psrc_ld_m); \ val1_ld_m = LW(psrc_ld_m + 4); \ \ val_ld_m = (uint64_t)(val1_ld_m); \ val_ld_m = (uint64_t)((val_ld_m << 32) & 0xFFFFFFFF00000000); \ val_ld_m = (uint64_t)(val_ld_m | (uint64_t)val0_ld_m); \ \ val_ld_m; \ }) #endif // (__mips == 64) #define SH(val, pdst) \ { \ uint8_t *pdst_sh_m = (uint8_t *)(pdst); \ const uint16_t val_sh_m = (val); \ \ __asm__ __volatile__("ush %[val_sh_m], %[pdst_sh_m] \n\t" \ \ : [pdst_sh_m] "=m"(*pdst_sh_m) \ : [val_sh_m] "r"(val_sh_m)); \ } #define SW(val, pdst) \ { \ uint8_t *pdst_sw_m = (uint8_t *)(pdst); \ const uint32_t val_sw_m = (val); \ \ __asm__ __volatile__("usw %[val_sw_m], %[pdst_sw_m] \n\t" \ \ : [pdst_sw_m] "=m"(*pdst_sw_m) \ : [val_sw_m] "r"(val_sw_m)); \ } #define SD(val, pdst) \ { \ uint8_t *pdst_sd_m = (uint8_t *)(pdst); \ uint32_t val0_sd_m, val1_sd_m; \ \ val0_sd_m = (uint32_t)((val)&0x00000000FFFFFFFF); \ val1_sd_m = (uint32_t)(((val) >> 32) & 0x00000000FFFFFFFF); \ \ SW(val0_sd_m, pdst_sd_m); \ SW(val1_sd_m, pdst_sd_m + 4); \ } #endif // (__mips_isa_rev >= 6) /* Description : Load 4 words with stride Arguments : Inputs - psrc, stride Outputs - out0, out1, out2, out3 Details : Load word in 'out0' from (psrc) Load word in 'out1' from (psrc + stride) Load word in 'out2' from (psrc + 2 * stride) Load word in 'out3' from (psrc + 3 * stride) */ #define LW4(psrc, stride, out0, out1, out2, out3) \ { \ out0 = LW((psrc)); \ out1 = LW((psrc) + stride); \ out2 = LW((psrc) + 2 * stride); \ out3 = LW((psrc) + 3 * stride); \ } /* Description : Load double words with stride Arguments : Inputs - psrc, stride Outputs - out0, out1 Details : Load double word in 'out0' from (psrc) Load double word in 'out1' from (psrc + stride) */ #define LD2(psrc, stride, out0, out1) \ { \ out0 = LD((psrc)); \ out1 = LD((psrc) + stride); \ } #define LD4(psrc, stride, out0, out1, out2, out3) \ { \ LD2((psrc), stride, out0, out1); \ LD2((psrc) + 2 * stride, stride, out2, out3); \ } /* Description : Store 4 words with stride Arguments : Inputs - in0, in1, in2, in3, pdst, stride Details : Store word from 'in0' to (pdst) Store word from 'in1' to (pdst + stride) Store word from 'in2' to (pdst + 2 * stride) Store word from 'in3' to (pdst + 3 * stride) */ #define SW4(in0, in1, in2, in3, pdst, stride) \ { \ SW(in0, (pdst)) \ SW(in1, (pdst) + stride); \ SW(in2, (pdst) + 2 * stride); \ SW(in3, (pdst) + 3 * stride); \ } /* Description : Store 4 double words with stride Arguments : Inputs - in0, in1, in2, in3, pdst, stride Details : Store double word from 'in0' to (pdst) Store double word from 'in1' to (pdst + stride) Store double word from 'in2' to (pdst + 2 * stride) Store double word from 'in3' to (pdst + 3 * stride) */ #define SD4(in0, in1, in2, in3, pdst, stride) \ { \ SD(in0, (pdst)) \ SD(in1, (pdst) + stride); \ SD(in2, (pdst) + 2 * stride); \ SD(in3, (pdst) + 3 * stride); \ } /* Description : Load vector elements with stride Arguments : Inputs - psrc, stride Outputs - out0, out1 Return Type - as per RTYPE Details : Load 16 byte elements in 'out0' from (psrc) Load 16 byte elements in 'out1' from (psrc + stride) */ #define LD_V2(RTYPE, psrc, stride, out0, out1) \ { \ out0 = LD_V(RTYPE, (psrc)); \ out1 = LD_V(RTYPE, (psrc) + stride); \ } #define LD_UB2(...) LD_V2(v16u8, __VA_ARGS__) #define LD_SB2(...) LD_V2(v16i8, __VA_ARGS__) #define LD_SH2(...) LD_V2(v8i16, __VA_ARGS__) #define LD_SW2(...) LD_V2(v4i32, __VA_ARGS__) #define LD_V3(RTYPE, psrc, stride, out0, out1, out2) \ { \ LD_V2(RTYPE, (psrc), stride, out0, out1); \ out2 = LD_V(RTYPE, (psrc) + 2 * stride); \ } #define LD_UB3(...) LD_V3(v16u8, __VA_ARGS__) #define LD_V4(RTYPE, psrc, stride, out0, out1, out2, out3) \ { \ LD_V2(RTYPE, (psrc), stride, out0, out1); \ LD_V2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \ } #define LD_UB4(...) LD_V4(v16u8, __VA_ARGS__) #define LD_SB4(...) LD_V4(v16i8, __VA_ARGS__) #define LD_SH4(...) LD_V4(v8i16, __VA_ARGS__) #define LD_V5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) \ { \ LD_V4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ out4 = LD_V(RTYPE, (psrc) + 4 * stride); \ } #define LD_UB5(...) LD_V5(v16u8, __VA_ARGS__) #define LD_SB5(...) LD_V5(v16i8, __VA_ARGS__) #define LD_V7(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6) \ { \ LD_V5(RTYPE, (psrc), stride, out0, out1, out2, out3, out4); \ LD_V2(RTYPE, (psrc) + 5 * stride, stride, out5, out6); \ } #define LD_SB7(...) LD_V7(v16i8, __VA_ARGS__) #define LD_V8(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ out7) \ { \ LD_V4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ LD_V4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \ } #define LD_UB8(...) LD_V8(v16u8, __VA_ARGS__) #define LD_SB8(...) LD_V8(v16i8, __VA_ARGS__) #define LD_SH8(...) LD_V8(v8i16, __VA_ARGS__) #define LD_V16(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ out7, out8, out9, out10, out11, out12, out13, out14, out15) \ { \ LD_V8(RTYPE, (psrc), stride, out0, out1, out2, out3, out4, out5, out6, \ out7); \ LD_V8(RTYPE, (psrc) + 8 * stride, stride, out8, out9, out10, out11, out12, \ out13, out14, out15); \ } #define LD_SH16(...) LD_V16(v8i16, __VA_ARGS__) /* Description : Load 4x4 block of signed halfword elements from 1D source data into 4 vectors (Each vector with 4 signed halfwords) Arguments : Input - psrc Outputs - out0, out1, out2, out3 */ #define LD4x4_SH(psrc, out0, out1, out2, out3) \ { \ out0 = LD_SH(psrc); \ out2 = LD_SH(psrc + 8); \ out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ out3 = (v8i16)__msa_ilvl_d((v2i64)out2, (v2i64)out2); \ } /* Description : Store vectors with stride Arguments : Inputs - in0, in1, pdst, stride Details : Store 16 byte elements from 'in0' to (pdst) Store 16 byte elements from 'in1' to (pdst + stride) */ #define ST_V2(RTYPE, in0, in1, pdst, stride) \ { \ ST_V(RTYPE, in0, (pdst)); \ ST_V(RTYPE, in1, (pdst) + stride); \ } #define ST_UB2(...) ST_V2(v16u8, __VA_ARGS__) #define ST_SH2(...) ST_V2(v8i16, __VA_ARGS__) #define ST_SW2(...) ST_V2(v4i32, __VA_ARGS__) #define ST_V4(RTYPE, in0, in1, in2, in3, pdst, stride) \ { \ ST_V2(RTYPE, in0, in1, (pdst), stride); \ ST_V2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \ } #define ST_UB4(...) ST_V4(v16u8, __VA_ARGS__) #define ST_SH4(...) ST_V4(v8i16, __VA_ARGS__) #define ST_V8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \ { \ ST_V4(RTYPE, in0, in1, in2, in3, pdst, stride); \ ST_V4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \ } #define ST_UB8(...) ST_V8(v16u8, __VA_ARGS__) #define ST_SH8(...) ST_V8(v8i16, __VA_ARGS__) /* Description : Store 2x4 byte block to destination memory from input vector Arguments : Inputs - in, stidx, pdst, stride Details : Index 'stidx' halfword element from 'in' vector is copied to the GP register and stored to (pdst) Index 'stidx+1' halfword element from 'in' vector is copied to the GP register and stored to (pdst + stride) Index 'stidx+2' halfword element from 'in' vector is copied to the GP register and stored to (pdst + 2 * stride) Index 'stidx+3' halfword element from 'in' vector is copied to the GP register and stored to (pdst + 3 * stride) */ #define ST2x4_UB(in, stidx, pdst, stride) \ { \ uint16_t out0_m, out1_m, out2_m, out3_m; \ uint8_t *pblk_2x4_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_h((v8i16)in, (stidx)); \ out1_m = __msa_copy_u_h((v8i16)in, (stidx + 1)); \ out2_m = __msa_copy_u_h((v8i16)in, (stidx + 2)); \ out3_m = __msa_copy_u_h((v8i16)in, (stidx + 3)); \ \ SH(out0_m, pblk_2x4_m); \ SH(out1_m, pblk_2x4_m + stride); \ SH(out2_m, pblk_2x4_m + 2 * stride); \ SH(out3_m, pblk_2x4_m + 3 * stride); \ } /* Description : Store 4x2 byte block to destination memory from input vector Arguments : Inputs - in, pdst, stride Details : Index 0 word element from 'in' vector is copied to the GP register and stored to (pdst) Index 1 word element from 'in' vector is copied to the GP register and stored to (pdst + stride) */ #define ST4x2_UB(in, pdst, stride) \ { \ uint32_t out0_m, out1_m; \ uint8_t *pblk_4x2_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_w((v4i32)in, 0); \ out1_m = __msa_copy_u_w((v4i32)in, 1); \ \ SW(out0_m, pblk_4x2_m); \ SW(out1_m, pblk_4x2_m + stride); \ } /* Description : Store 4x4 byte block to destination memory from input vector Arguments : Inputs - in0, in1, pdst, stride Details : 'Idx0' word element from input vector 'in0' is copied to the GP register and stored to (pdst) 'Idx1' word element from input vector 'in0' is copied to the GP register and stored to (pdst + stride) 'Idx2' word element from input vector 'in0' is copied to the GP register and stored to (pdst + 2 * stride) 'Idx3' word element from input vector 'in0' is copied to the GP register and stored to (pdst + 3 * stride) */ #define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \ { \ uint32_t out0_m, out1_m, out2_m, out3_m; \ uint8_t *pblk_4x4_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_w((v4i32)in0, idx0); \ out1_m = __msa_copy_u_w((v4i32)in0, idx1); \ out2_m = __msa_copy_u_w((v4i32)in1, idx2); \ out3_m = __msa_copy_u_w((v4i32)in1, idx3); \ \ SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \ } #define ST4x8_UB(in0, in1, pdst, stride) \ { \ uint8_t *pblk_4x8 = (uint8_t *)(pdst); \ \ ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \ ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \ } /* Description : Store 8x1 byte block to destination memory from input vector Arguments : Inputs - in, pdst Details : Index 0 double word element from 'in' vector is copied to the GP register and stored to (pdst) */ #define ST8x1_UB(in, pdst) \ { \ uint64_t out0_m; \ \ out0_m = __msa_copy_u_d((v2i64)in, 0); \ SD(out0_m, pdst); \ } /* Description : Store 8x2 byte block to destination memory from input vector Arguments : Inputs - in, pdst, stride Details : Index 0 double word element from 'in' vector is copied to the GP register and stored to (pdst) Index 1 double word element from 'in' vector is copied to the GP register and stored to (pdst + stride) */ #define ST8x2_UB(in, pdst, stride) \ { \ uint64_t out0_m, out1_m; \ uint8_t *pblk_8x2_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_d((v2i64)in, 0); \ out1_m = __msa_copy_u_d((v2i64)in, 1); \ \ SD(out0_m, pblk_8x2_m); \ SD(out1_m, pblk_8x2_m + stride); \ } /* Description : Store 8x4 byte block to destination memory from input vectors Arguments : Inputs - in0, in1, pdst, stride Details : Index 0 double word element from 'in0' vector is copied to the GP register and stored to (pdst) Index 1 double word element from 'in0' vector is copied to the GP register and stored to (pdst + stride) Index 0 double word element from 'in1' vector is copied to the GP register and stored to (pdst + 2 * stride) Index 1 double word element from 'in1' vector is copied to the GP register and stored to (pdst + 3 * stride) */ #define ST8x4_UB(in0, in1, pdst, stride) \ { \ uint64_t out0_m, out1_m, out2_m, out3_m; \ uint8_t *pblk_8x4_m = (uint8_t *)(pdst); \ \ out0_m = __msa_copy_u_d((v2i64)in0, 0); \ out1_m = __msa_copy_u_d((v2i64)in0, 1); \ out2_m = __msa_copy_u_d((v2i64)in1, 0); \ out3_m = __msa_copy_u_d((v2i64)in1, 1); \ \ SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride); \ } /* Description : average with rounding (in0 + in1 + 1) / 2. Arguments : Inputs - in0, in1, in2, in3, Outputs - out0, out1 Return Type - as per RTYPE Details : Each unsigned byte element from 'in0' vector is added with each unsigned byte element from 'in1' vector. Then the average with rounding is calculated and written to 'out0' */ #define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1); \ out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3); \ } #define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__) #define AVER_UB4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \ AVER_UB2(RTYPE, in4, in5, in6, in7, out2, out3) \ } #define AVER_UB4_UB(...) AVER_UB4(v16u8, __VA_ARGS__) /* Description : Immediate number of elements to slide with zero Arguments : Inputs - in0, in1, slide_val Outputs - out0, out1 Return Type - as per RTYPE Details : Byte elements from 'zero_m' vector are slid into 'in0' by value specified in the 'slide_val' */ #define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val) \ { \ v16i8 zero_m = { 0 }; \ out0 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in0, slide_val); \ out1 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in1, slide_val); \ } #define SLDI_B2_0_SW(...) SLDI_B2_0(v4i32, __VA_ARGS__) #define SLDI_B4_0(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3, \ slide_val) \ { \ SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val); \ SLDI_B2_0(RTYPE, in2, in3, out2, out3, slide_val); \ } #define SLDI_B4_0_UB(...) SLDI_B4_0(v16u8, __VA_ARGS__) /* Description : Immediate number of elements to slide Arguments : Inputs - in0_0, in0_1, in1_0, in1_1, slide_val Outputs - out0, out1 Return Type - as per RTYPE Details : Byte elements from 'in0_0' vector are slid into 'in1_0' by value specified in the 'slide_val' */ #define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ { \ out0 = (RTYPE)__msa_sldi_b((v16i8)in0_0, (v16i8)in1_0, slide_val); \ out1 = (RTYPE)__msa_sldi_b((v16i8)in0_1, (v16i8)in1_1, slide_val); \ } #define SLDI_B2_UB(...) SLDI_B2(v16u8, __VA_ARGS__) #define SLDI_B2_SH(...) SLDI_B2(v8i16, __VA_ARGS__) #define SLDI_B3(RTYPE, in0_0, in0_1, in0_2, in1_0, in1_1, in1_2, out0, out1, \ out2, slide_val) \ { \ SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ out2 = (RTYPE)__msa_sldi_b((v16i8)in0_2, (v16i8)in1_2, slide_val); \ } #define SLDI_B3_SB(...) SLDI_B3(v16i8, __VA_ARGS__) #define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__) /* Description : Shuffle byte vector elements as per mask vector Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 Outputs - out0, out1 Return Type - as per RTYPE Details : Byte elements from 'in0' & 'in1' are copied selectively to 'out0' as per control vector 'mask0' */ #define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \ { \ out0 = (RTYPE)__msa_vshf_b((v16i8)mask0, (v16i8)in1, (v16i8)in0); \ out1 = (RTYPE)__msa_vshf_b((v16i8)mask1, (v16i8)in3, (v16i8)in2); \ } #define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__) #define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__) #define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__) #define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__) #define VSHF_B4(RTYPE, in0, in1, mask0, mask1, mask2, mask3, out0, out1, out2, \ out3) \ { \ VSHF_B2(RTYPE, in0, in1, in0, in1, mask0, mask1, out0, out1); \ VSHF_B2(RTYPE, in0, in1, in0, in1, mask2, mask3, out2, out3); \ } #define VSHF_B4_SB(...) VSHF_B4(v16i8, __VA_ARGS__) #define VSHF_B4_SH(...) VSHF_B4(v8i16, __VA_ARGS__) /* Description : Dot product of byte vector elements Arguments : Inputs - mult0, mult1, cnst0, cnst1 Outputs - out0, out1 Return Type - as per RTYPE Details : Unsigned byte elements from 'mult0' are multiplied with unsigned byte elements from 'cnst0' producing a result twice the size of input i.e. unsigned halfword. The multiplication result of adjacent odd-even elements are added together and written to the 'out0' vector */ #define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ { \ out0 = (RTYPE)__msa_dotp_u_h((v16u8)mult0, (v16u8)cnst0); \ out1 = (RTYPE)__msa_dotp_u_h((v16u8)mult1, (v16u8)cnst1); \ } #define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__) #define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ cnst3, out0, out1, out2, out3) \ { \ DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__) /* Description : Dot product of byte vector elements Arguments : Inputs - mult0, mult1, cnst0, cnst1 Outputs - out0, out1 Return Type - as per RTYPE Details : Signed byte elements from 'mult0' are multiplied with signed byte elements from 'cnst0' producing a result twice the size of input i.e. signed halfword. The multiplication result of adjacent odd-even elements are added together and written to the 'out0' vector */ #define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ { \ out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \ out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \ } #define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__) #define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ cnst3, out0, out1, out2, out3) \ { \ DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__) /* Description : Dot product of halfword vector elements Arguments : Inputs - mult0, mult1, cnst0, cnst1 Outputs - out0, out1 Return Type - as per RTYPE Details : Signed halfword elements from 'mult0' are multiplied with signed halfword elements from 'cnst0' producing a result twice the size of input i.e. signed word. The multiplication result of adjacent odd-even elements are added together and written to the 'out0' vector */ #define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ { \ out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \ out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \ } #define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__) #define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ cnst3, out0, out1, out2, out3) \ { \ DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__) /* Description : Dot product of word vector elements Arguments : Inputs - mult0, mult1, cnst0, cnst1 Outputs - out0, out1 Return Type - as per RTYPE Details : Signed word elements from 'mult0' are multiplied with signed word elements from 'cnst0' producing a result twice the size of input i.e. signed double word. The multiplication result of adjacent odd-even elements are added together and written to the 'out0' vector */ #define DOTP_SW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ { \ out0 = (RTYPE)__msa_dotp_s_d((v4i32)mult0, (v4i32)cnst0); \ out1 = (RTYPE)__msa_dotp_s_d((v4i32)mult1, (v4i32)cnst1); \ } #define DOTP_SW2_SD(...) DOTP_SW2(v2i64, __VA_ARGS__) /* Description : Dot product & addition of byte vector elements Arguments : Inputs - mult0, mult1, cnst0, cnst1 Outputs - out0, out1 Return Type - as per RTYPE Details : Signed byte elements from 'mult0' are multiplied with signed byte elements from 'cnst0' producing a result twice the size of input i.e. signed halfword. The multiplication result of adjacent odd-even elements are added to the 'out0' vector */ #define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ { \ out0 = (RTYPE)__msa_dpadd_s_h((v8i16)out0, (v16i8)mult0, (v16i8)cnst0); \ out1 = (RTYPE)__msa_dpadd_s_h((v8i16)out1, (v16i8)mult1, (v16i8)cnst1); \ } #define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__) #define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ cnst3, out0, out1, out2, out3) \ { \ DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ } #define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__) /* Description : Dot product & addition of halfword vector elements Arguments : Inputs - mult0, mult1, cnst0, cnst1 Outputs - out0, out1 Return Type - as per RTYPE Details : Signed halfword elements from 'mult0' are multiplied with signed halfword elements from 'cnst0' producing a result twice the size of input i.e. signed word. The multiplication result of adjacent odd-even elements are added to the 'out0' vector */ #define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ { \ out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0); \ out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1); \ } #define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__) /* Description : Dot product & addition of double word vector elements Arguments : Inputs - mult0, mult1 Outputs - out0, out1 Return Type - as per RTYPE Details : Each signed word element from 'mult0' is multiplied with itself producing an intermediate result twice the size of input i.e. signed double word The multiplication result of adjacent odd-even elements are added to the 'out0' vector */ #define DPADD_SD2(RTYPE, mult0, mult1, out0, out1) \ { \ out0 = (RTYPE)__msa_dpadd_s_d((v2i64)out0, (v4i32)mult0, (v4i32)mult0); \ out1 = (RTYPE)__msa_dpadd_s_d((v2i64)out1, (v4i32)mult1, (v4i32)mult1); \ } #define DPADD_SD2_SD(...) DPADD_SD2(v2i64, __VA_ARGS__) /* Description : Minimum values between unsigned elements of either vector are copied to the output vector Arguments : Inputs - in0, in1, min_vec Outputs - in place operation Return Type - as per RTYPE Details : Minimum of unsigned halfword element values from 'in0' and 'min_vec' are written to output vector 'in0' */ #define MIN_UH2(RTYPE, in0, in1, min_vec) \ { \ in0 = (RTYPE)__msa_min_u_h((v8u16)in0, min_vec); \ in1 = (RTYPE)__msa_min_u_h((v8u16)in1, min_vec); \ } #define MIN_UH2_UH(...) MIN_UH2(v8u16, __VA_ARGS__) #define MIN_UH4(RTYPE, in0, in1, in2, in3, min_vec) \ { \ MIN_UH2(RTYPE, in0, in1, min_vec); \ MIN_UH2(RTYPE, in2, in3, min_vec); \ } #define MIN_UH4_UH(...) MIN_UH4(v8u16, __VA_ARGS__) /* Description : Clips all signed halfword elements of input vector between 0 & 255 Arguments : Input - in Output - out_m Return Type - signed halfword */ #define CLIP_SH_0_255(in) \ ({ \ v8i16 max_m = __msa_ldi_h(255); \ v8i16 out_m; \ \ out_m = __msa_maxi_s_h((v8i16)in, 0); \ out_m = __msa_min_s_h((v8i16)max_m, (v8i16)out_m); \ out_m; \ }) #define CLIP_SH2_0_255(in0, in1) \ { \ in0 = CLIP_SH_0_255(in0); \ in1 = CLIP_SH_0_255(in1); \ } #define CLIP_SH4_0_255(in0, in1, in2, in3) \ { \ CLIP_SH2_0_255(in0, in1); \ CLIP_SH2_0_255(in2, in3); \ } /* Description : Horizontal addition of 4 signed word elements of input vector Arguments : Input - in (signed word vector) Output - sum_m (i32 sum) Return Type - signed word (GP) Details : 4 signed word elements of 'in' vector are added together and the resulting integer sum is returned */ #define HADD_SW_S32(in) \ ({ \ v2i64 res0_m, res1_m; \ int32_t sum_m; \ \ res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in); \ res1_m = __msa_splati_d(res0_m, 1); \ res0_m = res0_m + res1_m; \ sum_m = __msa_copy_s_w((v4i32)res0_m, 0); \ sum_m; \ }) /* Description : Horizontal addition of 4 unsigned word elements Arguments : Input - in (unsigned word vector) Output - sum_m (u32 sum) Return Type - unsigned word (GP) Details : 4 unsigned word elements of 'in' vector are added together and the resulting integer sum is returned */ #define HADD_UW_U32(in) \ ({ \ v2u64 res0_m, res1_m; \ uint32_t sum_m; \ \ res0_m = __msa_hadd_u_d((v4u32)in, (v4u32)in); \ res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1); \ res0_m += res1_m; \ sum_m = __msa_copy_u_w((v4i32)res0_m, 0); \ sum_m; \ }) /* Description : Horizontal addition of 8 unsigned halfword elements Arguments : Input - in (unsigned halfword vector) Output - sum_m (u32 sum) Return Type - unsigned word Details : 8 unsigned halfword elements of 'in' vector are added together and the resulting integer sum is returned */ #define HADD_UH_U32(in) \ ({ \ v4u32 res_m; \ uint32_t sum_m; \ \ res_m = __msa_hadd_u_w((v8u16)in, (v8u16)in); \ sum_m = HADD_UW_U32(res_m); \ sum_m; \ }) /* Description : Horizontal addition of unsigned byte vector elements Arguments : Inputs - in0, in1 Outputs - out0, out1 Return Type - as per RTYPE Details : Each unsigned odd byte element from 'in0' is added to even unsigned byte element from 'in0' (pairwise) and the halfword result is written to 'out0' */ #define HADD_UB2(RTYPE, in0, in1, out0, out1) \ { \ out0 = (RTYPE)__msa_hadd_u_h((v16u8)in0, (v16u8)in0); \ out1 = (RTYPE)__msa_hadd_u_h((v16u8)in1, (v16u8)in1); \ } #define HADD_UB2_UH(...) HADD_UB2(v8u16, __VA_ARGS__) #define HADD_UB4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) \ { \ HADD_UB2(RTYPE, in0, in1, out0, out1); \ HADD_UB2(RTYPE, in2, in3, out2, out3); \ } #define HADD_UB4_UH(...) HADD_UB4(v8u16, __VA_ARGS__) /* Description : Horizontal subtraction of unsigned byte vector elements Arguments : Inputs - in0, in1 Outputs - out0, out1 Return Type - as per RTYPE Details : Each unsigned odd byte element from 'in0' is subtracted from even unsigned byte element from 'in0' (pairwise) and the halfword result is written to 'out0' */ #define HSUB_UB2(RTYPE, in0, in1, out0, out1) \ { \ out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0); \ out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1); \ } #define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__) /* Description : SAD (Sum of Absolute Difference) Arguments : Inputs - in0, in1, ref0, ref1 Outputs - sad_m (halfword vector) Return Type - unsigned halfword Details : Absolute difference of all the byte elements from 'in0' with 'ref0' is calculated and preserved in 'diff0'. Then even-odd pairs are added together to generate 8 halfword results. */ #define SAD_UB2_UH(in0, in1, ref0, ref1) \ ({ \ v16u8 diff0_m, diff1_m; \ v8u16 sad_m = { 0 }; \ \ diff0_m = __msa_asub_u_b((v16u8)in0, (v16u8)ref0); \ diff1_m = __msa_asub_u_b((v16u8)in1, (v16u8)ref1); \ \ sad_m += __msa_hadd_u_h((v16u8)diff0_m, (v16u8)diff0_m); \ sad_m += __msa_hadd_u_h((v16u8)diff1_m, (v16u8)diff1_m); \ \ sad_m; \ }) /* Description : Horizontal subtraction of signed halfword vector elements Arguments : Inputs - in0, in1 Outputs - out0, out1 Return Type - as per RTYPE Details : Each signed odd halfword element from 'in0' is subtracted from even signed halfword element from 'in0' (pairwise) and the word result is written to 'out0' */ #define HSUB_UH2(RTYPE, in0, in1, out0, out1) \ { \ out0 = (RTYPE)__msa_hsub_s_w((v8i16)in0, (v8i16)in0); \ out1 = (RTYPE)__msa_hsub_s_w((v8i16)in1, (v8i16)in1); \ } #define HSUB_UH2_SW(...) HSUB_UH2(v4i32, __VA_ARGS__) /* Description : Set element n input vector to GPR value Arguments : Inputs - in0, in1, in2, in3 Output - out Return Type - as per RTYPE Details : Set element 0 in vector 'out' to value specified in 'in0' */ #define INSERT_W2(RTYPE, in0, in1, out) \ { \ out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ } #define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__) #define INSERT_W4(RTYPE, in0, in1, in2, in3, out) \ { \ out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \ out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \ } #define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__) #define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__) #define INSERT_D2(RTYPE, in0, in1, out) \ { \ out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \ out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \ } #define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__) #define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__) #define INSERT_D2_SH(...) INSERT_D2(v8i16, __VA_ARGS__) /* Description : Interleave even byte elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even byte elements of 'in0' and 'in1' are interleaved and written to 'out0' */ #define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \ out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \ } #define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__) #define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__) /* Description : Interleave even halfword elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even halfword elements of 'in0' and 'in1' are interleaved and written to 'out0' */ #define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \ } #define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__) #define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__) #define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__) /* Description : Interleave even word elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even word elements of 'in0' and 'in1' are interleaved and written to 'out0' */ #define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \ } #define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__) /* Description : Interleave even double word elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even double word elements of 'in0' and 'in1' are interleaved and written to 'out0' */ #define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \ out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \ } #define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__) /* Description : Interleave left half of byte elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Left half of byte elements of 'in0' and 'in1' are interleaved and written to 'out0'. */ #define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \ } #define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__) #define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__) #define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__) #define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__) #define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__) #define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__) #define ILVL_B4_UH(...) ILVL_B4(v8u16, __VA_ARGS__) /* Description : Interleave left half of halfword elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Left half of halfword elements of 'in0' and 'in1' are interleaved and written to 'out0'. */ #define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvl_h((v8i16)in2, (v8i16)in3); \ } #define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__) #define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__) /* Description : Interleave left half of word elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Left half of word elements of 'in0' and 'in1' are interleaved and written to 'out0'. */ #define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_ilvl_w((v4i32)in2, (v4i32)in3); \ } #define ILVL_W2_UB(...) ILVL_W2(v16u8, __VA_ARGS__) #define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__) /* Description : Interleave right half of byte elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Right half of byte elements of 'in0' and 'in1' are interleaved and written to out0. */ #define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \ } #define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__) #define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__) #define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__) #define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__) #define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__) #define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__) #define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__) #define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__) #define ILVR_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, \ in11, in12, in13, in14, in15, out0, out1, out2, out3, out4, \ out5, out6, out7) \ { \ ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ out3); \ ILVR_B4(RTYPE, in8, in9, in10, in11, in12, in13, in14, in15, out4, out5, \ out6, out7); \ } #define ILVR_B8_UH(...) ILVR_B8(v8u16, __VA_ARGS__) /* Description : Interleave right half of halfword elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Right half of halfword elements of 'in0' and 'in1' are interleaved and written to 'out0'. */ #define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \ } #define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__) #define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__) #define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__) #define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_ilvr_w((v4i32)in2, (v4i32)in3); \ } #define ILVR_W2_UB(...) ILVR_W2(v16u8, __VA_ARGS__) #define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__) #define ILVR_W4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_W2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_W4_UB(...) ILVR_W4(v16u8, __VA_ARGS__) /* Description : Interleave right half of double word elements from vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Right half of double word elements of 'in0' and 'in1' are interleaved and written to 'out0'. */ #define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvr_d((v2i64)(in0), (v2i64)(in1)); \ out1 = (RTYPE)__msa_ilvr_d((v2i64)(in2), (v2i64)(in3)); \ } #define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__) #define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__) #define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__) #define ILVR_D3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \ { \ ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ out2 = (RTYPE)__msa_ilvr_d((v2i64)(in4), (v2i64)(in5)); \ } #define ILVR_D3_SB(...) ILVR_D3(v16i8, __VA_ARGS__) #define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__) #define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__) /* Description : Interleave both left and right half of input vectors Arguments : Inputs - in0, in1 Outputs - out0, out1 Return Type - as per RTYPE Details : Right half of byte elements from 'in0' and 'in1' are interleaved and written to 'out0' */ #define ILVRL_B2(RTYPE, in0, in1, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ } #define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__) #define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__) #define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__) #define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__) #define ILVRL_H2(RTYPE, in0, in1, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ } #define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__) #define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__) #define ILVRL_W2(RTYPE, in0, in1, out0, out1) \ { \ out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ } #define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__) #define ILVRL_W2_SB(...) ILVRL_W2(v16i8, __VA_ARGS__) #define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__) #define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__) /* Description : Saturate the halfword element values to the max unsigned value of (sat_val + 1) bits The element data width remains unchanged Arguments : Inputs - in0, in1, sat_val Outputs - in place operation Return Type - as per RTYPE Details : Each unsigned halfword element from 'in0' is saturated to the value generated with (sat_val + 1) bit range. The results are written in place */ #define SAT_UH2(RTYPE, in0, in1, sat_val) \ { \ in0 = (RTYPE)__msa_sat_u_h((v8u16)in0, sat_val); \ in1 = (RTYPE)__msa_sat_u_h((v8u16)in1, sat_val); \ } #define SAT_UH2_UH(...) SAT_UH2(v8u16, __VA_ARGS__) #define SAT_UH4(RTYPE, in0, in1, in2, in3, sat_val) \ { \ SAT_UH2(RTYPE, in0, in1, sat_val); \ SAT_UH2(RTYPE, in2, in3, sat_val) \ } #define SAT_UH4_UH(...) SAT_UH4(v8u16, __VA_ARGS__) /* Description : Saturate the halfword element values to the max unsigned value of (sat_val + 1) bits The element data width remains unchanged Arguments : Inputs - in0, in1, sat_val Outputs - in place operation Return Type - as per RTYPE Details : Each unsigned halfword element from 'in0' is saturated to the value generated with (sat_val + 1) bit range The results are written in place */ #define SAT_SH2(RTYPE, in0, in1, sat_val) \ { \ in0 = (RTYPE)__msa_sat_s_h((v8i16)in0, sat_val); \ in1 = (RTYPE)__msa_sat_s_h((v8i16)in1, sat_val); \ } #define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__) #define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) \ { \ SAT_SH2(RTYPE, in0, in1, sat_val); \ SAT_SH2(RTYPE, in2, in3, sat_val); \ } #define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__) /* Description : Indexed halfword element values are replicated to all elements in output vector Arguments : Inputs - in, idx0, idx1 Outputs - out0, out1 Return Type - as per RTYPE Details : 'idx0' element value from 'in' vector is replicated to all elements in 'out0' vector Valid index range for halfword operation is 0-7 */ #define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) \ { \ out0 = (RTYPE)__msa_splati_h((v8i16)in, idx0); \ out1 = (RTYPE)__msa_splati_h((v8i16)in, idx1); \ } #define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__) #define SPLATI_H4(RTYPE, in, idx0, idx1, idx2, idx3, out0, out1, out2, out3) \ { \ SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \ SPLATI_H2(RTYPE, in, idx2, idx3, out2, out3); \ } #define SPLATI_H4_SB(...) SPLATI_H4(v16i8, __VA_ARGS__) #define SPLATI_H4_SH(...) SPLATI_H4(v8i16, __VA_ARGS__) /* Description : Pack even byte elements of vector pairs Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even byte elements of 'in0' are copied to the left half of 'out0' & even byte elements of 'in1' are copied to the right half of 'out0'. */ #define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \ } #define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__) #define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__) #define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__) #define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__) #define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__) #define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__) /* Description : Pack even halfword elements of vector pairs Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even halfword elements of 'in0' are copied to the left half of 'out0' & even halfword elements of 'in1' are copied to the right half of 'out0'. */ #define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \ } #define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__) #define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__) #define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__) /* Description : Pack even double word elements of vector pairs Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Even double elements of 'in0' are copied to the left half of 'out0' & even double elements of 'in1' are copied to the right half of 'out0'. */ #define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_pckev_d((v2i64)in0, (v2i64)in1); \ out1 = (RTYPE)__msa_pckev_d((v2i64)in2, (v2i64)in3); \ } #define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__) #define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__) #define PCKEV_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ PCKEV_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define PCKEV_D4_UB(...) PCKEV_D4(v16u8, __VA_ARGS__) /* Description : Each byte element is logically xor'ed with immediate 128 Arguments : Inputs - in0, in1 Outputs - in place operation Return Type - as per RTYPE Details : Each unsigned byte element from input vector 'in0' is logically xor'ed with 128 and the result is stored in-place. */ #define XORI_B2_128(RTYPE, in0, in1) \ { \ in0 = (RTYPE)__msa_xori_b((v16u8)in0, 128); \ in1 = (RTYPE)__msa_xori_b((v16u8)in1, 128); \ } #define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__) #define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__) #define XORI_B3_128(RTYPE, in0, in1, in2) \ { \ XORI_B2_128(RTYPE, in0, in1); \ in2 = (RTYPE)__msa_xori_b((v16u8)in2, 128); \ } #define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__) #define XORI_B4_128(RTYPE, in0, in1, in2, in3) \ { \ XORI_B2_128(RTYPE, in0, in1); \ XORI_B2_128(RTYPE, in2, in3); \ } #define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__) #define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__) #define XORI_B7_128(RTYPE, in0, in1, in2, in3, in4, in5, in6) \ { \ XORI_B4_128(RTYPE, in0, in1, in2, in3); \ XORI_B3_128(RTYPE, in4, in5, in6); \ } #define XORI_B7_128_SB(...) XORI_B7_128(v16i8, __VA_ARGS__) /* Description : Average of signed halfword elements -> (a + b) / 2 Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3 Return Type - as per RTYPE Details : Each signed halfword element from 'in0' is added to each signed halfword element of 'in1' with full precision resulting in one extra bit in the result. The result is then divided by 2 and written to 'out0' */ #define AVE_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ out0 = (RTYPE)__msa_ave_s_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_ave_s_h((v8i16)in2, (v8i16)in3); \ out2 = (RTYPE)__msa_ave_s_h((v8i16)in4, (v8i16)in5); \ out3 = (RTYPE)__msa_ave_s_h((v8i16)in6, (v8i16)in7); \ } #define AVE_SH4_SH(...) AVE_SH4(v8i16, __VA_ARGS__) /* Description : Addition of signed halfword elements and signed saturation Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Return Type - as per RTYPE Details : Signed halfword elements from 'in0' are added to signed halfword elements of 'in1'. The result is then signed saturated between halfword data type range */ #define ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1) \ { \ out0 = (RTYPE)__msa_adds_s_h((v8i16)in0, (v8i16)in1); \ out1 = (RTYPE)__msa_adds_s_h((v8i16)in2, (v8i16)in3); \ } #define ADDS_SH2_SH(...) ADDS_SH2(v8i16, __VA_ARGS__) #define ADDS_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3) \ { \ ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1); \ ADDS_SH2(RTYPE, in4, in5, in6, in7, out2, out3); \ } #define ADDS_SH4_SH(...) ADDS_SH4(v8i16, __VA_ARGS__) /* Description : Shift left all elements of vector (generic for all data types) Arguments : Inputs - in0, in1, in2, in3, shift Outputs - in place operation Return Type - as per input vector RTYPE Details : Each element of vector 'in0' is left shifted by 'shift' and the result is written in-place. */ #define SLLI_4V(in0, in1, in2, in3, shift) \ { \ in0 = in0 << shift; \ in1 = in1 << shift; \ in2 = in2 << shift; \ in3 = in3 << shift; \ } /* Description : Arithmetic shift right all elements of vector (generic for all data types) Arguments : Inputs - in0, in1, in2, in3, shift Outputs - in place operation Return Type - as per input vector RTYPE Details : Each element of vector 'in0' is right shifted by 'shift' and the result is written in-place. 'shift' is a GP variable. */ #define SRA_2V(in0, in1, shift) \ { \ in0 = in0 >> shift; \ in1 = in1 >> shift; \ } #define SRA_4V(in0, in1, in2, in3, shift) \ { \ in0 = in0 >> shift; \ in1 = in1 >> shift; \ in2 = in2 >> shift; \ in3 = in3 >> shift; \ } /* Description : Shift right arithmetic rounded words Arguments : Inputs - in0, in1, shift Outputs - in place operation Return Type - as per RTYPE Details : Each element of vector 'in0' is shifted right arithmetically by the number of bits in the corresponding element in the vector 'shift'. The last discarded bit is added to shifted value for rounding and the result is written in-place. 'shift' is a vector. */ #define SRAR_W2(RTYPE, in0, in1, shift) \ { \ in0 = (RTYPE)__msa_srar_w((v4i32)in0, (v4i32)shift); \ in1 = (RTYPE)__msa_srar_w((v4i32)in1, (v4i32)shift); \ } #define SRAR_W4(RTYPE, in0, in1, in2, in3, shift) \ { \ SRAR_W2(RTYPE, in0, in1, shift) \ SRAR_W2(RTYPE, in2, in3, shift) \ } #define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__) /* Description : Shift right arithmetic rounded (immediate) Arguments : Inputs - in0, in1, shift Outputs - in place operation Return Type - as per RTYPE Details : Each element of vector 'in0' is shifted right arithmetically by the value in 'shift'. The last discarded bit is added to the shifted value for rounding and the result is written in-place. 'shift' is an immediate value. */ #define SRARI_H2(RTYPE, in0, in1, shift) \ { \ in0 = (RTYPE)__msa_srari_h((v8i16)in0, shift); \ in1 = (RTYPE)__msa_srari_h((v8i16)in1, shift); \ } #define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__) #define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__) #define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) \ { \ SRARI_H2(RTYPE, in0, in1, shift); \ SRARI_H2(RTYPE, in2, in3, shift); \ } #define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__) #define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__) #define SRARI_W2(RTYPE, in0, in1, shift) \ { \ in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \ in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \ } #define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__) #define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) \ { \ SRARI_W2(RTYPE, in0, in1, shift); \ SRARI_W2(RTYPE, in2, in3, shift); \ } #define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__) /* Description : Logical shift right all elements of vector (immediate) Arguments : Inputs - in0, in1, in2, in3, shift Outputs - out0, out1, out2, out3 Return Type - as per RTYPE Details : Each element of vector 'in0' is right shifted by 'shift' and the result is written in-place. 'shift' is an immediate value. */ #define SRLI_H4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3, shift) \ { \ out0 = (RTYPE)__msa_srli_h((v8i16)in0, shift); \ out1 = (RTYPE)__msa_srli_h((v8i16)in1, shift); \ out2 = (RTYPE)__msa_srli_h((v8i16)in2, shift); \ out3 = (RTYPE)__msa_srli_h((v8i16)in3, shift); \ } #define SRLI_H4_SH(...) SRLI_H4(v8i16, __VA_ARGS__) /* Description : Multiplication of pairs of vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Details : Each element from 'in0' is multiplied with elements from 'in1' and the result is written to 'out0' */ #define MUL2(in0, in1, in2, in3, out0, out1) \ { \ out0 = in0 * in1; \ out1 = in2 * in3; \ } #define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ { \ MUL2(in0, in1, in2, in3, out0, out1); \ MUL2(in4, in5, in6, in7, out2, out3); \ } /* Description : Addition of 2 pairs of vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Details : Each element in 'in0' is added to 'in1' and result is written to 'out0'. */ #define ADD2(in0, in1, in2, in3, out0, out1) \ { \ out0 = in0 + in1; \ out1 = in2 + in3; \ } #define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ { \ ADD2(in0, in1, in2, in3, out0, out1); \ ADD2(in4, in5, in6, in7, out2, out3); \ } /* Description : Subtraction of 2 pairs of vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1 Details : Each element in 'in1' is subtracted from 'in0' and result is written to 'out0'. */ #define SUB2(in0, in1, in2, in3, out0, out1) \ { \ out0 = in0 - in1; \ out1 = in2 - in3; \ } #define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ { \ out0 = in0 - in1; \ out1 = in2 - in3; \ out2 = in4 - in5; \ out3 = in6 - in7; \ } /* Description : Sign extend halfword elements from right half of the vector Arguments : Input - in (halfword vector) Output - out (sign extended word vector) Return Type - signed word Details : Sign bit of halfword elements from input vector 'in' is extracted and interleaved with same vector 'in0' to generate 4 word elements keeping sign intact */ #define UNPCK_R_SH_SW(in, out) \ { \ v8i16 sign_m; \ \ sign_m = __msa_clti_s_h((v8i16)in, 0); \ out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \ } /* Description : Sign extend byte elements from input vector and return halfword results in pair of vectors Arguments : Input - in (byte vector) Outputs - out0, out1 (sign extended halfword vectors) Return Type - signed halfword Details : Sign bit of byte elements from input vector 'in' is extracted and interleaved right with same vector 'in0' to generate 8 signed halfword elements in 'out0' Then interleaved left with same vector 'in0' to generate 8 signed halfword elements in 'out1' */ #define UNPCK_SB_SH(in, out0, out1) \ { \ v16i8 tmp_m; \ \ tmp_m = __msa_clti_s_b((v16i8)in, 0); \ ILVRL_B2_SH(tmp_m, in, out0, out1); \ } /* Description : Zero extend unsigned byte elements to halfword elements Arguments : Input - in (unsigned byte vector) Outputs - out0, out1 (unsigned halfword vectors) Return Type - signed halfword Details : Zero extended right half of vector is returned in 'out0' Zero extended left half of vector is returned in 'out1' */ #define UNPCK_UB_SH(in, out0, out1) \ { \ v16i8 zero_m = { 0 }; \ \ ILVRL_B2_SH(zero_m, in, out0, out1); \ } /* Description : Sign extend halfword elements from input vector and return the result in pair of vectors Arguments : Input - in (halfword vector) Outputs - out0, out1 (sign extended word vectors) Return Type - signed word Details : Sign bit of halfword elements from input vector 'in' is extracted and interleaved right with same vector 'in0' to generate 4 signed word elements in 'out0' Then interleaved left with same vector 'in0' to generate 4 signed word elements in 'out1' */ #define UNPCK_SH_SW(in, out0, out1) \ { \ v8i16 tmp_m; \ \ tmp_m = __msa_clti_s_h((v8i16)in, 0); \ ILVRL_H2_SW(tmp_m, in, out0, out1); \ } /* Description : Butterfly of 4 input vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1, out2, out3 Details : Butterfly operation */ #define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) \ { \ out0 = in0 + in3; \ out1 = in1 + in2; \ \ out2 = in1 - in2; \ out3 = in0 - in3; \ } /* Description : Butterfly of 8 input vectors Arguments : Inputs - in0 ... in7 Outputs - out0 .. out7 Details : Butterfly operation */ #define BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ out3, out4, out5, out6, out7) \ { \ out0 = in0 + in7; \ out1 = in1 + in6; \ out2 = in2 + in5; \ out3 = in3 + in4; \ \ out4 = in3 - in4; \ out5 = in2 - in5; \ out6 = in1 - in6; \ out7 = in0 - in7; \ } /* Description : Butterfly of 16 input vectors Arguments : Inputs - in0 ... in15 Outputs - out0 .. out15 Details : Butterfly operation */ #define BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, \ in11, in12, in13, in14, in15, out0, out1, out2, out3, \ out4, out5, out6, out7, out8, out9, out10, out11, out12, \ out13, out14, out15) \ { \ out0 = in0 + in15; \ out1 = in1 + in14; \ out2 = in2 + in13; \ out3 = in3 + in12; \ out4 = in4 + in11; \ out5 = in5 + in10; \ out6 = in6 + in9; \ out7 = in7 + in8; \ \ out8 = in7 - in8; \ out9 = in6 - in9; \ out10 = in5 - in10; \ out11 = in4 - in11; \ out12 = in3 - in12; \ out13 = in2 - in13; \ out14 = in1 - in14; \ out15 = in0 - in15; \ } /* Description : Transpose input 8x8 byte block Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - as per RTYPE */ #define TRANSPOSE8x8_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, \ out1, out2, out3, out4, out5, out6, out7) \ { \ v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v16i8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ \ ILVR_B4_SB(in2, in0, in3, in1, in6, in4, in7, in5, tmp0_m, tmp1_m, tmp2_m, \ tmp3_m); \ ILVRL_B2_SB(tmp1_m, tmp0_m, tmp4_m, tmp5_m); \ ILVRL_B2_SB(tmp3_m, tmp2_m, tmp6_m, tmp7_m); \ ILVRL_W2(RTYPE, tmp6_m, tmp4_m, out0, out2); \ ILVRL_W2(RTYPE, tmp7_m, tmp5_m, out4, out6); \ SLDI_B2_0(RTYPE, out0, out2, out1, out3, 8); \ SLDI_B2_0(RTYPE, out4, out6, out5, out7, 8); \ } #define TRANSPOSE8x8_UB_UB(...) TRANSPOSE8x8_UB(v16u8, __VA_ARGS__) /* Description : Transpose 16x8 block into 8x16 with byte elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12, in13, in14, in15 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - unsigned byte */ #define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, \ in10, in11, in12, in13, in14, in15, out0, out1, \ out2, out3, out4, out5, out6, out7) \ { \ v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ \ ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \ ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \ ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \ ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \ \ tmp0_m = (v16u8)__msa_ilvev_b((v16i8)out6, (v16i8)out7); \ tmp4_m = (v16u8)__msa_ilvod_b((v16i8)out6, (v16i8)out7); \ tmp1_m = (v16u8)__msa_ilvev_b((v16i8)out4, (v16i8)out5); \ tmp5_m = (v16u8)__msa_ilvod_b((v16i8)out4, (v16i8)out5); \ out5 = (v16u8)__msa_ilvev_b((v16i8)out2, (v16i8)out3); \ tmp6_m = (v16u8)__msa_ilvod_b((v16i8)out2, (v16i8)out3); \ out7 = (v16u8)__msa_ilvev_b((v16i8)out0, (v16i8)out1); \ tmp7_m = (v16u8)__msa_ilvod_b((v16i8)out0, (v16i8)out1); \ \ ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ out0 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out4 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ \ tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ tmp3_m = (v16u8)__msa_ilvod_h((v8i16)out7, (v8i16)out5); \ out2 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out6 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ \ ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ out1 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out5 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ \ tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ out3 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ out7 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ } /* Description : Transpose 4x4 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1, out2, out3 Return Type - signed halfword */ #define TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ { \ v8i16 s0_m, s1_m; \ \ ILVR_H2_SH(in1, in0, in3, in2, s0_m, s1_m); \ ILVRL_W2_SH(s1_m, s0_m, out0, out2); \ out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ out3 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out2); \ } /* Description : Transpose 4x8 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - signed halfword */ #define TRANSPOSE4X8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ out2, out3, out4, out5, out6, out7) \ { \ v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v8i16 tmp0_n, tmp1_n, tmp2_n, tmp3_n; \ v8i16 zero_m = { 0 }; \ \ ILVR_H4_SH(in1, in0, in3, in2, in5, in4, in7, in6, tmp0_n, tmp1_n, tmp2_n, \ tmp3_n); \ ILVRL_W2_SH(tmp1_n, tmp0_n, tmp0_m, tmp2_m); \ ILVRL_W2_SH(tmp3_n, tmp2_n, tmp1_m, tmp3_m); \ \ out0 = (v8i16)__msa_ilvr_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ out1 = (v8i16)__msa_ilvl_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ out2 = (v8i16)__msa_ilvr_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ out3 = (v8i16)__msa_ilvl_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ \ out4 = zero_m; \ out5 = zero_m; \ out6 = zero_m; \ out7 = zero_m; \ } /* Description : Transpose 8x4 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - signed halfword */ #define TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ { \ v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ \ ILVR_H2_SH(in1, in0, in3, in2, tmp0_m, tmp1_m); \ ILVL_H2_SH(in1, in0, in3, in2, tmp2_m, tmp3_m); \ ILVR_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out0, out2); \ ILVL_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out1, out3); \ } /* Description : Transpose 8x8 block with half word elements in vectors Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 Outputs - out0, out1, out2, out3, out4, out5, out6, out7 Return Type - as per RTYPE */ #define TRANSPOSE8x8_H(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, \ out1, out2, out3, out4, out5, out6, out7) \ { \ v8i16 s0_m, s1_m; \ v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ v8i16 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ \ ILVR_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp0_m, tmp1_m); \ ILVL_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp2_m, tmp3_m); \ ILVR_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp4_m, tmp5_m); \ ILVL_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ ILVRL_H2_SH(s1_m, s0_m, tmp6_m, tmp7_m); \ PCKEV_D4(RTYPE, tmp0_m, tmp4_m, tmp1_m, tmp5_m, tmp2_m, tmp6_m, tmp3_m, \ tmp7_m, out0, out2, out4, out6); \ out1 = (RTYPE)__msa_pckod_d((v2i64)tmp0_m, (v2i64)tmp4_m); \ out3 = (RTYPE)__msa_pckod_d((v2i64)tmp1_m, (v2i64)tmp5_m); \ out5 = (RTYPE)__msa_pckod_d((v2i64)tmp2_m, (v2i64)tmp6_m); \ out7 = (RTYPE)__msa_pckod_d((v2i64)tmp3_m, (v2i64)tmp7_m); \ } #define TRANSPOSE8x8_SH_SH(...) TRANSPOSE8x8_H(v8i16, __VA_ARGS__) /* Description : Transpose 4x4 block with word elements in vectors Arguments : Inputs - in0, in1, in2, in3 Outputs - out0, out1, out2, out3 Return Type - signed word */ #define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) \ { \ v4i32 s0_m, s1_m, s2_m, s3_m; \ \ ILVRL_W2_SW(in1, in0, s0_m, s1_m); \ ILVRL_W2_SW(in3, in2, s2_m, s3_m); \ \ out0 = (v4i32)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \ out1 = (v4i32)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \ out2 = (v4i32)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \ out3 = (v4i32)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \ } /* Description : Add block 4x4 Arguments : Inputs - in0, in1, in2, in3, pdst, stride Details : Least significant 4 bytes from each input vector are added to the destination bytes, clipped between 0-255 and stored. */ #define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) \ { \ uint32_t src0_m, src1_m, src2_m, src3_m; \ v8i16 inp0_m, inp1_m, res0_m, res1_m; \ v16i8 dst0_m = { 0 }; \ v16i8 dst1_m = { 0 }; \ v16i8 zero_m = { 0 }; \ \ ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m) \ LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m); \ INSERT_W2_SB(src0_m, src1_m, dst0_m); \ INSERT_W2_SB(src2_m, src3_m, dst1_m); \ ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m); \ ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m); \ CLIP_SH2_0_255(res0_m, res1_m); \ PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \ ST4x4_UB(dst0_m, dst1_m, 0, 1, 0, 1, pdst, stride); \ } /* Description : Pack even elements of input vectors & xor with 128 Arguments : Inputs - in0, in1 Output - out_m Return Type - unsigned byte Details : Signed byte even elements from 'in0' and 'in1' are packed together in one vector and the resulting vector is xor'ed with 128 to shift the range from signed to unsigned byte */ #define PCKEV_XORI128_UB(in0, in1) \ ({ \ v16u8 out_m; \ \ out_m = (v16u8)__msa_pckev_b((v16i8)in1, (v16i8)in0); \ out_m = (v16u8)__msa_xori_b((v16u8)out_m, 128); \ out_m; \ }) /* Description : Converts inputs to unsigned bytes, interleave, average & store as 8x4 unsigned byte block Arguments : Inputs - in0, in1, in2, in3, dst0, dst1, pdst, stride */ #define CONVERT_UB_AVG_ST8x4_UB(in0, in1, in2, in3, dst0, dst1, pdst, stride) \ { \ v16u8 tmp0_m, tmp1_m; \ uint8_t *pdst_m = (uint8_t *)(pdst); \ \ tmp0_m = PCKEV_XORI128_UB(in0, in1); \ tmp1_m = PCKEV_XORI128_UB(in2, in3); \ AVER_UB2_UB(tmp0_m, dst0, tmp1_m, dst1, tmp0_m, tmp1_m); \ ST8x4_UB(tmp0_m, tmp1_m, pdst_m, stride); \ } /* Description : Pack even byte elements and store byte vector in destination memory Arguments : Inputs - in0, in1, pdst */ #define PCKEV_ST_SB(in0, in1, pdst) \ { \ v16i8 tmp_m; \ \ tmp_m = __msa_pckev_b((v16i8)in1, (v16i8)in0); \ ST_SB(tmp_m, (pdst)); \ } /* Description : Horizontal 2 tap filter kernel code Arguments : Inputs - in0, in1, mask, coeff, shift */ #define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift) \ ({ \ v16i8 tmp0_m; \ v8u16 tmp1_m; \ \ tmp0_m = __msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0); \ tmp1_m = __msa_dotp_u_h((v16u8)tmp0_m, (v16u8)coeff); \ tmp1_m = (v8u16)__msa_srari_h((v8i16)tmp1_m, shift); \ \ tmp1_m; \ }) #endif // VPX_VPX_DSP_MIPS_MACROS_MSA_H_