ref: 3d28ff98039134325cf689d8d08996fc8dabb225
dir: /vp8/encoder/ethreading.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "onyx_int.h" #include "vp8/common/threading.h" #include "vp8/common/common.h" #include "vp8/common/extend.h" #include "bitstream.h" #include "encodeframe.h" #include "ethreading.h" #if CONFIG_MULTITHREAD extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x, int ok_to_skip); static THREAD_FUNCTION thread_loopfilter(void *p_data) { VP8_COMP *cpi = (VP8_COMP *)(((LPFTHREAD_DATA *)p_data)->ptr1); VP8_COMMON *cm = &cpi->common; while (1) { if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; if (sem_wait(&cpi->h_event_start_lpf) == 0) { /* we're shutting down */ if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; vp8_loopfilter_frame(cpi, cm); sem_post(&cpi->h_event_end_lpf); } } return 0; } static THREAD_FUNCTION thread_encoding_proc(void *p_data) { int ithread = ((ENCODETHREAD_DATA *)p_data)->ithread; VP8_COMP *cpi = (VP8_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr1); MB_ROW_COMP *mbri = (MB_ROW_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr2); ENTROPY_CONTEXT_PLANES mb_row_left_context; while (1) { if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; if (sem_wait(&cpi->h_event_start_encoding[ithread]) == 0) { const int nsync = cpi->mt_sync_range; VP8_COMMON *cm = &cpi->common; int mb_row; MACROBLOCK *x = &mbri->mb; MACROBLOCKD *xd = &x->e_mbd; TOKENEXTRA *tp; #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING TOKENEXTRA *tp_start = cpi->tok + (1 + ithread) * (16 * 24); const int num_part = (1 << cm->multi_token_partition); #endif int *segment_counts = mbri->segment_counts; int *totalrate = &mbri->totalrate; /* we're shutting down */ if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; xd->mode_info_context = cm->mi + cm->mode_info_stride * (ithread + 1); xd->mode_info_stride = cm->mode_info_stride; for (mb_row = ithread + 1; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) { int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; int map_index = (mb_row * cm->mb_cols); const vpx_atomic_int *last_row_current_mb_col; vpx_atomic_int *current_mb_col = &cpi->mt_current_mb_col[mb_row]; #if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) vp8_writer *w = &cpi->bc[1 + (mb_row % num_part)]; #else tp = cpi->tok + (mb_row * (cm->mb_cols * 16 * 24)); cpi->tplist[mb_row].start = tp; #endif last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; /* reset above block coeffs */ xd->above_context = cm->above_context; xd->left_context = &mb_row_left_context; vp8_zero(mb_row_left_context); xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); /* Set the mb activity pointer to the start of the row. */ x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; /* for each macroblock col in image */ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { if (((mb_col - 1) % nsync) == 0) { vpx_atomic_store_release(current_mb_col, mb_col - 1); } if (mb_row && !(mb_col & (nsync - 1))) { vp8_atomic_spin_wait(mb_col, last_row_current_mb_col, nsync); } #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING tp = tp_start; #endif /* Distance of Mb to the various image edges. * These specified to 8th pel as they are always compared * to values that are in 1/8th pel units */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; /* Set up limit values for motion vectors used to prevent * them extending outside the UMV borders */ x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; /* Copy current mb to a buffer */ vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); /* Is segmentation enabled */ /* MB level adjustment to quantizer */ if (xd->segmentation_enabled) { /* Code to set segment id in xd->mbmi.segment_id for * current MB (with range checking) */ if (cpi->segmentation_map[map_index + mb_col] <= 3) { xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index + mb_col]; } else { xd->mode_info_context->mbmi.segment_id = 0; } vp8cx_mb_init_quantizer(cpi, x, 1); } else { /* Set to Segment 0 by default */ xd->mode_info_context->mbmi.segment_id = 0; } x->active_ptr = cpi->active_map + map_index + mb_col; if (cm->frame_type == KEY_FRAME) { *totalrate += vp8cx_encode_intra_macroblock(cpi, x, &tp); #ifdef MODE_STATS y_modes[xd->mbmi.mode]++; #endif } else { *totalrate += vp8cx_encode_inter_macroblock( cpi, x, &tp, recon_yoffset, recon_uvoffset, mb_row, mb_col); #ifdef MODE_STATS inter_y_modes[xd->mbmi.mode]++; if (xd->mbmi.mode == SPLITMV) { int b; for (b = 0; b < xd->mbmi.partition_count; ++b) { inter_b_modes[x->partition->bmi[b].mode]++; } } #endif // Keep track of how many (consecutive) times a block // is coded as ZEROMV_LASTREF, for base layer frames. // Reset to 0 if its coded as anything else. if (cpi->current_layer == 0) { if (xd->mode_info_context->mbmi.mode == ZEROMV && xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) { // Increment, check for wrap-around. if (cpi->consec_zero_last[map_index + mb_col] < 255) { cpi->consec_zero_last[map_index + mb_col] += 1; } if (cpi->consec_zero_last_mvbias[map_index + mb_col] < 255) { cpi->consec_zero_last_mvbias[map_index + mb_col] += 1; } } else { cpi->consec_zero_last[map_index + mb_col] = 0; cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; } if (x->zero_last_dot_suppress) { cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; } } /* Special case code for cyclic refresh * If cyclic update enabled then copy * xd->mbmi.segment_id; (which may have been updated * based on mode during * vp8cx_encode_inter_macroblock()) back into the * global segmentation map */ if ((cpi->current_layer == 0) && (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled)) { const MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; cpi->segmentation_map[map_index + mb_col] = mbmi->segment_id; /* If the block has been refreshed mark it as clean * (the magnitude of the -ve influences how long it * will be before we consider another refresh): * Else if it was coded (last frame 0,0) and has * not already been refreshed then mark it as a * candidate for cleanup next time (marked 0) else * mark it as dirty (1). */ if (mbmi->segment_id) { cpi->cyclic_refresh_map[map_index + mb_col] = -1; } else if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame == LAST_FRAME)) { if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) { cpi->cyclic_refresh_map[map_index + mb_col] = 0; } } else { cpi->cyclic_refresh_map[map_index + mb_col] = 1; } } } #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING /* pack tokens for this MB */ { int tok_count = tp - tp_start; vp8_pack_tokens(w, tp_start, tok_count); } #else cpi->tplist[mb_row].stop = tp; #endif /* Increment pointer into gf usage flags structure. */ x->gf_active_ptr++; /* Increment the activity mask pointers. */ x->mb_activity_ptr++; /* adjust to the next column of macroblocks */ x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; /* Keep track of segment usage */ segment_counts[xd->mode_info_context->mbmi.segment_id]++; /* skip to next mb */ xd->mode_info_context++; x->partition_info++; xd->above_context++; } vp8_extend_mb_row(&cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); vpx_atomic_store_release(current_mb_col, mb_col + nsync); /* this is to account for the border */ xd->mode_info_context++; x->partition_info++; x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; } /* Signal that this thread has completed processing its rows. */ sem_post(&cpi->h_event_end_encoding[ithread]); } } /* printf("exit thread %d\n", ithread); */ return 0; } static void setup_mbby_copy(MACROBLOCK *mbdst, MACROBLOCK *mbsrc) { MACROBLOCK *x = mbsrc; MACROBLOCK *z = mbdst; int i; z->ss = x->ss; z->ss_count = x->ss_count; z->searches_per_step = x->searches_per_step; z->errorperbit = x->errorperbit; z->sadperbit16 = x->sadperbit16; z->sadperbit4 = x->sadperbit4; /* z->mv_col_min = x->mv_col_min; z->mv_col_max = x->mv_col_max; z->mv_row_min = x->mv_row_min; z->mv_row_max = x->mv_row_max; */ z->short_fdct4x4 = x->short_fdct4x4; z->short_fdct8x4 = x->short_fdct8x4; z->short_walsh4x4 = x->short_walsh4x4; z->quantize_b = x->quantize_b; z->optimize = x->optimize; /* z->mvc = x->mvc; z->src.y_buffer = x->src.y_buffer; z->src.u_buffer = x->src.u_buffer; z->src.v_buffer = x->src.v_buffer; */ z->mvcost[0] = x->mvcost[0]; z->mvcost[1] = x->mvcost[1]; z->mvsadcost[0] = x->mvsadcost[0]; z->mvsadcost[1] = x->mvsadcost[1]; z->token_costs = x->token_costs; z->inter_bmode_costs = x->inter_bmode_costs; z->mbmode_cost = x->mbmode_cost; z->intra_uv_mode_cost = x->intra_uv_mode_cost; z->bmode_costs = x->bmode_costs; for (i = 0; i < 25; ++i) { z->block[i].quant = x->block[i].quant; z->block[i].quant_fast = x->block[i].quant_fast; z->block[i].quant_shift = x->block[i].quant_shift; z->block[i].zbin = x->block[i].zbin; z->block[i].zrun_zbin_boost = x->block[i].zrun_zbin_boost; z->block[i].round = x->block[i].round; z->block[i].src_stride = x->block[i].src_stride; } z->q_index = x->q_index; z->act_zbin_adj = x->act_zbin_adj; z->last_act_zbin_adj = x->last_act_zbin_adj; { MACROBLOCKD *xd = &x->e_mbd; MACROBLOCKD *zd = &z->e_mbd; /* zd->mode_info_context = xd->mode_info_context; zd->mode_info = xd->mode_info; zd->mode_info_stride = xd->mode_info_stride; zd->frame_type = xd->frame_type; zd->up_available = xd->up_available ; zd->left_available = xd->left_available; zd->left_context = xd->left_context; zd->last_frame_dc = xd->last_frame_dc; zd->last_frame_dccons = xd->last_frame_dccons; zd->gold_frame_dc = xd->gold_frame_dc; zd->gold_frame_dccons = xd->gold_frame_dccons; zd->mb_to_left_edge = xd->mb_to_left_edge; zd->mb_to_right_edge = xd->mb_to_right_edge; zd->mb_to_top_edge = xd->mb_to_top_edge ; zd->mb_to_bottom_edge = xd->mb_to_bottom_edge; zd->gf_active_ptr = xd->gf_active_ptr; zd->frames_since_golden = xd->frames_since_golden; zd->frames_till_alt_ref_frame = xd->frames_till_alt_ref_frame; */ zd->subpixel_predict = xd->subpixel_predict; zd->subpixel_predict8x4 = xd->subpixel_predict8x4; zd->subpixel_predict8x8 = xd->subpixel_predict8x8; zd->subpixel_predict16x16 = xd->subpixel_predict16x16; zd->segmentation_enabled = xd->segmentation_enabled; zd->mb_segement_abs_delta = xd->mb_segement_abs_delta; memcpy(zd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data)); memcpy(zd->dequant_y1_dc, xd->dequant_y1_dc, sizeof(xd->dequant_y1_dc)); memcpy(zd->dequant_y1, xd->dequant_y1, sizeof(xd->dequant_y1)); memcpy(zd->dequant_y2, xd->dequant_y2, sizeof(xd->dequant_y2)); memcpy(zd->dequant_uv, xd->dequant_uv, sizeof(xd->dequant_uv)); #if 1 /*TODO: Remove dequant from BLOCKD. This is a temporary solution until * the quantizer code uses a passed in pointer to the dequant constants. * This will also require modifications to the x86 and neon assembly. * */ for (i = 0; i < 16; ++i) zd->block[i].dequant = zd->dequant_y1; for (i = 16; i < 24; ++i) zd->block[i].dequant = zd->dequant_uv; zd->block[24].dequant = zd->dequant_y2; #endif memcpy(z->rd_threshes, x->rd_threshes, sizeof(x->rd_threshes)); memcpy(z->rd_thresh_mult, x->rd_thresh_mult, sizeof(x->rd_thresh_mult)); z->zbin_over_quant = x->zbin_over_quant; z->zbin_mode_boost_enabled = x->zbin_mode_boost_enabled; z->zbin_mode_boost = x->zbin_mode_boost; memset(z->error_bins, 0, sizeof(z->error_bins)); } } void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x, MB_ROW_COMP *mbr_ei, int count) { VP8_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; int i; for (i = 0; i < count; ++i) { MACROBLOCK *mb = &mbr_ei[i].mb; MACROBLOCKD *mbd = &mb->e_mbd; mbd->subpixel_predict = xd->subpixel_predict; mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; mb->gf_active_ptr = x->gf_active_ptr; memset(mbr_ei[i].segment_counts, 0, sizeof(mbr_ei[i].segment_counts)); mbr_ei[i].totalrate = 0; mb->partition_info = x->pi + x->e_mbd.mode_info_stride * (i + 1); mbd->frame_type = cm->frame_type; mb->src = *cpi->Source; mbd->pre = cm->yv12_fb[cm->lst_fb_idx]; mbd->dst = cm->yv12_fb[cm->new_fb_idx]; mb->src.y_buffer += 16 * x->src.y_stride * (i + 1); mb->src.u_buffer += 8 * x->src.uv_stride * (i + 1); mb->src.v_buffer += 8 * x->src.uv_stride * (i + 1); vp8_build_block_offsets(mb); mbd->left_context = &cm->left_context; mb->mvc = cm->fc.mvc; setup_mbby_copy(&mbr_ei[i].mb, x); mbd->fullpixel_mask = 0xffffffff; if (cm->full_pixel) mbd->fullpixel_mask = 0xfffffff8; vp8_zero(mb->coef_counts); vp8_zero(x->ymode_count); mb->skip_true_count = 0; vp8_zero(mb->MVcount); mb->prediction_error = 0; mb->intra_error = 0; vp8_zero(mb->count_mb_ref_frame_usage); mb->mbs_tested_so_far = 0; mb->mbs_zero_last_dot_suppress = 0; } } int vp8cx_create_encoder_threads(VP8_COMP *cpi) { const VP8_COMMON *cm = &cpi->common; vpx_atomic_init(&cpi->b_multi_threaded, 0); cpi->encoding_thread_count = 0; cpi->b_lpf_running = 0; if (cm->processor_core_count > 1 && cpi->oxcf.multi_threaded > 1) { int ithread; int th_count = cpi->oxcf.multi_threaded - 1; int rc = 0; /* don't allocate more threads than cores available */ if (cpi->oxcf.multi_threaded > cm->processor_core_count) { th_count = cm->processor_core_count - 1; } /* we have th_count + 1 (main) threads processing one row each */ /* no point to have more threads than the sync range allows */ if (th_count > ((cm->mb_cols / cpi->mt_sync_range) - 1)) { th_count = (cm->mb_cols / cpi->mt_sync_range) - 1; } if (th_count == 0) return 0; CHECK_MEM_ERROR(cpi->h_encoding_thread, vpx_malloc(sizeof(pthread_t) * th_count)); CHECK_MEM_ERROR(cpi->h_event_start_encoding, vpx_malloc(sizeof(sem_t) * th_count)); CHECK_MEM_ERROR(cpi->h_event_end_encoding, vpx_malloc(sizeof(sem_t) * th_count)); CHECK_MEM_ERROR(cpi->mb_row_ei, vpx_memalign(32, sizeof(MB_ROW_COMP) * th_count)); memset(cpi->mb_row_ei, 0, sizeof(MB_ROW_COMP) * th_count); CHECK_MEM_ERROR(cpi->en_thread_data, vpx_malloc(sizeof(ENCODETHREAD_DATA) * th_count)); vpx_atomic_store_release(&cpi->b_multi_threaded, 1); cpi->encoding_thread_count = th_count; /* printf("[VP8:] multi_threaded encoding is enabled with %d threads\n\n", (cpi->encoding_thread_count +1)); */ for (ithread = 0; ithread < th_count; ++ithread) { ENCODETHREAD_DATA *ethd = &cpi->en_thread_data[ithread]; /* Setup block ptrs and offsets */ vp8_setup_block_ptrs(&cpi->mb_row_ei[ithread].mb); vp8_setup_block_dptrs(&cpi->mb_row_ei[ithread].mb.e_mbd); sem_init(&cpi->h_event_start_encoding[ithread], 0, 0); sem_init(&cpi->h_event_end_encoding[ithread], 0, 0); ethd->ithread = ithread; ethd->ptr1 = (void *)cpi; ethd->ptr2 = (void *)&cpi->mb_row_ei[ithread]; rc = pthread_create(&cpi->h_encoding_thread[ithread], 0, thread_encoding_proc, ethd); if (rc) break; } if (rc) { /* shutdown other threads */ vpx_atomic_store_release(&cpi->b_multi_threaded, 0); for (--ithread; ithread >= 0; ithread--) { pthread_join(cpi->h_encoding_thread[ithread], 0); sem_destroy(&cpi->h_event_start_encoding[ithread]); sem_destroy(&cpi->h_event_end_encoding[ithread]); } /* free thread related resources */ vpx_free(cpi->h_event_start_encoding); vpx_free(cpi->h_event_end_encoding); vpx_free(cpi->h_encoding_thread); vpx_free(cpi->mb_row_ei); vpx_free(cpi->en_thread_data); return -1; } { LPFTHREAD_DATA *lpfthd = &cpi->lpf_thread_data; sem_init(&cpi->h_event_start_lpf, 0, 0); sem_init(&cpi->h_event_end_lpf, 0, 0); lpfthd->ptr1 = (void *)cpi; rc = pthread_create(&cpi->h_filter_thread, 0, thread_loopfilter, lpfthd); if (rc) { /* shutdown other threads */ vpx_atomic_store_release(&cpi->b_multi_threaded, 0); for (--ithread; ithread >= 0; ithread--) { sem_post(&cpi->h_event_start_encoding[ithread]); sem_post(&cpi->h_event_end_encoding[ithread]); pthread_join(cpi->h_encoding_thread[ithread], 0); sem_destroy(&cpi->h_event_start_encoding[ithread]); sem_destroy(&cpi->h_event_end_encoding[ithread]); } sem_destroy(&cpi->h_event_end_lpf); sem_destroy(&cpi->h_event_start_lpf); /* free thread related resources */ vpx_free(cpi->h_event_start_encoding); vpx_free(cpi->h_event_end_encoding); vpx_free(cpi->h_encoding_thread); vpx_free(cpi->mb_row_ei); vpx_free(cpi->en_thread_data); return -2; } } } return 0; } void vp8cx_remove_encoder_threads(VP8_COMP *cpi) { if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { /* shutdown other threads */ vpx_atomic_store_release(&cpi->b_multi_threaded, 0); { int i; for (i = 0; i < cpi->encoding_thread_count; ++i) { sem_post(&cpi->h_event_start_encoding[i]); sem_post(&cpi->h_event_end_encoding[i]); pthread_join(cpi->h_encoding_thread[i], 0); sem_destroy(&cpi->h_event_start_encoding[i]); sem_destroy(&cpi->h_event_end_encoding[i]); } sem_post(&cpi->h_event_start_lpf); pthread_join(cpi->h_filter_thread, 0); } sem_destroy(&cpi->h_event_end_lpf); sem_destroy(&cpi->h_event_start_lpf); /* free thread related resources */ vpx_free(cpi->h_event_start_encoding); vpx_free(cpi->h_event_end_encoding); vpx_free(cpi->h_encoding_thread); vpx_free(cpi->mb_row_ei); vpx_free(cpi->en_thread_data); } } #endif