ref: 3d28ff98039134325cf689d8d08996fc8dabb225
dir: /vpx_dsp/x86/inv_txfm_sse2.h/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VPX_VPX_DSP_X86_INV_TXFM_SSE2_H_ #define VPX_VPX_DSP_X86_INV_TXFM_SSE2_H_ #include <emmintrin.h> // SSE2 #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/inv_txfm.h" #include "vpx_dsp/x86/transpose_sse2.h" #include "vpx_dsp/x86/txfm_common_sse2.h" static INLINE void idct8x8_12_transpose_16bit_4x8(const __m128i *const in, __m128i *const out) { // Unpack 16 bit elements. Goes from: // in[0]: 30 31 32 33 00 01 02 03 // in[1]: 20 21 22 23 10 11 12 13 // in[2]: 40 41 42 43 70 71 72 73 // in[3]: 50 51 52 53 60 61 62 63 // to: // tr0_0: 00 10 01 11 02 12 03 13 // tr0_1: 20 30 21 31 22 32 23 33 // tr0_2: 40 50 41 51 42 52 43 53 // tr0_3: 60 70 61 71 62 72 63 73 const __m128i tr0_0 = _mm_unpackhi_epi16(in[0], in[1]); const __m128i tr0_1 = _mm_unpacklo_epi16(in[1], in[0]); const __m128i tr0_2 = _mm_unpacklo_epi16(in[2], in[3]); const __m128i tr0_3 = _mm_unpackhi_epi16(in[3], in[2]); // Unpack 32 bit elements resulting in: // tr1_0: 00 10 20 30 01 11 21 31 // tr1_1: 02 12 22 32 03 13 23 33 // tr1_2: 40 50 60 70 41 51 61 71 // tr1_3: 42 52 62 72 43 53 63 73 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); // Unpack 64 bit elements resulting in: // out[0]: 00 10 20 30 40 50 60 70 // out[1]: 01 11 21 31 41 51 61 71 // out[2]: 02 12 22 32 42 52 62 72 // out[3]: 03 13 23 33 43 53 63 73 out[0] = _mm_unpacklo_epi64(tr1_0, tr1_1); out[1] = _mm_unpackhi_epi64(tr1_0, tr1_1); out[2] = _mm_unpacklo_epi64(tr1_2, tr1_3); out[3] = _mm_unpackhi_epi64(tr1_2, tr1_3); } static INLINE __m128i dct_const_round_shift_sse2(const __m128i in) { const __m128i t = _mm_add_epi32(in, _mm_set1_epi32(DCT_CONST_ROUNDING)); return _mm_srai_epi32(t, DCT_CONST_BITS); } static INLINE __m128i idct_madd_round_shift_sse2(const __m128i in, const __m128i cospi) { const __m128i t = _mm_madd_epi16(in, cospi); return dct_const_round_shift_sse2(t); } // Calculate the dot product between in0/1 and x and wrap to short. static INLINE __m128i idct_calc_wraplow_sse2(const __m128i in0, const __m128i in1, const __m128i x) { const __m128i t0 = idct_madd_round_shift_sse2(in0, x); const __m128i t1 = idct_madd_round_shift_sse2(in1, x); return _mm_packs_epi32(t0, t1); } // Multiply elements by constants and add them together. static INLINE void butterfly(const __m128i in0, const __m128i in1, const int c0, const int c1, __m128i *const out0, __m128i *const out1) { const __m128i cst0 = pair_set_epi16(c0, -c1); const __m128i cst1 = pair_set_epi16(c1, c0); const __m128i lo = _mm_unpacklo_epi16(in0, in1); const __m128i hi = _mm_unpackhi_epi16(in0, in1); *out0 = idct_calc_wraplow_sse2(lo, hi, cst0); *out1 = idct_calc_wraplow_sse2(lo, hi, cst1); } static INLINE __m128i butterfly_cospi16(const __m128i in) { const __m128i cst = pair_set_epi16(cospi_16_64, cospi_16_64); const __m128i lo = _mm_unpacklo_epi16(in, _mm_setzero_si128()); const __m128i hi = _mm_unpackhi_epi16(in, _mm_setzero_si128()); return idct_calc_wraplow_sse2(lo, hi, cst); } // Functions to allow 8 bit optimisations to be used when profile 0 is used with // highbitdepth enabled static INLINE __m128i load_input_data4(const tran_low_t *data) { #if CONFIG_VP9_HIGHBITDEPTH const __m128i zero = _mm_setzero_si128(); const __m128i in = _mm_load_si128((const __m128i *)data); return _mm_packs_epi32(in, zero); #else return _mm_loadl_epi64((const __m128i *)data); #endif } static INLINE __m128i load_input_data8(const tran_low_t *data) { #if CONFIG_VP9_HIGHBITDEPTH const __m128i in0 = _mm_load_si128((const __m128i *)data); const __m128i in1 = _mm_load_si128((const __m128i *)(data + 4)); return _mm_packs_epi32(in0, in1); #else return _mm_load_si128((const __m128i *)data); #endif } static INLINE void load_transpose_16bit_8x8(const tran_low_t *input, const int stride, __m128i *const in) { in[0] = load_input_data8(input + 0 * stride); in[1] = load_input_data8(input + 1 * stride); in[2] = load_input_data8(input + 2 * stride); in[3] = load_input_data8(input + 3 * stride); in[4] = load_input_data8(input + 4 * stride); in[5] = load_input_data8(input + 5 * stride); in[6] = load_input_data8(input + 6 * stride); in[7] = load_input_data8(input + 7 * stride); transpose_16bit_8x8(in, in); } static INLINE void recon_and_store(uint8_t *const dest, const __m128i in_x) { const __m128i zero = _mm_setzero_si128(); __m128i d0 = _mm_loadl_epi64((__m128i *)(dest)); d0 = _mm_unpacklo_epi8(d0, zero); d0 = _mm_add_epi16(in_x, d0); d0 = _mm_packus_epi16(d0, d0); _mm_storel_epi64((__m128i *)(dest), d0); } static INLINE void round_shift_8x8(const __m128i *const in, __m128i *const out) { const __m128i final_rounding = _mm_set1_epi16(1 << 4); out[0] = _mm_add_epi16(in[0], final_rounding); out[1] = _mm_add_epi16(in[1], final_rounding); out[2] = _mm_add_epi16(in[2], final_rounding); out[3] = _mm_add_epi16(in[3], final_rounding); out[4] = _mm_add_epi16(in[4], final_rounding); out[5] = _mm_add_epi16(in[5], final_rounding); out[6] = _mm_add_epi16(in[6], final_rounding); out[7] = _mm_add_epi16(in[7], final_rounding); out[0] = _mm_srai_epi16(out[0], 5); out[1] = _mm_srai_epi16(out[1], 5); out[2] = _mm_srai_epi16(out[2], 5); out[3] = _mm_srai_epi16(out[3], 5); out[4] = _mm_srai_epi16(out[4], 5); out[5] = _mm_srai_epi16(out[5], 5); out[6] = _mm_srai_epi16(out[6], 5); out[7] = _mm_srai_epi16(out[7], 5); } static INLINE void write_buffer_8x8(const __m128i *const in, uint8_t *const dest, const int stride) { __m128i t[8]; round_shift_8x8(in, t); recon_and_store(dest + 0 * stride, t[0]); recon_and_store(dest + 1 * stride, t[1]); recon_and_store(dest + 2 * stride, t[2]); recon_and_store(dest + 3 * stride, t[3]); recon_and_store(dest + 4 * stride, t[4]); recon_and_store(dest + 5 * stride, t[5]); recon_and_store(dest + 6 * stride, t[6]); recon_and_store(dest + 7 * stride, t[7]); } static INLINE void recon_and_store4x4_sse2(const __m128i *const in, uint8_t *const dest, const int stride) { const __m128i zero = _mm_setzero_si128(); __m128i d[2]; // Reconstruction and Store d[0] = _mm_cvtsi32_si128(*(const int *)(dest)); d[1] = _mm_cvtsi32_si128(*(const int *)(dest + stride * 3)); d[0] = _mm_unpacklo_epi32(d[0], _mm_cvtsi32_si128(*(const int *)(dest + stride))); d[1] = _mm_unpacklo_epi32( _mm_cvtsi32_si128(*(const int *)(dest + stride * 2)), d[1]); d[0] = _mm_unpacklo_epi8(d[0], zero); d[1] = _mm_unpacklo_epi8(d[1], zero); d[0] = _mm_add_epi16(d[0], in[0]); d[1] = _mm_add_epi16(d[1], in[1]); d[0] = _mm_packus_epi16(d[0], d[1]); *(int *)dest = _mm_cvtsi128_si32(d[0]); d[0] = _mm_srli_si128(d[0], 4); *(int *)(dest + stride) = _mm_cvtsi128_si32(d[0]); d[0] = _mm_srli_si128(d[0], 4); *(int *)(dest + stride * 2) = _mm_cvtsi128_si32(d[0]); d[0] = _mm_srli_si128(d[0], 4); *(int *)(dest + stride * 3) = _mm_cvtsi128_si32(d[0]); } static INLINE void store_buffer_8x32(__m128i *in, uint8_t *dst, int stride) { const __m128i final_rounding = _mm_set1_epi16(1 << 5); int j = 0; while (j < 32) { in[j] = _mm_adds_epi16(in[j], final_rounding); in[j + 1] = _mm_adds_epi16(in[j + 1], final_rounding); in[j] = _mm_srai_epi16(in[j], 6); in[j + 1] = _mm_srai_epi16(in[j + 1], 6); recon_and_store(dst, in[j]); dst += stride; recon_and_store(dst, in[j + 1]); dst += stride; j += 2; } } static INLINE void write_buffer_8x1(uint8_t *const dest, const __m128i in) { const __m128i final_rounding = _mm_set1_epi16(1 << 5); __m128i out; out = _mm_adds_epi16(in, final_rounding); out = _mm_srai_epi16(out, 6); recon_and_store(dest, out); } // Only do addition and subtraction butterfly, size = 16, 32 static INLINE void add_sub_butterfly(const __m128i *in, __m128i *out, int size) { int i = 0; const int num = size >> 1; const int bound = size - 1; while (i < num) { out[i] = _mm_add_epi16(in[i], in[bound - i]); out[bound - i] = _mm_sub_epi16(in[i], in[bound - i]); i++; } } static INLINE void idct8(const __m128i *const in /*in[8]*/, __m128i *const out /*out[8]*/) { __m128i step1[8], step2[8]; // stage 1 butterfly(in[1], in[7], cospi_28_64, cospi_4_64, &step1[4], &step1[7]); butterfly(in[5], in[3], cospi_12_64, cospi_20_64, &step1[5], &step1[6]); // stage 2 butterfly(in[0], in[4], cospi_16_64, cospi_16_64, &step2[1], &step2[0]); butterfly(in[2], in[6], cospi_24_64, cospi_8_64, &step2[2], &step2[3]); step2[4] = _mm_add_epi16(step1[4], step1[5]); step2[5] = _mm_sub_epi16(step1[4], step1[5]); step2[6] = _mm_sub_epi16(step1[7], step1[6]); step2[7] = _mm_add_epi16(step1[7], step1[6]); // stage 3 step1[0] = _mm_add_epi16(step2[0], step2[3]); step1[1] = _mm_add_epi16(step2[1], step2[2]); step1[2] = _mm_sub_epi16(step2[1], step2[2]); step1[3] = _mm_sub_epi16(step2[0], step2[3]); butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); // stage 4 out[0] = _mm_add_epi16(step1[0], step2[7]); out[1] = _mm_add_epi16(step1[1], step1[6]); out[2] = _mm_add_epi16(step1[2], step1[5]); out[3] = _mm_add_epi16(step1[3], step2[4]); out[4] = _mm_sub_epi16(step1[3], step2[4]); out[5] = _mm_sub_epi16(step1[2], step1[5]); out[6] = _mm_sub_epi16(step1[1], step1[6]); out[7] = _mm_sub_epi16(step1[0], step2[7]); } static INLINE void idct8x8_12_add_kernel_sse2(__m128i *const io /*io[8]*/) { const __m128i zero = _mm_setzero_si128(); const __m128i cp_16_16 = pair_set_epi16(cospi_16_64, cospi_16_64); const __m128i cp_16_n16 = pair_set_epi16(cospi_16_64, -cospi_16_64); __m128i step1[8], step2[8], tmp[4]; transpose_16bit_4x4(io, io); // io[0]: 00 10 20 30 01 11 21 31 // io[1]: 02 12 22 32 03 13 23 33 // stage 1 { const __m128i cp_28_n4 = pair_set_epi16(cospi_28_64, -cospi_4_64); const __m128i cp_4_28 = pair_set_epi16(cospi_4_64, cospi_28_64); const __m128i cp_n20_12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i cp_12_20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i lo_1 = _mm_unpackhi_epi16(io[0], zero); const __m128i lo_3 = _mm_unpackhi_epi16(io[1], zero); step1[4] = idct_calc_wraplow_sse2(cp_28_n4, cp_4_28, lo_1); // step1 4&7 step1[5] = idct_calc_wraplow_sse2(cp_n20_12, cp_12_20, lo_3); // step1 5&6 } // stage 2 { const __m128i cp_24_n8 = pair_set_epi16(cospi_24_64, -cospi_8_64); const __m128i cp_8_24 = pair_set_epi16(cospi_8_64, cospi_24_64); const __m128i lo_0 = _mm_unpacklo_epi16(io[0], zero); const __m128i lo_2 = _mm_unpacklo_epi16(io[1], zero); const __m128i t = idct_madd_round_shift_sse2(cp_16_16, lo_0); step2[0] = _mm_packs_epi32(t, t); // step2 0&1 step2[2] = idct_calc_wraplow_sse2(cp_8_24, cp_24_n8, lo_2); // step2 3&2 step2[4] = _mm_add_epi16(step1[4], step1[5]); // step2 4&7 step2[5] = _mm_sub_epi16(step1[4], step1[5]); // step2 5&6 step2[6] = _mm_unpackhi_epi64(step2[5], zero); // step2 6 } // stage 3 { const __m128i lo_65 = _mm_unpacklo_epi16(step2[6], step2[5]); tmp[0] = _mm_add_epi16(step2[0], step2[2]); // step1 0&1 tmp[1] = _mm_sub_epi16(step2[0], step2[2]); // step1 3&2 step1[2] = _mm_unpackhi_epi64(tmp[1], tmp[0]); // step1 2&1 step1[3] = _mm_unpacklo_epi64(tmp[1], tmp[0]); // step1 3&0 step1[5] = idct_calc_wraplow_sse2(cp_16_n16, cp_16_16, lo_65); // step1 5&6 } // stage 4 tmp[0] = _mm_add_epi16(step1[3], step2[4]); // output 3&0 tmp[1] = _mm_add_epi16(step1[2], step1[5]); // output 2&1 tmp[2] = _mm_sub_epi16(step1[3], step2[4]); // output 4&7 tmp[3] = _mm_sub_epi16(step1[2], step1[5]); // output 5&6 idct8x8_12_transpose_16bit_4x8(tmp, io); io[4] = io[5] = io[6] = io[7] = zero; idct8(io, io); } static INLINE void idct16_8col(const __m128i *const in /*in[16]*/, __m128i *const out /*out[16]*/) { __m128i step1[16], step2[16]; // stage 2 butterfly(in[1], in[15], cospi_30_64, cospi_2_64, &step2[8], &step2[15]); butterfly(in[9], in[7], cospi_14_64, cospi_18_64, &step2[9], &step2[14]); butterfly(in[5], in[11], cospi_22_64, cospi_10_64, &step2[10], &step2[13]); butterfly(in[13], in[3], cospi_6_64, cospi_26_64, &step2[11], &step2[12]); // stage 3 butterfly(in[2], in[14], cospi_28_64, cospi_4_64, &step1[4], &step1[7]); butterfly(in[10], in[6], cospi_12_64, cospi_20_64, &step1[5], &step1[6]); step1[8] = _mm_add_epi16(step2[8], step2[9]); step1[9] = _mm_sub_epi16(step2[8], step2[9]); step1[10] = _mm_sub_epi16(step2[11], step2[10]); step1[11] = _mm_add_epi16(step2[10], step2[11]); step1[12] = _mm_add_epi16(step2[12], step2[13]); step1[13] = _mm_sub_epi16(step2[12], step2[13]); step1[14] = _mm_sub_epi16(step2[15], step2[14]); step1[15] = _mm_add_epi16(step2[14], step2[15]); // stage 4 butterfly(in[0], in[8], cospi_16_64, cospi_16_64, &step2[1], &step2[0]); butterfly(in[4], in[12], cospi_24_64, cospi_8_64, &step2[2], &step2[3]); butterfly(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], &step2[14]); butterfly(step1[10], step1[13], -cospi_8_64, -cospi_24_64, &step2[13], &step2[10]); step2[5] = _mm_sub_epi16(step1[4], step1[5]); step1[4] = _mm_add_epi16(step1[4], step1[5]); step2[6] = _mm_sub_epi16(step1[7], step1[6]); step1[7] = _mm_add_epi16(step1[6], step1[7]); step2[8] = step1[8]; step2[11] = step1[11]; step2[12] = step1[12]; step2[15] = step1[15]; // stage 5 step1[0] = _mm_add_epi16(step2[0], step2[3]); step1[1] = _mm_add_epi16(step2[1], step2[2]); step1[2] = _mm_sub_epi16(step2[1], step2[2]); step1[3] = _mm_sub_epi16(step2[0], step2[3]); butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); step1[8] = _mm_add_epi16(step2[8], step2[11]); step1[9] = _mm_add_epi16(step2[9], step2[10]); step1[10] = _mm_sub_epi16(step2[9], step2[10]); step1[11] = _mm_sub_epi16(step2[8], step2[11]); step1[12] = _mm_sub_epi16(step2[15], step2[12]); step1[13] = _mm_sub_epi16(step2[14], step2[13]); step1[14] = _mm_add_epi16(step2[14], step2[13]); step1[15] = _mm_add_epi16(step2[15], step2[12]); // stage 6 step2[0] = _mm_add_epi16(step1[0], step1[7]); step2[1] = _mm_add_epi16(step1[1], step1[6]); step2[2] = _mm_add_epi16(step1[2], step1[5]); step2[3] = _mm_add_epi16(step1[3], step1[4]); step2[4] = _mm_sub_epi16(step1[3], step1[4]); step2[5] = _mm_sub_epi16(step1[2], step1[5]); step2[6] = _mm_sub_epi16(step1[1], step1[6]); step2[7] = _mm_sub_epi16(step1[0], step1[7]); butterfly(step1[13], step1[10], cospi_16_64, cospi_16_64, &step2[10], &step2[13]); butterfly(step1[12], step1[11], cospi_16_64, cospi_16_64, &step2[11], &step2[12]); // stage 7 out[0] = _mm_add_epi16(step2[0], step1[15]); out[1] = _mm_add_epi16(step2[1], step1[14]); out[2] = _mm_add_epi16(step2[2], step2[13]); out[3] = _mm_add_epi16(step2[3], step2[12]); out[4] = _mm_add_epi16(step2[4], step2[11]); out[5] = _mm_add_epi16(step2[5], step2[10]); out[6] = _mm_add_epi16(step2[6], step1[9]); out[7] = _mm_add_epi16(step2[7], step1[8]); out[8] = _mm_sub_epi16(step2[7], step1[8]); out[9] = _mm_sub_epi16(step2[6], step1[9]); out[10] = _mm_sub_epi16(step2[5], step2[10]); out[11] = _mm_sub_epi16(step2[4], step2[11]); out[12] = _mm_sub_epi16(step2[3], step2[12]); out[13] = _mm_sub_epi16(step2[2], step2[13]); out[14] = _mm_sub_epi16(step2[1], step1[14]); out[15] = _mm_sub_epi16(step2[0], step1[15]); } static INLINE void idct16x16_10_pass1(const __m128i *const input /*input[4]*/, __m128i *const output /*output[16]*/) { const __m128i zero = _mm_setzero_si128(); const __m128i k__cospi_p16_p16 = pair_set_epi16(cospi_16_64, cospi_16_64); const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64); __m128i step1[16], step2[16]; transpose_16bit_4x4(input, output); // stage 2 { const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64); const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64); const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64); const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64); const __m128i lo_1_15 = _mm_unpackhi_epi16(output[0], zero); const __m128i lo_13_3 = _mm_unpackhi_epi16(zero, output[1]); step2[8] = idct_calc_wraplow_sse2(k__cospi_p30_m02, k__cospi_p02_p30, lo_1_15); // step2 8&15 step2[11] = idct_calc_wraplow_sse2(k__cospi_p06_m26, k__cospi_p26_p06, lo_13_3); // step2 11&12 } // stage 3 { const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64); const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64); const __m128i lo_2_14 = _mm_unpacklo_epi16(output[1], zero); step1[4] = idct_calc_wraplow_sse2(k__cospi_p28_m04, k__cospi_p04_p28, lo_2_14); // step1 4&7 step1[13] = _mm_unpackhi_epi64(step2[11], zero); step1[14] = _mm_unpackhi_epi64(step2[8], zero); } // stage 4 { const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64); const __m128i lo_0_8 = _mm_unpacklo_epi16(output[0], zero); const __m128i lo_9_14 = _mm_unpacklo_epi16(step2[8], step1[14]); const __m128i lo_10_13 = _mm_unpacklo_epi16(step2[11], step1[13]); const __m128i t = idct_madd_round_shift_sse2(lo_0_8, k__cospi_p16_p16); step1[0] = _mm_packs_epi32(t, t); // step2 0&1 step2[9] = idct_calc_wraplow_sse2(k__cospi_m08_p24, k__cospi_p24_p08, lo_9_14); // step2 9&14 step2[10] = idct_calc_wraplow_sse2(k__cospi_m24_m08, k__cospi_m08_p24, lo_10_13); // step2 10&13 step2[6] = _mm_unpackhi_epi64(step1[4], zero); } // stage 5 { const __m128i lo_5_6 = _mm_unpacklo_epi16(step1[4], step2[6]); step1[6] = idct_calc_wraplow_sse2(k__cospi_p16_p16, k__cospi_m16_p16, lo_5_6); // step1 6&5 step1[8] = _mm_add_epi16(step2[8], step2[11]); step1[9] = _mm_add_epi16(step2[9], step2[10]); step1[10] = _mm_sub_epi16(step2[9], step2[10]); step1[11] = _mm_sub_epi16(step2[8], step2[11]); step1[12] = _mm_unpackhi_epi64(step1[11], zero); step1[13] = _mm_unpackhi_epi64(step1[10], zero); step1[14] = _mm_unpackhi_epi64(step1[9], zero); step1[15] = _mm_unpackhi_epi64(step1[8], zero); } // stage 6 { const __m128i lo_10_13 = _mm_unpacklo_epi16(step1[10], step1[13]); const __m128i lo_11_12 = _mm_unpacklo_epi16(step1[11], step1[12]); step2[10] = idct_calc_wraplow_sse2(k__cospi_m16_p16, k__cospi_p16_p16, lo_10_13); // step2 10&13 step2[11] = idct_calc_wraplow_sse2(k__cospi_m16_p16, k__cospi_p16_p16, lo_11_12); // step2 11&12 step2[13] = _mm_unpackhi_epi64(step2[10], zero); step2[12] = _mm_unpackhi_epi64(step2[11], zero); step2[3] = _mm_add_epi16(step1[0], step1[4]); step2[1] = _mm_add_epi16(step1[0], step1[6]); step2[6] = _mm_sub_epi16(step1[0], step1[6]); step2[4] = _mm_sub_epi16(step1[0], step1[4]); step2[0] = _mm_unpackhi_epi64(step2[3], zero); step2[2] = _mm_unpackhi_epi64(step2[1], zero); step2[5] = _mm_unpackhi_epi64(step2[6], zero); step2[7] = _mm_unpackhi_epi64(step2[4], zero); } // stage 7. Left 8x16 only. output[0] = _mm_add_epi16(step2[0], step1[15]); output[1] = _mm_add_epi16(step2[1], step1[14]); output[2] = _mm_add_epi16(step2[2], step2[13]); output[3] = _mm_add_epi16(step2[3], step2[12]); output[4] = _mm_add_epi16(step2[4], step2[11]); output[5] = _mm_add_epi16(step2[5], step2[10]); output[6] = _mm_add_epi16(step2[6], step1[9]); output[7] = _mm_add_epi16(step2[7], step1[8]); output[8] = _mm_sub_epi16(step2[7], step1[8]); output[9] = _mm_sub_epi16(step2[6], step1[9]); output[10] = _mm_sub_epi16(step2[5], step2[10]); output[11] = _mm_sub_epi16(step2[4], step2[11]); output[12] = _mm_sub_epi16(step2[3], step2[12]); output[13] = _mm_sub_epi16(step2[2], step2[13]); output[14] = _mm_sub_epi16(step2[1], step1[14]); output[15] = _mm_sub_epi16(step2[0], step1[15]); } static INLINE void idct16x16_10_pass2(__m128i *const l /*l[8]*/, __m128i *const io /*io[16]*/) { const __m128i zero = _mm_setzero_si128(); __m128i step1[16], step2[16]; transpose_16bit_4x8(l, io); // stage 2 butterfly(io[1], zero, cospi_30_64, cospi_2_64, &step2[8], &step2[15]); butterfly(zero, io[3], cospi_6_64, cospi_26_64, &step2[11], &step2[12]); // stage 3 butterfly(io[2], zero, cospi_28_64, cospi_4_64, &step1[4], &step1[7]); // stage 4 step1[0] = butterfly_cospi16(io[0]); butterfly(step2[15], step2[8], cospi_24_64, cospi_8_64, &step2[9], &step2[14]); butterfly(step2[11], step2[12], -cospi_8_64, -cospi_24_64, &step2[13], &step2[10]); // stage 5 butterfly(step1[7], step1[4], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); step1[8] = _mm_add_epi16(step2[8], step2[11]); step1[9] = _mm_add_epi16(step2[9], step2[10]); step1[10] = _mm_sub_epi16(step2[9], step2[10]); step1[11] = _mm_sub_epi16(step2[8], step2[11]); step1[12] = _mm_sub_epi16(step2[15], step2[12]); step1[13] = _mm_sub_epi16(step2[14], step2[13]); step1[14] = _mm_add_epi16(step2[14], step2[13]); step1[15] = _mm_add_epi16(step2[15], step2[12]); // stage 6 step2[0] = _mm_add_epi16(step1[0], step1[7]); step2[1] = _mm_add_epi16(step1[0], step1[6]); step2[2] = _mm_add_epi16(step1[0], step1[5]); step2[3] = _mm_add_epi16(step1[0], step1[4]); step2[4] = _mm_sub_epi16(step1[0], step1[4]); step2[5] = _mm_sub_epi16(step1[0], step1[5]); step2[6] = _mm_sub_epi16(step1[0], step1[6]); step2[7] = _mm_sub_epi16(step1[0], step1[7]); butterfly(step1[13], step1[10], cospi_16_64, cospi_16_64, &step2[10], &step2[13]); butterfly(step1[12], step1[11], cospi_16_64, cospi_16_64, &step2[11], &step2[12]); // stage 7 io[0] = _mm_add_epi16(step2[0], step1[15]); io[1] = _mm_add_epi16(step2[1], step1[14]); io[2] = _mm_add_epi16(step2[2], step2[13]); io[3] = _mm_add_epi16(step2[3], step2[12]); io[4] = _mm_add_epi16(step2[4], step2[11]); io[5] = _mm_add_epi16(step2[5], step2[10]); io[6] = _mm_add_epi16(step2[6], step1[9]); io[7] = _mm_add_epi16(step2[7], step1[8]); io[8] = _mm_sub_epi16(step2[7], step1[8]); io[9] = _mm_sub_epi16(step2[6], step1[9]); io[10] = _mm_sub_epi16(step2[5], step2[10]); io[11] = _mm_sub_epi16(step2[4], step2[11]); io[12] = _mm_sub_epi16(step2[3], step2[12]); io[13] = _mm_sub_epi16(step2[2], step2[13]); io[14] = _mm_sub_epi16(step2[1], step1[14]); io[15] = _mm_sub_epi16(step2[0], step1[15]); } static INLINE void idct32_8x32_quarter_2_stage_4_to_6( __m128i *const step1 /*step1[16]*/, __m128i *const out /*out[16]*/) { __m128i step2[32]; // stage 4 step2[8] = step1[8]; step2[15] = step1[15]; butterfly(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], &step2[14]); butterfly(step1[13], step1[10], -cospi_8_64, cospi_24_64, &step2[10], &step2[13]); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[8] = _mm_add_epi16(step2[8], step2[11]); step1[9] = _mm_add_epi16(step2[9], step2[10]); step1[10] = _mm_sub_epi16(step2[9], step2[10]); step1[11] = _mm_sub_epi16(step2[8], step2[11]); step1[12] = _mm_sub_epi16(step2[15], step2[12]); step1[13] = _mm_sub_epi16(step2[14], step2[13]); step1[14] = _mm_add_epi16(step2[14], step2[13]); step1[15] = _mm_add_epi16(step2[15], step2[12]); // stage 6 out[8] = step1[8]; out[9] = step1[9]; butterfly(step1[13], step1[10], cospi_16_64, cospi_16_64, &out[10], &out[13]); butterfly(step1[12], step1[11], cospi_16_64, cospi_16_64, &out[11], &out[12]); out[14] = step1[14]; out[15] = step1[15]; } static INLINE void idct32_8x32_quarter_3_4_stage_4_to_7( __m128i *const step1 /*step1[32]*/, __m128i *const out /*out[32]*/) { __m128i step2[32]; // stage 4 step2[16] = _mm_add_epi16(step1[16], step1[19]); step2[17] = _mm_add_epi16(step1[17], step1[18]); step2[18] = _mm_sub_epi16(step1[17], step1[18]); step2[19] = _mm_sub_epi16(step1[16], step1[19]); step2[20] = _mm_sub_epi16(step1[23], step1[20]); step2[21] = _mm_sub_epi16(step1[22], step1[21]); step2[22] = _mm_add_epi16(step1[22], step1[21]); step2[23] = _mm_add_epi16(step1[23], step1[20]); step2[24] = _mm_add_epi16(step1[24], step1[27]); step2[25] = _mm_add_epi16(step1[25], step1[26]); step2[26] = _mm_sub_epi16(step1[25], step1[26]); step2[27] = _mm_sub_epi16(step1[24], step1[27]); step2[28] = _mm_sub_epi16(step1[31], step1[28]); step2[29] = _mm_sub_epi16(step1[30], step1[29]); step2[30] = _mm_add_epi16(step1[29], step1[30]); step2[31] = _mm_add_epi16(step1[28], step1[31]); // stage 5 step1[16] = step2[16]; step1[17] = step2[17]; butterfly(step2[29], step2[18], cospi_24_64, cospi_8_64, &step1[18], &step1[29]); butterfly(step2[28], step2[19], cospi_24_64, cospi_8_64, &step1[19], &step1[28]); butterfly(step2[27], step2[20], -cospi_8_64, cospi_24_64, &step1[20], &step1[27]); butterfly(step2[26], step2[21], -cospi_8_64, cospi_24_64, &step1[21], &step1[26]); step1[22] = step2[22]; step1[23] = step2[23]; step1[24] = step2[24]; step1[25] = step2[25]; step1[30] = step2[30]; step1[31] = step2[31]; // stage 6 out[16] = _mm_add_epi16(step1[16], step1[23]); out[17] = _mm_add_epi16(step1[17], step1[22]); out[18] = _mm_add_epi16(step1[18], step1[21]); out[19] = _mm_add_epi16(step1[19], step1[20]); step2[20] = _mm_sub_epi16(step1[19], step1[20]); step2[21] = _mm_sub_epi16(step1[18], step1[21]); step2[22] = _mm_sub_epi16(step1[17], step1[22]); step2[23] = _mm_sub_epi16(step1[16], step1[23]); step2[24] = _mm_sub_epi16(step1[31], step1[24]); step2[25] = _mm_sub_epi16(step1[30], step1[25]); step2[26] = _mm_sub_epi16(step1[29], step1[26]); step2[27] = _mm_sub_epi16(step1[28], step1[27]); out[28] = _mm_add_epi16(step1[27], step1[28]); out[29] = _mm_add_epi16(step1[26], step1[29]); out[30] = _mm_add_epi16(step1[25], step1[30]); out[31] = _mm_add_epi16(step1[24], step1[31]); // stage 7 butterfly(step2[27], step2[20], cospi_16_64, cospi_16_64, &out[20], &out[27]); butterfly(step2[26], step2[21], cospi_16_64, cospi_16_64, &out[21], &out[26]); butterfly(step2[25], step2[22], cospi_16_64, cospi_16_64, &out[22], &out[25]); butterfly(step2[24], step2[23], cospi_16_64, cospi_16_64, &out[23], &out[24]); } void idct4_sse2(__m128i *const in); void vpx_idct8_sse2(__m128i *const in); void idct16_sse2(__m128i *const in0, __m128i *const in1); void iadst4_sse2(__m128i *const in); void iadst8_sse2(__m128i *const in); void vpx_iadst16_8col_sse2(__m128i *const in); void iadst16_sse2(__m128i *const in0, __m128i *const in1); void idct32_1024_8x32(const __m128i *const in, __m128i *const out); void idct32_34_8x32_sse2(const __m128i *const in, __m128i *const out); void idct32_34_8x32_ssse3(const __m128i *const in, __m128i *const out); #endif // VPX_VPX_DSP_X86_INV_TXFM_SSE2_H_