ref: 249dc0489c7b24371e1f829e9c849fa7464f6c0c
dir: /appl/math/ffts.b/
implement FFTs; include "sys.m"; sys: Sys; print: import sys; include "math.m"; math: Math; cos, sin, Degree, Pi: import math; include "ffts.m"; # by r. c. singleton, stanford research institute, sept. 1968 # translated to limbo by eric grosse, jan 1997 # arrays at(maxf), ck(maxf), bt(maxf), sk(maxf), and np(maxp) # are used for temporary storage. if the available storage # is insufficient, the program exits. # maxf must be >= the maximum prime factor of n. # maxp must be > the number of prime factors of n. # in addition, if the square-free portion k of n has two or # more prime factors, then maxp must be >= k-1. # array storage in nfac for a maximum of 15 prime factors of n. # if n has more than one square-free factor, the product of the # square-free factors must be <= 210 ffts(a,b:array of real, ntot,n,nspan,isn:int){ maxp: con 209; i,ii,inc,j,jc,jf,jj,k,k1,k2,k3,k4,kk:int; ks,kspan,kspnn,kt,m,maxf,nn,nt:int; aa,aj,ajm,ajp,ak,akm,akp,bb,bj,bjm,bjp,bk,bkm,bkp:real; c1,c2,c3,c72,cd,rad,radf,s1,s2,s3,s72,s120,sd:real; maxf = 23; if(math == nil){ sys = load Sys Sys->PATH; math = load Math Math->PATH; } nfac := array[12] of int; np := array[maxp] of int; at := array[23] of real; ck := array[23] of real; bt := array[23] of real; sk := array[23] of real; if(n<2) return; inc = isn; c72 = cos(72.*Degree); s72 = sin(72.*Degree); s120 = sin(120.*Degree); rad = 2.*Pi; if(isn<0){ s72 = -s72; s120 = -s120; rad = -rad; inc = -inc; } nt = inc*ntot; ks = inc*nspan; kspan = ks; nn = nt-inc; jc = ks/n; radf = rad*real(jc)*0.5; i = 0; jf = 0; # determine the factors of n m = 0; k = n; while(k==k/16*16){ m = m+1; nfac[m] = 4; k = k/16; } j = 3; jj = 9; for(;;) if(k%jj==0){ m = m+1; nfac[m] = j; k = k/jj; }else{ j = j+2; jj = j*j; if(jj>k) break; } if(k<=4){ kt = m; nfac[m+1] = k; if(k!=1) m = m+1; }else{ if(k==k/4*4){ m = m+1; nfac[m] = 2; k = k/4; } kt = m; j = 2; do{ if(k%j==0){ m = m+1; nfac[m] = j; k = k/j; } j = ((j+1)/2)*2+1; }while(j<=k); } if(kt!=0){ j = kt; do{ m = m+1; nfac[m] = nfac[j]; j = j-1; }while(j!=0); } for(;;){ # compute fourier transform sd = radf/real(kspan); cd = sin(sd); cd = 2.0*cd*cd; sd = sin(sd+sd); kk = 1; i = i+1; if(nfac[i]==2){ # transform for factor of 2 (including rotation factor) kspan = kspan/2; k1 = kspan+2; for(;;){ k2 = kk+kspan; ak = a[k2-1]; bk = b[k2-1]; a[k2-1] = a[kk-1]-ak; b[k2-1] = b[kk-1]-bk; a[kk-1] = a[kk-1]+ak; b[kk-1] = b[kk-1]+bk; kk = k2+kspan; if(kk>nn){ kk = kk-nn; if(kk>jc) break; } } if(kk>kspan) break; do{ c1 = 1.0-cd; s1 = sd; for(;;){ k2 = kk+kspan; ak = a[kk-1]-a[k2-1]; bk = b[kk-1]-b[k2-1]; a[kk-1] = a[kk-1]+a[k2-1]; b[kk-1] = b[kk-1]+b[k2-1]; a[k2-1] = c1*ak-s1*bk; b[k2-1] = s1*ak+c1*bk; kk = k2+kspan; if(kk>=nt){ k2 = kk-nt; c1 = -c1; kk = k1-k2; if(kk<=k2){ ak = c1-(cd*c1+sd*s1); s1 = (sd*c1-cd*s1)+s1; c1 = 2.0-(ak*ak+s1*s1); s1 = c1*s1; c1 = c1*ak; kk = kk+jc; if(kk>=k2) break; } } } k1 = k1+inc+inc; kk = (k1-kspan)/2+jc; }while(kk<=jc+jc); }else{ # transform for factor of 4 if(nfac[i]!=4){ # transform for odd factors k = nfac[i]; kspnn = kspan; kspan = kspan/k; if(k==3) for(;;){ # transform for factor of 3 (optional code) k1 = kk+kspan; k2 = k1+kspan; ak = a[kk-1]; bk = b[kk-1]; aj = a[k1-1]+a[k2-1]; bj = b[k1-1]+b[k2-1]; a[kk-1] = ak+aj; b[kk-1] = bk+bj; ak = -0.5*aj+ak; bk = -0.5*bj+bk; aj = (a[k1-1]-a[k2-1])*s120; bj = (b[k1-1]-b[k2-1])*s120; a[k1-1] = ak-bj; b[k1-1] = bk+aj; a[k2-1] = ak+bj; b[k2-1] = bk-aj; kk = k2+kspan; if(kk>=nn){ kk = kk-nn; if(kk>kspan) break; } } else if(k==5){ # transform for factor of 5 (optional code) c2 = c72*c72-s72*s72; s2 = 2.0*c72*s72; for(;;){ k1 = kk+kspan; k2 = k1+kspan; k3 = k2+kspan; k4 = k3+kspan; akp = a[k1-1]+a[k4-1]; akm = a[k1-1]-a[k4-1]; bkp = b[k1-1]+b[k4-1]; bkm = b[k1-1]-b[k4-1]; ajp = a[k2-1]+a[k3-1]; ajm = a[k2-1]-a[k3-1]; bjp = b[k2-1]+b[k3-1]; bjm = b[k2-1]-b[k3-1]; aa = a[kk-1]; bb = b[kk-1]; a[kk-1] = aa+akp+ajp; b[kk-1] = bb+bkp+bjp; ak = akp*c72+ajp*c2+aa; bk = bkp*c72+bjp*c2+bb; aj = akm*s72+ajm*s2; bj = bkm*s72+bjm*s2; a[k1-1] = ak-bj; a[k4-1] = ak+bj; b[k1-1] = bk+aj; b[k4-1] = bk-aj; ak = akp*c2+ajp*c72+aa; bk = bkp*c2+bjp*c72+bb; aj = akm*s2-ajm*s72; bj = bkm*s2-bjm*s72; a[k2-1] = ak-bj; a[k3-1] = ak+bj; b[k2-1] = bk+aj; b[k3-1] = bk-aj; kk = k4+kspan; if(kk>=nn){ kk = kk-nn; if(kk>kspan) break; } } }else{ if(k!=jf){ jf = k; s1 = rad/real(k); c1 = cos(s1); s1 = sin(s1); if(jf>maxf){ sys->fprint(sys->fildes(2),"too many primes for fft"); exit; } ck[jf-1] = 1.0; sk[jf-1] = 0.0; j = 1; do{ ck[j-1] = ck[k-1]*c1+sk[k-1]*s1; sk[j-1] = ck[k-1]*s1-sk[k-1]*c1; k = k-1; ck[k-1] = ck[j-1]; sk[k-1] = -sk[j-1]; j = j+1; }while(j<k); } for(;;){ k1 = kk; k2 = kk+kspnn; aa = a[kk-1]; bb = b[kk-1]; ak = aa; bk = bb; j = 1; k1 = k1+kspan; do{ k2 = k2-kspan; j = j+1; at[j-1] = a[k1-1]+a[k2-1]; ak = at[j-1]+ak; bt[j-1] = b[k1-1]+b[k2-1]; bk = bt[j-1]+bk; j = j+1; at[j-1] = a[k1-1]-a[k2-1]; bt[j-1] = b[k1-1]-b[k2-1]; k1 = k1+kspan; }while(k1<k2); a[kk-1] = ak; b[kk-1] = bk; k1 = kk; k2 = kk+kspnn; j = 1; do{ k1 = k1+kspan; k2 = k2-kspan; jj = j; ak = aa; bk = bb; aj = 0.0; bj = 0.0; k = 1; do{ k = k+1; ak = at[k-1]*ck[jj-1]+ak; bk = bt[k-1]*ck[jj-1]+bk; k = k+1; aj = at[k-1]*sk[jj-1]+aj; bj = bt[k-1]*sk[jj-1]+bj; jj = jj+j; if(jj>jf) jj = jj-jf; }while(k<jf); k = jf-j; a[k1-1] = ak-bj; b[k1-1] = bk+aj; a[k2-1] = ak+bj; b[k2-1] = bk-aj; j = j+1; }while(j<k); kk = kk+kspnn; if(kk>nn){ kk = kk-nn; if(kk>kspan) break; } } } # multiply by rotation factor (except for factors of 2 and 4) if(i==m) break; kk = jc+1; do{ c2 = 1.0-cd; s1 = sd; do{ c1 = c2; s2 = s1; kk = kk+kspan; for(;;){ ak = a[kk-1]; a[kk-1] = c2*ak-s2*b[kk-1]; b[kk-1] = s2*ak+c2*b[kk-1]; kk = kk+kspnn; if(kk>nt){ ak = s1*s2; s2 = s1*c2+c1*s2; c2 = c1*c2-ak; kk = kk-nt+kspan; if(kk>kspnn) break; } } c2 = c1-(cd*c1+sd*s1); s1 = s1+(sd*c1-cd*s1); c1 = 2.0-(c2*c2+s1*s1); s1 = c1*s1; c2 = c1*c2; kk = kk-kspnn+jc; }while(kk<=kspan); kk = kk-kspan+jc+inc; }while(kk<=jc+jc); }else{ kspnn = kspan; kspan = kspan/4; do{ c1 = 1.; s1 = 0.; for(;;){ k1 = kk+kspan; k2 = k1+kspan; k3 = k2+kspan; akp = a[kk-1]+a[k2-1]; akm = a[kk-1]-a[k2-1]; ajp = a[k1-1]+a[k3-1]; ajm = a[k1-1]-a[k3-1]; a[kk-1] = akp+ajp; ajp = akp-ajp; bkp = b[kk-1]+b[k2-1]; bkm = b[kk-1]-b[k2-1]; bjp = b[k1-1]+b[k3-1]; bjm = b[k1-1]-b[k3-1]; b[kk-1] = bkp+bjp; bjp = bkp-bjp; do10 := 0; if(isn<0){ akp = akm+bjm; akm = akm-bjm; bkp = bkm-ajm; bkm = bkm+ajm; if(s1!=0.) do10 = 1; }else{ akp = akm-bjm; akm = akm+bjm; bkp = bkm+ajm; bkm = bkm-ajm; if(s1!=0.) do10 = 1; } if(do10){ a[k1-1] = akp*c1-bkp*s1; b[k1-1] = akp*s1+bkp*c1; a[k2-1] = ajp*c2-bjp*s2; b[k2-1] = ajp*s2+bjp*c2; a[k3-1] = akm*c3-bkm*s3; b[k3-1] = akm*s3+bkm*c3; kk = k3+kspan; if(kk<=nt) continue; }else{ a[k1-1] = akp; b[k1-1] = bkp; a[k2-1] = ajp; b[k2-1] = bjp; a[k3-1] = akm; b[k3-1] = bkm; kk = k3+kspan; if(kk<=nt) continue; } c2 = c1-(cd*c1+sd*s1); s1 = (sd*c1-cd*s1)+s1; c1 = 2.0-(c2*c2+s1*s1); s1 = c1*s1; c1 = c1*c2; c2 = c1*c1-s1*s1; s2 = 2.0*c1*s1; c3 = c2*c1-s2*s1; s3 = c2*s1+s2*c1; kk = kk-nt+jc; if(kk>kspan) break; } kk = kk-kspan+inc; }while(kk<=jc); if(kspan==jc) break; } } } # end "compute fourier transform" # permute the results to normal order---done in two stages # permutation for square factors of n np[0] = ks; if(kt!=0){ k = kt+kt+1; if(m<k) k = k-1; j = 1; np[k] = jc; do{ np[j] = np[j-1]/nfac[j]; np[k-1] = np[k]*nfac[j]; j = j+1; k = k-1; }while(j<k); k3 = np[k]; kspan = np[1]; kk = jc+1; k2 = kspan+1; j = 1; if(n!=ntot){ for(;;){ # permutation for multivariate transform k = kk+jc; do{ ak = a[kk-1]; a[kk-1] = a[k2-1]; a[k2-1] = ak; bk = b[kk-1]; b[kk-1] = b[k2-1]; b[k2-1] = bk; kk = kk+inc; k2 = k2+inc; }while(kk<k); kk = kk+ks-jc; k2 = k2+ks-jc; if(kk>=nt){ k2 = k2-nt+kspan; kk = kk-nt+jc; if(k2>=ks) permm: for(;;){ k2 = k2-np[j-1]; j = j+1; k2 = np[j]+k2; if(k2<=np[j-1]){ j = 1; do{ if(kk<k2) break permm; kk = kk+jc; k2 = kspan+k2; }while(k2<ks); if(kk>=ks) break permm; } } } } jc = k3; }else{ for(;;){ # permutation for single-variate transform (optional code) ak = a[kk-1]; a[kk-1] = a[k2-1]; a[k2-1] = ak; bk = b[kk-1]; b[kk-1] = b[k2-1]; b[k2-1] = bk; kk = kk+inc; k2 = kspan+k2; if(k2>=ks) perms: for(;;){ k2 = k2-np[j-1]; j = j+1; k2 = np[j]+k2; if(k2<=np[j-1]){ j = 1; do{ if(kk<k2) break perms; kk = kk+inc; k2 = kspan+k2; }while(k2<ks); if(kk>=ks) break perms; } } } jc = k3; } } if(2*kt+1>=m) return; kspnn = np[kt]; # permutation for square-free factors of n j = m-kt; nfac[j+1] = 1; do{ nfac[j] = nfac[j]*nfac[j+1]; j = j-1; }while(j!=kt); kt = kt+1; nn = nfac[kt]-1; if(nn<=maxp){ jj = 0; j = 0; for(;;){ k2 = nfac[kt]; k = kt+1; kk = nfac[k]; j = j+1; if(j>nn) break; for(;;){ jj = kk+jj; if(jj<k2) break; jj = jj-k2; k2 = kk; k = k+1; kk = nfac[k]; } np[j-1] = jj; } # determine the permutation cycles of length greater than 1 j = 0; for(;;){ j = j+1; kk = np[j-1]; if(kk>=0) if(kk==j){ np[j-1] = -j; if(j==nn) break; }else{ do{ k = kk; kk = np[k-1]; np[k-1] = -kk; }while(kk!=j); k3 = kk; } } maxf = inc*maxf; for(;;){ j = k3+1; nt = nt-kspnn; ii = nt-inc+1; if(nt<0) break; for(;;){ j = j-1; if(np[j-1]>=0){ jj = jc; do{ kspan = jj; if(jj>maxf) kspan = maxf; jj = jj-kspan; k = np[j-1]; kk = jc*k+ii+jj; k1 = kk+kspan; k2 = 0; do{ k2 = k2+1; at[k2-1] = a[k1-1]; bt[k2-1] = b[k1-1]; k1 = k1-inc; }while(k1!=kk); do{ k1 = kk+kspan; k2 = k1-jc*(k+np[k-1]); k = -np[k-1]; do{ a[k1-1] = a[k2-1]; b[k1-1] = b[k2-1]; k1 = k1-inc; k2 = k2-inc; }while(k1!=kk); kk = k2; }while(k!=j); k1 = kk+kspan; k2 = 0; do{ k2 = k2+1; a[k1-1] = at[k2-1]; b[k1-1] = bt[k2-1]; k1 = k1-inc; }while(k1!=kk); }while(jj!=0); if(j==1) break; } } } } }