ref: babf901b4a508c3ec5d1f89655f10377bbdf9637
dir: /appl/lib/ida/ida.b/
implement Ida; # # M Rabin, ``Efficient Dispersal of Information for Security, # Load Balancing, and Fault Tolerance'', JACM 36(2), April 1989, pp. 335-348 # the scheme used below is that suggested at the top of page 340 # include "sys.m"; sys: Sys; include "rand.m"; rand: Rand; include "ida.m"; invtab: array of int; init() { sys = load Sys Sys->PATH; rand = load Rand Rand->PATH; rand->init(sys->pctl(0, nil)^(sys->millisec()<<8)); # the table is in a separate module so that # the copy in the module initialisation section is discarded # after unloading, preventing twice the space being used idatab := load Idatab Idatab->PATH; invtab = idatab->init(); # the big fella idatab = nil; } Field: con 65537; Fmax: con Field-1; div(a, b: int): int { return mul(a, invtab[b]); } mul(a, b: int): int { if(a == Fmax && b == Fmax) # avoid overflow return 1; return int((big(a*b) & 16rFFFFFFFF) % big Field); } sub(a, b: int): int { return ((a-b)+Field)%Field; } add(a, b: int): int { return (a + b)%Field; } # # return a fragment representing the encoded version of data # fragment(data: array of byte, m: int): ref Frag { nb := len data; nw := (nb+1)/2; a := array[m] of {* => rand->rand(Fmax)+1}; # no zero elements f := array[(nw + m - 1)/m] of int; o := 0; i := 0; for(k := 0; k < len f; k++){ c := 0; for(j := 0; j < m && i < nb; j++){ b := int data[i++] << 8; if(i < nb) b |= int data[i++]; c = add(c, mul(b, a[j])); } f[o++] = c; } return ref Frag(nb, m, a, f, nil); } # # return the data encoded by the given set of fragments # reconstruct(frags: array of ref Frag): (array of byte, string) { if(len frags < 1 || len frags < (m := frags[0].m)) return (nil, "too few fragments"); fraglen := len frags[0].enc; a := array[m] of array of int; for(j := 0; j < len a; j++){ a[j] = frags[j].a; if(len a[j] != m) return (nil, "inconsistent encoding matrix"); if(len frags[j].enc != fraglen) return (nil, "inconsistent fragments"); } ainv := minvert(a); out := array[fraglen*2*m] of byte; o := 0; for(k := 0; k < fraglen; k++){ for(i := 0; i < m; i++){ row := ainv[i]; b := 0; for(j = 0; j < m; j++) b = add(b, mul(frags[j].enc[k], row[j])); if((b>>16) != 0) return (nil, "corrupt output"); out[o++] = byte (b>>8); out[o++] = byte b; } } if(frags[0].dlen < len out) out = out[0: frags[0].dlen]; return (out, nil); } # # Rabin's paper gives a way of building an encoding matrix that can then # be inverted in O(m^2) operations, compared to O(m^3) for the following, # but m is small enough it doesn't seem worth the added complication, # and it's only done once per set # minvert(a: array of array of int): array of array of int { m := len a; # it's square out := array[m] of {* => array[m*2] of {* => 0}}; for(r := 0; r < m; r++){ out[r][0:] = a[r]; out[r][m+r] = 1; # identity matrix } for(r = 0; r < m; r++){ x := out[r][r]; # by construction, cannot be zero, unless later corrupted for(c := 0; c < 2*m; c++) out[r][c] = div(out[r][c], x); for(r1 := 0; r1 < m; r1++) if(r1 != r){ y := div(out[r1][r], out[r][r]); for(c = 0; c < 2*m; c++) out[r1][c] = sub(out[r1][c], mul(y, out[r][c])); } } for(r = 0; r < m; r++) out[r] = out[r][m:]; return out; } Val: adt { v: int; n: int; }; addval(vl: list of ref Val, v: int): list of ref Val { for(l := vl; l != nil; l = tl l) if((hd l).v == v){ (hd l).n++; return vl; } return ref Val(v, 1) :: vl; } mostly(vl: list of ref Val): ref Val { if(len vl == 1) return hd vl; v: ref Val; for(; vl != nil; vl = tl vl) if(v == nil || (hd vl).n > v.n) v = hd vl; return v; } # # return a consistent set of Frags: all parameters agree with the majority, # and obviously bad fragments have been discarded # # in the absence of error, they should all have the same value, so lists are fine; # could separately return the discarded ones, out of interest # consistent(frags: array of ref Frag): array of ref Frag { t := array[len frags] of ref Frag; t[0:] = frags; frags = t; ds: list of ref Val; # data size ms: list of ref Val; fls: list of ref Val; for(i := 0; i < len frags; i++){ f := frags[i]; if(f != nil){ ds = addval(ds, f.dlen); ms = addval(ms, f.m); fls = addval(fls, len f.enc); } } dv := mostly(ds); mv := mostly(ms); flv := mostly(fls); if(mv == nil || flv == nil || dv == nil) return nil; for(i = 0; i < len frags; i++){ f := frags[i]; if(f == nil || f.m != mv.v || f.m != len f.a || len f.enc != flv.v || f.dlen != dv.v || badfrag(f)){ # inconsistent: drop it if(i+1 < len frags) frags[i:] = frags[i+1:]; frags = frags[0:len frags-1]; } } if(len frags == 0) return nil; return frags; } badfrag(f: ref Frag): int { for(i := 0; i < len f.a; i++){ v := f.a[i]; if(v <= 0 || v >= Field) return 1; } for(i = 0; i < len f.a; i++){ v := f.enc[i]; if(v == 0 || v >= Field) return 1; } return 0; }