ref: e59ffed426f628794d4669f152eff9a6239b99db
dir: /os/boot/pc/etherrhine.c/
/* Via Rhine driver, written for VT6102. Uses the ethermii to control PHY. Currently always copies on both, tx and rx. rx side could be copy-free, and tx-side might be made (almost) copy-free by using (possibly) two descriptors (if it allows arbitrary tx lengths, which it should..): first for alignment and second for rest of the frame. Rx-part should be worth doing. */ #include "u.h" #include "lib.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "io.h" typedef struct QLock { int r; } QLock; #define qlock(i) while(0) #define qunlock(i) while(0) #define iprint print #include "etherif.h" #include "ethermii.h" enum { Ntxd = 4, Nrxd = 4, Nwait = 50, BIGSTR = 8192, }; typedef struct Desc Desc; typedef struct Ctlr Ctlr; struct Desc { ulong stat; ulong size; ulong addr; ulong next; char *buf; ulong pad[3]; }; struct Ctlr { Pcidev *pci; int attached; int txused; int txhead; int txtail; int rxtail; ulong port; Mii mii; Desc *txd; /* wants to be aligned on 16-byte boundary */ Desc *rxd; QLock attachlck; Lock tlock; }; #define ior8(c, r) (inb((c)->port+(r))) #define iow8(c, r, b) (outb((c)->port+(r), (int)(b))) #define ior16(c, r) (ins((c)->port+(r))) #define ior32(c, r) (inl((c)->port+(r))) #define iow16(c, r, w) (outs((c)->port+(r), (ushort)(w))) #define iow32(c, r, l) (outl((c)->port+(r), (ulong)(l))) /* names used everywhere else */ #define csr8r ior8 #define csr8w iow8 #define csr16r ior16 #define csr16w iow16 #define csr32r ior32 #define csr32w iow32 enum Regs { Eaddr = 0x0, Rcr = 0x6, Tcr = 0x7, Cr = 0x8, Isr = 0xc, Imr = 0xe, McastAddr = 0x10, RxdAddr = 0x18, TxdAddr = 0x1C, Bcr0 = 0x6E, /* Bus Control */ Bcr1 = 0x6F, RhineMiiPhy = 0x6C, RhineMiiSr = 0x6D, RhineMiiCr = 0x70, RhineMiiAddr = 0x71, RhineMiiData = 0x72, Eecsr = 0x74, ConfigB = 0x79, ConfigD = 0x7B, MiscCr = 0x80, HwSticky = 0x83, MiscIsr = 0x84, MiscImr = 0x86, WolCrSet = 0xA0, WolCfgSet = 0xA1, WolCgSet = 0xA3, WolCrClr = 0xA4, PwrCfgClr = 0xA5, WolCgClr = 0xA7, }; enum { /* Rcr */ Sep = 0x01, /* Accept Error Packets */ Ar = 0x02, /* Accept Small Packets */ Am = 0x04, /* Accept Multicast */ Ab = 0x08, /* Accept Broadcast */ RxBcast = Ab, Prom = 0x10, /* Accept Physical Address Packets */ RxProm = Prom, RrftMASK = 0xE0, /* Receive FIFO Threshold */ RrftSHIFT = 5, Rrft64 = 0<<RrftSHIFT, Rrft32 = 1<<RrftSHIFT, Rrft128 = 2<<RrftSHIFT, Rrft256 = 3<<RrftSHIFT, Rrft512 = 4<<RrftSHIFT, Rrft768 = 5<<RrftSHIFT, Rrft1024 = 6<<RrftSHIFT, RrftSAF = 7<<RrftSHIFT, }; enum { /* Tcr */ Lb0 = 0x02, /* Loopback Mode */ Lb1 = 0x04, Ofset = 0x08, /* Back-off Priority Selection */ RtsfMASK = 0xE0, /* Transmit FIFO Threshold */ RtsfSHIFT = 5, Rtsf128 = 0<<RtsfSHIFT, Rtsf256 = 1<<RtsfSHIFT, Rtsf512 = 2<<RtsfSHIFT, Rtsf1024 = 3<<RtsfSHIFT, RtsfSAF = 7<<RtsfSHIFT, }; enum Crbits { Init = 1<<0, Start = 1<<1, Stop = 1<<2, RxOn = 1<<3, TxOn = 1<<4, Tdmd = 1<<5, Rdmd = 1<<6, EarlyRx = 1<<8, Reserved0 = 1<<9, FullDuplex = 1<<10, NoAutoPoll = 1<<11, Reserved1 = 1<<12, Tdmd1 = 1<<13, Rdmd1 = 1<<14, Reset = 1<<15, }; enum Isrbits { RxOk = 1<<0, TxOk = 1<<1, RxErr = 1<<2, TxErr = 1<<3, TxBufUdf = 1<<4, RxBufLinkErr = 1<<5, BusErr = 1<<6, CrcOvf = 1<<7, EarlyRxInt = 1<<8, TxFifoUdf = 1<<9, RxFifoOvf = 1<<10, TxPktRace = 1<<11, NoRxbuf = 1<<12, TxCollision = 1<<13, PortCh = 1<<14, GPInt = 1<<15, }; enum { /* Bcr0 */ DmaMASK = 0x07, /* DMA Length */ DmaSHIFT = 0, Dma32 = 0<<DmaSHIFT, Dma64 = 1<<DmaSHIFT, Dma128 = 2<<DmaSHIFT, Dma256 = 3<<DmaSHIFT, Dma512 = 4<<DmaSHIFT, Dma1024 = 5<<DmaSHIFT, DmaSAF = 7<<DmaSHIFT, CrftMASK = 0x38, /* Rx FIFO Threshold */ CrftSHIFT = 3, Crft64 = 1<<CrftSHIFT, Crft128 = 2<<CrftSHIFT, Crft256 = 3<<CrftSHIFT, Crft512 = 4<<CrftSHIFT, Crft1024 = 5<<CrftSHIFT, CrftSAF = 7<<CrftSHIFT, Extled = 0x40, /* Extra LED Support Control */ Med2 = 0x80, /* Medium Select Control */ }; enum { /* Bcr1 */ PotMASK = 0x07, /* Polling Timer Interval */ PotSHIFT = 0, CtftMASK = 0x38, /* Tx FIFO Threshold */ CtftSHIFT = 3, Ctft64 = 1<<CtftSHIFT, Ctft128 = 2<<CtftSHIFT, Ctft256 = 3<<CtftSHIFT, Ctft512 = 4<<CtftSHIFT, Ctft1024 = 5<<CtftSHIFT, CtftSAF = 7<<CtftSHIFT, }; enum Eecsrbits { EeAutoLoad = 1<<5, }; enum Descbits { OwnNic = 1<<31, /* stat */ TxAbort = 1<<8, /* stat */ TxError = 1<<15, /* stat */ RxChainbuf = 1<<10, /* stat */ RxChainStart = 1<<9, /* stat */ RxChainEnd = 1<<8, /* stat */ Chainbuf = 1<<15, /* size rx & tx*/ TxDisableCrc = 1<<16, /* size */ TxChainStart = 1<<21, /* size */ TxChainEnd = 1<<22, /* size */ TxInt = 1<<23, /* size */ }; enum RhineMiiCrbits { Mdc = 1<<0, Mdi = 1<<1, Mdo = 1<<2, Mdout = 1<<3, Mdpm = 1<<4, Wcmd = 1<<5, Rcmd = 1<<6, Mauto = 1<<7, }; static void attach(Ether *edev) { Ctlr *ctlr; Desc *txd, *rxd, *td, *rd; Mii *mi; MiiPhy *phy; int i, s; ctlr = edev->ctlr; qlock(&ctlr->attachlck); if (ctlr->attached == 0) { txd = ctlr->txd; rxd = ctlr->rxd; for (i = 0; i < Ntxd; ++i) { td = &txd[i]; td->next = PCIWADDR(&txd[(i+1) % Ntxd]); td->buf = xspanalloc(sizeof(Etherpkt)+4, 4, 0); td->addr = PCIWADDR(td->buf); td->size = 0; coherence(); td->stat = 0; } for (i = 0; i < Nrxd; ++i) { rd = &rxd[i]; rd->next = PCIWADDR(&rxd[(i+1) % Nrxd]); rd->buf = xspanalloc(sizeof(Etherpkt)+4, 4, 0); rd->addr = PCIWADDR(rd->buf); rd->size = sizeof(Etherpkt)+4; coherence(); rd->stat = OwnNic; } ctlr->txhead = ctlr->txtail = ctlr->rxtail = 0; mi = &ctlr->mii; miistatus(mi); phy = mi->curphy; s = splhi(); iow32(ctlr, TxdAddr, PCIWADDR(&txd[0])); iow32(ctlr, RxdAddr, PCIWADDR(&rxd[0])); iow16(ctlr, Cr, (phy->fd? FullDuplex: 0) | NoAutoPoll | TxOn | RxOn | Start | Rdmd); iow16(ctlr, Isr, 0xFFFF); iow16(ctlr, Imr, 0xFFFF); iow8(ctlr, MiscIsr, 0xFF); iow8(ctlr, MiscImr, ~(3<<5)); splx(s); ctlr->attached = 1; } qunlock(&ctlr->attachlck); } static void txstart(Ether *edev) { Ctlr *ctlr; Desc *txd, *td; int i, txused, n; RingBuf *tb; ctlr = edev->ctlr; txd = ctlr->txd; i = ctlr->txhead; n = 0; for (txused = ctlr->txused; txused < Ntxd; txused++) { tb = &edev->tb[edev->ti]; if(tb->owner != Interface) break; td = &txd[i]; memmove(td->buf, tb->pkt, tb->len); /* could reduce number of intrs here */ td->size = tb->len | TxChainStart | TxChainEnd | TxInt; coherence(); td->stat = OwnNic; i = (i + 1) % Ntxd; n++; tb->owner = Host; edev->ti = NEXT(edev->ti, edev->ntb); } if (n) iow16(ctlr, Cr, ior16(ctlr, Cr) | Tdmd); ctlr->txhead = i; ctlr->txused = txused; } static void transmit(Ether *edev) { Ctlr *ctlr; ctlr = edev->ctlr; ilock(&ctlr->tlock); txstart(edev); iunlock(&ctlr->tlock); } static void txcomplete(Ether *edev) { Ctlr *ctlr; Desc *txd, *td; int i, txused; ulong stat; ctlr = edev->ctlr; txd = ctlr->txd; i = ctlr->txtail; for (txused = ctlr->txused; txused > 0; txused--) { td = &txd[i]; stat = td->stat; if (stat & OwnNic) break; i = (i + 1) % Ntxd; } ctlr->txused = txused; ctlr->txtail = i; if (txused <= Ntxd/2) txstart(edev); } static void interrupt(Ureg *, void *arg) { Ether *edev; Ctlr *ctlr; RingBuf *rb; ushort isr, misr; ulong stat; Desc *rxd, *rd; int i, n, size; edev = (Ether*)arg; ctlr = edev->ctlr; iow16(ctlr, Imr, 0); isr = ior16(ctlr, Isr); iow16(ctlr, Isr, 0xFFFF); /* don't care about used defined intrs */ misr = ior16(ctlr, MiscIsr) & ~(3<<5); if (isr & RxOk) { rxd = ctlr->rxd; i = ctlr->rxtail; n = 0; while ((rxd[i].stat & OwnNic) == 0) { rd = &rxd[i]; stat = rd->stat; if (stat & 0xFF) iprint("rx: %lux\n", stat & 0xFF); size = ((rd->stat>>16) & (2048-1)) - 4; rb = &edev->rb[edev->ri]; if(rb->owner == Interface){ rb->owner = Host; rb->len = size; memmove(rb->pkt, rd->buf, size); edev->ri = NEXT(edev->ri, edev->nrb); } rd->size = sizeof(Etherpkt)+4; coherence(); rd->stat = OwnNic; i = (i + 1) % Nrxd; n++; } if (n) iow16(ctlr, Cr, ior16(ctlr, Cr) | Rdmd); ctlr->rxtail = i; isr &= ~RxOk; } if (isr & TxOk) { txcomplete(edev); isr &= ~TxOk; } if (isr | misr) iprint("etherrhine: unhandled irq(s). isr:%x misr:%x\n", isr, misr); iow16(ctlr, Imr, 0xFFFF); } static int miiread(Mii *mii, int phy, int reg) { Ctlr *ctlr; int n; ctlr = mii->ctlr; n = Nwait; while (n-- && ior8(ctlr, RhineMiiCr) & (Rcmd | Wcmd)) microdelay(1); if (n == Nwait) iprint("etherrhine: miiread: timeout\n"); iow8(ctlr, RhineMiiCr, 0); iow8(ctlr, RhineMiiPhy, phy); iow8(ctlr, RhineMiiAddr, reg); iow8(ctlr, RhineMiiCr, Rcmd); n = Nwait; while (n-- && ior8(ctlr, RhineMiiCr) & Rcmd) microdelay(1); if (n == Nwait) iprint("etherrhine: miiread: timeout\n"); return ior16(ctlr, RhineMiiData); } static int miiwrite(Mii *mii, int phy, int reg, int data) { int n; Ctlr *ctlr; ctlr = mii->ctlr; n = Nwait; while (n-- && ior8(ctlr, RhineMiiCr) & (Rcmd | Wcmd)) microdelay(1); if (n == Nwait) iprint("etherrhine: miiwrite: timeout\n"); iow8(ctlr, RhineMiiCr, 0); iow8(ctlr, RhineMiiPhy, phy); iow8(ctlr, RhineMiiAddr, reg); iow16(ctlr, RhineMiiData, data); iow8(ctlr, RhineMiiCr, Wcmd); n = Nwait; while (n-- && ior8(ctlr, RhineMiiCr) & Wcmd) microdelay(1); if (n == Nwait) iprint("etherrhine: miiwrite: timeout\n"); return 0; } static void reset(Ctlr* ctlr) { int r, timeo; /* * Soft reset the controller. */ csr16w(ctlr, Cr, Stop); csr16w(ctlr, Cr, Stop|Reset); for(timeo = 0; timeo < 10000; timeo++){ if(!(csr16r(ctlr, Cr) & Reset)) break; microdelay(1); } if(timeo >= 1000) return; /* * Load the MAC address into the PAR[01] * registers. */ r = csr8r(ctlr, Eecsr); csr8w(ctlr, Eecsr, EeAutoLoad|r); for(timeo = 0; timeo < 100; timeo++){ if(!(csr8r(ctlr, Cr) & EeAutoLoad)) break; microdelay(1); } if(timeo >= 100) return; /* * Configure DMA and Rx/Tx thresholds. * If the Rx/Tx threshold bits in Bcr[01] are 0 then * the thresholds are determined by Rcr/Tcr. */ r = csr8r(ctlr, Bcr0) & ~(CrftMASK|DmaMASK); csr8w(ctlr, Bcr0, r|Crft64|Dma64); r = csr8r(ctlr, Bcr1) & ~CtftMASK; csr8w(ctlr, Bcr1, r|Ctft64); r = csr8r(ctlr, Rcr) & ~(RrftMASK|Prom|Ar|Sep); csr8w(ctlr, Rcr, r|Ab|Am); r = csr8r(ctlr, Tcr) & ~(RtsfMASK|Ofset|Lb1|Lb0); csr8w(ctlr, Tcr, r); } static void detach(Ether* edev) { reset(edev->ctlr); } static void init(Ether *edev) { Ctlr *ctlr; int i; ctlr = edev->ctlr; ilock(&ctlr->tlock); pcisetbme(ctlr->pci); reset(ctlr); iow8(ctlr, Eecsr, ior8(ctlr, Eecsr) | EeAutoLoad); for (i = 0; i < Nwait; ++i) { if ((ior8(ctlr, Eecsr) & EeAutoLoad) == 0) break; delay(5); } if (i >= Nwait) iprint("etherrhine: eeprom autoload timeout\n"); for (i = 0; i < Eaddrlen; ++i) edev->ea[i] = ior8(ctlr, Eaddr + i); ctlr->mii.mir = miiread; ctlr->mii.miw = miiwrite; ctlr->mii.ctlr = ctlr; if(mii(&ctlr->mii, ~0) == 0 || ctlr->mii.curphy == nil){ iunlock(&ctlr->tlock); iprint("etherrhine: init mii failure\n"); return; } for (i = 0; i < NMiiPhy; ++i) if (ctlr->mii.phy[i]) if (ctlr->mii.phy[i]->oui != 0xFFFFF) ctlr->mii.curphy = ctlr->mii.phy[i]; miistatus(&ctlr->mii); iow16(ctlr, Imr, 0); iow16(ctlr, Cr, ior16(ctlr, Cr) | Stop); iunlock(&ctlr->tlock); } static Pcidev * rhinematch(ulong) { static int nrhines = 0; int nfound = 0; Pcidev *p = nil; while(p = pcimatch(p, 0x1106, 0)){ if(p->ccrb != Pcibcnet || p->ccru != Pciscether) continue; switch((p->did<<16)|p->vid){ default: continue; case (0x3053<<16)|0x1106: /* Rhine III vt6105m (Soekris) */ case (0x3065<<16)|0x1106: /* Rhine II */ case (0x3106<<16)|0x1106: /* Rhine III */ if (++nfound > nrhines) { nrhines++; return p; } break; } } return p; } int rhinepnp(Ether *edev) { Pcidev *p; Ctlr *ctlr; ulong port; if (edev->attach) return 0; p = rhinematch(edev->port); if (p == nil) return -1; port = p->mem[0].bar & ~1; if ((ctlr = malloc(sizeof(Ctlr))) == nil) { print("etherrhine: couldn't allocate memory for ctlr\n"); return -1; } memset(ctlr, 0, sizeof(Ctlr)); ctlr->txd = xspanalloc(sizeof(Desc) * Ntxd, 16, 0); ctlr->rxd = xspanalloc(sizeof(Desc) * Nrxd, 16, 0); ctlr->pci = p; ctlr->port = port; edev->ctlr = ctlr; edev->port = ctlr->port; edev->irq = p->intl; edev->tbdf = p->tbdf; init(edev); edev->attach = attach; edev->transmit = transmit; edev->interrupt = interrupt; edev->detach = detach; return 0; } int vt6102pnp(Ether *edev) { return rhinepnp(edev); }