ref: 7c452f09cf633586b26565139943844c682e2177
dir: /lptree.c/
/* ** $Id: lptree.c $ ** Copyright 2013, Lua.org & PUC-Rio (see 'lpeg.html' for license) */ #include <ctype.h> #include <limits.h> #include <string.h> #include "lua.h" #include "lauxlib.h" #include "lptypes.h" #include "lpcap.h" #include "lpcode.h" #include "lpprint.h" #include "lptree.h" /* number of siblings for each tree */ const byte numsiblings[] = { 0, 0, 0, /* char, set, any */ 0, 0, /* true, false */ 1, /* rep */ 2, 2, /* seq, choice */ 1, 1, /* not, and */ 0, 0, 2, 1, /* call, opencall, rule, grammar */ 1, /* behind */ 1, 1 /* capture, runtime capture */ }; static TTree *newgrammar (lua_State *L, int arg); /* ** returns a reasonable name for value at index 'idx' on the stack */ static const char *val2str (lua_State *L, int idx) { const char *k = lua_tostring(L, idx); if (k != NULL) return lua_pushfstring(L, "%s", k); else return lua_pushfstring(L, "(a %s)", luaL_typename(L, idx)); } /* ** Fix a TOpenCall into a TCall node, using table 'postable' to ** translate a key to its rule address in the tree. Raises an ** error if key does not exist. */ static void fixonecall (lua_State *L, int postable, TTree *g, TTree *t) { int n; lua_rawgeti(L, -1, t->key); /* get rule's name */ lua_gettable(L, postable); /* query name in position table */ n = lua_tonumber(L, -1); /* get (absolute) position */ lua_pop(L, 1); /* remove position */ if (n == 0) { /* no position? */ lua_rawgeti(L, -1, t->key); /* get rule's name again */ luaL_error(L, "rule '%s' undefined in given grammar", val2str(L, -1)); } t->tag = TCall; t->u.ps = n - (t - g); /* position relative to node */ assert(sib2(t)->tag == TRule); sib2(t)->key = t->key; /* fix rule's key */ } /* ** Transform left associative constructions into right ** associative ones, for sequence and choice; that is: ** (t11 + t12) + t2 => t11 + (t12 + t2) ** (t11 * t12) * t2 => t11 * (t12 * t2) ** (that is, Op (Op t11 t12) t2 => Op t11 (Op t12 t2)) */ static void correctassociativity (TTree *tree) { TTree *t1 = sib1(tree); assert(tree->tag == TChoice || tree->tag == TSeq); while (t1->tag == tree->tag) { int n1size = tree->u.ps - 1; /* t1 == Op t11 t12 */ int n11size = t1->u.ps - 1; int n12size = n1size - n11size - 1; memmove(sib1(tree), sib1(t1), n11size * sizeof(TTree)); /* move t11 */ tree->u.ps = n11size + 1; sib2(tree)->tag = tree->tag; sib2(tree)->u.ps = n12size + 1; } } /* ** Make final adjustments in a tree. Fix open calls in tree 't', ** making them refer to their respective rules or raising appropriate ** errors (if not inside a grammar). Correct associativity of associative ** constructions (making them right associative). Assume that tree's ** ktable is at the top of the stack (for error messages). */ static void finalfix (lua_State *L, int postable, TTree *g, TTree *t) { tailcall: switch (t->tag) { case TGrammar: /* subgrammars were already fixed */ return; case TOpenCall: { if (g != NULL) /* inside a grammar? */ fixonecall(L, postable, g, t); else { /* open call outside grammar */ lua_rawgeti(L, -1, t->key); luaL_error(L, "rule '%s' used outside a grammar", val2str(L, -1)); } break; } case TSeq: case TChoice: correctassociativity(t); break; } switch (numsiblings[t->tag]) { case 1: /* finalfix(L, postable, g, sib1(t)); */ t = sib1(t); goto tailcall; case 2: finalfix(L, postable, g, sib1(t)); t = sib2(t); goto tailcall; /* finalfix(L, postable, g, sib2(t)); */ default: assert(numsiblings[t->tag] == 0); break; } } /* ** {=================================================================== ** KTable manipulation ** ** - The ktable of a pattern 'p' can be shared by other patterns that ** contain 'p' and no other constants. Because of this sharing, we ** should not add elements to a 'ktable' unless it was freshly created ** for the new pattern. ** ** - The maximum index in a ktable is USHRT_MAX, because trees and ** patterns use unsigned shorts to store those indices. ** ==================================================================== */ /* ** Create a new 'ktable' to the pattern at the top of the stack. */ static void newktable (lua_State *L, int n) { lua_createtable(L, n, 0); /* create a fresh table */ lua_setuservalue(L, -2); /* set it as 'ktable' for pattern */ } /* ** Add element 'idx' to 'ktable' of pattern at the top of the stack; ** Return index of new element. ** If new element is nil, does not add it to table (as it would be ** useless) and returns 0, as ktable[0] is always nil. */ static int addtoktable (lua_State *L, int idx) { if (lua_isnil(L, idx)) /* nil value? */ return 0; else { int n; lua_getuservalue(L, -1); /* get ktable from pattern */ n = lua_rawlen(L, -1); if (n >= USHRT_MAX) luaL_error(L, "too many Lua values in pattern"); lua_pushvalue(L, idx); /* element to be added */ lua_rawseti(L, -2, ++n); lua_pop(L, 1); /* remove 'ktable' */ return n; } } /* ** Return the number of elements in the ktable at 'idx'. ** In Lua 5.2/5.3, default "environment" for patterns is nil, not ** a table. Treat it as an empty table. In Lua 5.1, assumes that ** the environment has no numeric indices (len == 0) */ static int ktablelen (lua_State *L, int idx) { if (!lua_istable(L, idx)) return 0; else return lua_rawlen(L, idx); } /* ** Concatentate the contents of table 'idx1' into table 'idx2'. ** (Assume that both indices are negative.) ** Return the original length of table 'idx2' (or 0, if no ** element was added, as there is no need to correct any index). */ static int concattable (lua_State *L, int idx1, int idx2) { int i; int n1 = ktablelen(L, idx1); int n2 = ktablelen(L, idx2); if (n1 + n2 > USHRT_MAX) luaL_error(L, "too many Lua values in pattern"); if (n1 == 0) return 0; /* nothing to correct */ for (i = 1; i <= n1; i++) { lua_rawgeti(L, idx1, i); lua_rawseti(L, idx2 - 1, n2 + i); /* correct 'idx2' */ } return n2; } /* ** When joining 'ktables', constants from one of the subpatterns must ** be renumbered; 'correctkeys' corrects their indices (adding 'n' ** to each of them) */ static void correctkeys (TTree *tree, int n) { if (n == 0) return; /* no correction? */ tailcall: switch (tree->tag) { case TOpenCall: case TCall: case TRunTime: case TRule: { if (tree->key > 0) tree->key += n; break; } case TCapture: { if (tree->key > 0 && tree->cap != Carg && tree->cap != Cnum) tree->key += n; break; } default: break; } switch (numsiblings[tree->tag]) { case 1: /* correctkeys(sib1(tree), n); */ tree = sib1(tree); goto tailcall; case 2: correctkeys(sib1(tree), n); tree = sib2(tree); goto tailcall; /* correctkeys(sib2(tree), n); */ default: assert(numsiblings[tree->tag] == 0); break; } } /* ** Join the ktables from p1 and p2 the ktable for the new pattern at the ** top of the stack, reusing them when possible. */ static void joinktables (lua_State *L, int p1, TTree *t2, int p2) { int n1, n2; lua_getuservalue(L, p1); /* get ktables */ lua_getuservalue(L, p2); n1 = ktablelen(L, -2); n2 = ktablelen(L, -1); if (n1 == 0 && n2 == 0) /* are both tables empty? */ lua_pop(L, 2); /* nothing to be done; pop tables */ else if (n2 == 0 || lp_equal(L, -2, -1)) { /* 2nd table empty or equal? */ lua_pop(L, 1); /* pop 2nd table */ lua_setuservalue(L, -2); /* set 1st ktable into new pattern */ } else if (n1 == 0) { /* first table is empty? */ lua_setuservalue(L, -3); /* set 2nd table into new pattern */ lua_pop(L, 1); /* pop 1st table */ } else { lua_createtable(L, n1 + n2, 0); /* create ktable for new pattern */ /* stack: new p; ktable p1; ktable p2; new ktable */ concattable(L, -3, -1); /* from p1 into new ktable */ concattable(L, -2, -1); /* from p2 into new ktable */ lua_setuservalue(L, -4); /* new ktable becomes 'p' environment */ lua_pop(L, 2); /* pop other ktables */ correctkeys(t2, n1); /* correction for indices from p2 */ } } /* ** copy 'ktable' of element 'idx' to new tree (on top of stack) */ static void copyktable (lua_State *L, int idx) { lua_getuservalue(L, idx); lua_setuservalue(L, -2); } /* ** merge 'ktable' from 'stree' at stack index 'idx' into 'ktable' ** from tree at the top of the stack, and correct corresponding ** tree. */ static void mergektable (lua_State *L, int idx, TTree *stree) { int n; lua_getuservalue(L, -1); /* get ktables */ lua_getuservalue(L, idx); n = concattable(L, -1, -2); lua_pop(L, 2); /* remove both ktables */ correctkeys(stree, n); } /* ** Create a new 'ktable' to the pattern at the top of the stack, adding ** all elements from pattern 'p' (if not 0) plus element 'idx' to it. ** Return index of new element. */ static int addtonewktable (lua_State *L, int p, int idx) { newktable(L, 1); if (p) mergektable(L, p, NULL); return addtoktable(L, idx); } /* }====================================================== */ /* ** {====================================================== ** Tree generation ** ======================================================= */ /* ** In 5.2, could use 'luaL_testudata'... */ static int testpattern (lua_State *L, int idx) { if (lua_touserdata(L, idx)) { /* value is a userdata? */ if (lua_getmetatable(L, idx)) { /* does it have a metatable? */ luaL_getmetatable(L, PATTERN_T); if (lua_rawequal(L, -1, -2)) { /* does it have the correct mt? */ lua_pop(L, 2); /* remove both metatables */ return 1; } } } return 0; } static Pattern *getpattern (lua_State *L, int idx) { return (Pattern *)luaL_checkudata(L, idx, PATTERN_T); } static int getsize (lua_State *L, int idx) { return (lua_rawlen(L, idx) - sizeof(Pattern)) / sizeof(TTree) + 1; } static TTree *gettree (lua_State *L, int idx, int *len) { Pattern *p = getpattern(L, idx); if (len) *len = getsize(L, idx); return p->tree; } /* ** create a pattern. Set its uservalue (the 'ktable') equal to its ** metatable. (It could be any empty sequence; the metatable is at ** hand here, so we use it.) */ static TTree *newtree (lua_State *L, int len) { size_t size = (len - 1) * sizeof(TTree) + sizeof(Pattern); Pattern *p = (Pattern *)lua_newuserdata(L, size); luaL_getmetatable(L, PATTERN_T); lua_pushvalue(L, -1); lua_setuservalue(L, -3); lua_setmetatable(L, -2); p->code = NULL; p->codesize = 0; return p->tree; } static TTree *newleaf (lua_State *L, int tag) { TTree *tree = newtree(L, 1); tree->tag = tag; return tree; } static TTree *newcharset (lua_State *L) { TTree *tree = newtree(L, bytes2slots(CHARSETSIZE) + 1); tree->tag = TSet; loopset(i, treebuffer(tree)[i] = 0); return tree; } /* ** add to tree a sequence where first sibling is 'sib' (with size ** 'sibsize'); returns position for second sibling */ static TTree *seqaux (TTree *tree, TTree *sib, int sibsize) { tree->tag = TSeq; tree->u.ps = sibsize + 1; memcpy(sib1(tree), sib, sibsize * sizeof(TTree)); return sib2(tree); } /* ** Build a sequence of 'n' nodes, each with tag 'tag' and 'u.n' got ** from the array 's' (or 0 if array is NULL). (TSeq is binary, so it ** must build a sequence of sequence of sequence...) */ static void fillseq (TTree *tree, int tag, int n, const char *s) { int i; for (i = 0; i < n - 1; i++) { /* initial n-1 copies of Seq tag; Seq ... */ tree->tag = TSeq; tree->u.ps = 2; sib1(tree)->tag = tag; sib1(tree)->u.n = s ? (byte)s[i] : 0; tree = sib2(tree); } tree->tag = tag; /* last one does not need TSeq */ tree->u.n = s ? (byte)s[i] : 0; } /* ** Numbers as patterns: ** 0 == true (always match); n == TAny repeated 'n' times; ** -n == not (TAny repeated 'n' times) */ static TTree *numtree (lua_State *L, int n) { if (n == 0) return newleaf(L, TTrue); else { TTree *tree, *nd; if (n > 0) tree = nd = newtree(L, 2 * n - 1); else { /* negative: code it as !(-n) */ n = -n; tree = newtree(L, 2 * n); tree->tag = TNot; nd = sib1(tree); } fillseq(nd, TAny, n, NULL); /* sequence of 'n' any's */ return tree; } } /* ** Convert value at index 'idx' to a pattern */ static TTree *getpatt (lua_State *L, int idx, int *len) { TTree *tree; switch (lua_type(L, idx)) { case LUA_TSTRING: { size_t slen; const char *s = lua_tolstring(L, idx, &slen); /* get string */ if (slen == 0) /* empty? */ tree = newleaf(L, TTrue); /* always match */ else { tree = newtree(L, 2 * (slen - 1) + 1); fillseq(tree, TChar, slen, s); /* sequence of 'slen' chars */ } break; } case LUA_TNUMBER: { int n = lua_tointeger(L, idx); tree = numtree(L, n); break; } case LUA_TBOOLEAN: { tree = (lua_toboolean(L, idx) ? newleaf(L, TTrue) : newleaf(L, TFalse)); break; } case LUA_TTABLE: { tree = newgrammar(L, idx); break; } case LUA_TFUNCTION: { tree = newtree(L, 2); tree->tag = TRunTime; tree->key = addtonewktable(L, 0, idx); sib1(tree)->tag = TTrue; break; } default: { return gettree(L, idx, len); } } lua_replace(L, idx); /* put new tree into 'idx' slot */ if (len) *len = getsize(L, idx); return tree; } /* ** create a new tree, whith a new root and one sibling. ** Sibling must be on the Lua stack, at index 1. */ static TTree *newroot1sib (lua_State *L, int tag) { int s1; TTree *tree1 = getpatt(L, 1, &s1); TTree *tree = newtree(L, 1 + s1); /* create new tree */ tree->tag = tag; memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); copyktable(L, 1); return tree; } /* ** create a new tree, whith a new root and 2 siblings. ** Siblings must be on the Lua stack, first one at index 1. */ static TTree *newroot2sib (lua_State *L, int tag) { int s1, s2; TTree *tree1 = getpatt(L, 1, &s1); TTree *tree2 = getpatt(L, 2, &s2); TTree *tree = newtree(L, 1 + s1 + s2); /* create new tree */ tree->tag = tag; tree->u.ps = 1 + s1; memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); memcpy(sib2(tree), tree2, s2 * sizeof(TTree)); joinktables(L, 1, sib2(tree), 2); return tree; } static int lp_P (lua_State *L) { luaL_checkany(L, 1); getpatt(L, 1, NULL); lua_settop(L, 1); return 1; } /* ** sequence operator; optimizations: ** false x => false, x true => x, true x => x ** (cannot do x . false => false because x may have runtime captures) */ static int lp_seq (lua_State *L) { TTree *tree1 = getpatt(L, 1, NULL); TTree *tree2 = getpatt(L, 2, NULL); if (tree1->tag == TFalse || tree2->tag == TTrue) lua_pushvalue(L, 1); /* false . x == false, x . true = x */ else if (tree1->tag == TTrue) lua_pushvalue(L, 2); /* true . x = x */ else newroot2sib(L, TSeq); return 1; } /* ** choice operator; optimizations: ** charset / charset => charset ** true / x => true, x / false => x, false / x => x ** (x / true is not equivalent to true) */ static int lp_choice (lua_State *L) { Charset st1, st2; TTree *t1 = getpatt(L, 1, NULL); TTree *t2 = getpatt(L, 2, NULL); if (tocharset(t1, &st1) && tocharset(t2, &st2)) { TTree *t = newcharset(L); loopset(i, treebuffer(t)[i] = st1.cs[i] | st2.cs[i]); } else if (nofail(t1) || t2->tag == TFalse) lua_pushvalue(L, 1); /* true / x => true, x / false => x */ else if (t1->tag == TFalse) lua_pushvalue(L, 2); /* false / x => x */ else newroot2sib(L, TChoice); return 1; } /* ** p^n */ static int lp_star (lua_State *L) { int size1; int n = (int)luaL_checkinteger(L, 2); TTree *tree1 = getpatt(L, 1, &size1); if (n >= 0) { /* seq tree1 (seq tree1 ... (seq tree1 (rep tree1))) */ TTree *tree = newtree(L, (n + 1) * (size1 + 1)); if (nullable(tree1)) luaL_error(L, "loop body may accept empty string"); while (n--) /* repeat 'n' times */ tree = seqaux(tree, tree1, size1); tree->tag = TRep; memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); } else { /* choice (seq tree1 ... choice tree1 true ...) true */ TTree *tree; n = -n; /* size = (choice + seq + tree1 + true) * n, but the last has no seq */ tree = newtree(L, n * (size1 + 3) - 1); for (; n > 1; n--) { /* repeat (n - 1) times */ tree->tag = TChoice; tree->u.ps = n * (size1 + 3) - 2; sib2(tree)->tag = TTrue; tree = sib1(tree); tree = seqaux(tree, tree1, size1); } tree->tag = TChoice; tree->u.ps = size1 + 1; sib2(tree)->tag = TTrue; memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); } copyktable(L, 1); return 1; } /* ** #p == &p */ static int lp_and (lua_State *L) { newroot1sib(L, TAnd); return 1; } /* ** -p == !p */ static int lp_not (lua_State *L) { newroot1sib(L, TNot); return 1; } /* ** [t1 - t2] == Seq (Not t2) t1 ** If t1 and t2 are charsets, make their difference. */ static int lp_sub (lua_State *L) { Charset st1, st2; int s1, s2; TTree *t1 = getpatt(L, 1, &s1); TTree *t2 = getpatt(L, 2, &s2); if (tocharset(t1, &st1) && tocharset(t2, &st2)) { TTree *t = newcharset(L); loopset(i, treebuffer(t)[i] = st1.cs[i] & ~st2.cs[i]); } else { TTree *tree = newtree(L, 2 + s1 + s2); tree->tag = TSeq; /* sequence of... */ tree->u.ps = 2 + s2; sib1(tree)->tag = TNot; /* ...not... */ memcpy(sib1(sib1(tree)), t2, s2 * sizeof(TTree)); /* ...t2 */ memcpy(sib2(tree), t1, s1 * sizeof(TTree)); /* ... and t1 */ joinktables(L, 1, sib1(tree), 2); } return 1; } static int lp_set (lua_State *L) { size_t l; const char *s = luaL_checklstring(L, 1, &l); TTree *tree = newcharset(L); while (l--) { setchar(treebuffer(tree), (byte)(*s)); s++; } return 1; } static int lp_range (lua_State *L) { int arg; int top = lua_gettop(L); TTree *tree = newcharset(L); for (arg = 1; arg <= top; arg++) { int c; size_t l; const char *r = luaL_checklstring(L, arg, &l); luaL_argcheck(L, l == 2, arg, "range must have two characters"); for (c = (byte)r[0]; c <= (byte)r[1]; c++) setchar(treebuffer(tree), c); } return 1; } /* ** Look-behind predicate */ static int lp_behind (lua_State *L) { TTree *tree; TTree *tree1 = getpatt(L, 1, NULL); int n = fixedlen(tree1); luaL_argcheck(L, n >= 0, 1, "pattern may not have fixed length"); luaL_argcheck(L, !hascaptures(tree1), 1, "pattern have captures"); luaL_argcheck(L, n <= MAXBEHIND, 1, "pattern too long to look behind"); tree = newroot1sib(L, TBehind); tree->u.n = n; return 1; } /* ** Create a non-terminal */ static int lp_V (lua_State *L) { TTree *tree = newleaf(L, TOpenCall); luaL_argcheck(L, !lua_isnoneornil(L, 1), 1, "non-nil value expected"); tree->key = addtonewktable(L, 0, 1); return 1; } /* ** Create a tree for a non-empty capture, with a body and ** optionally with an associated Lua value (at index 'labelidx' in the ** stack) */ static int capture_aux (lua_State *L, int cap, int labelidx) { TTree *tree = newroot1sib(L, TCapture); tree->cap = cap; tree->key = (labelidx == 0) ? 0 : addtonewktable(L, 1, labelidx); return 1; } /* ** Fill a tree with an empty capture, using an empty (TTrue) sibling. ** (The 'key' field must be filled by the caller to finish the tree.) */ static TTree *auxemptycap (TTree *tree, int cap) { tree->tag = TCapture; tree->cap = cap; sib1(tree)->tag = TTrue; return tree; } /* ** Create a tree for an empty capture. */ static TTree *newemptycap (lua_State *L, int cap, int key) { TTree *tree = auxemptycap(newtree(L, 2), cap); tree->key = key; return tree; } /* ** Create a tree for an empty capture with an associated Lua value. */ static TTree *newemptycapkey (lua_State *L, int cap, int idx) { TTree *tree = auxemptycap(newtree(L, 2), cap); tree->key = addtonewktable(L, 0, idx); return tree; } /* ** Captures with syntax p / v ** (function capture, query capture, string capture, or number capture) */ static int lp_divcapture (lua_State *L) { switch (lua_type(L, 2)) { case LUA_TFUNCTION: return capture_aux(L, Cfunction, 2); case LUA_TTABLE: return capture_aux(L, Cquery, 2); case LUA_TSTRING: return capture_aux(L, Cstring, 2); case LUA_TNUMBER: { int n = lua_tointeger(L, 2); TTree *tree = newroot1sib(L, TCapture); luaL_argcheck(L, 0 <= n && n <= SHRT_MAX, 1, "invalid number"); tree->cap = Cnum; tree->key = n; return 1; } default: return luaL_argerror(L, 2, "invalid replacement value"); } } static int lp_substcapture (lua_State *L) { return capture_aux(L, Csubst, 0); } static int lp_tablecapture (lua_State *L) { return capture_aux(L, Ctable, 0); } static int lp_groupcapture (lua_State *L) { if (lua_isnoneornil(L, 2)) return capture_aux(L, Cgroup, 0); else return capture_aux(L, Cgroup, 2); } static int lp_foldcapture (lua_State *L) { luaL_checktype(L, 2, LUA_TFUNCTION); return capture_aux(L, Cfold, 2); } static int lp_simplecapture (lua_State *L) { return capture_aux(L, Csimple, 0); } static int lp_poscapture (lua_State *L) { newemptycap(L, Cposition, 0); return 1; } static int lp_argcapture (lua_State *L) { int n = (int)luaL_checkinteger(L, 1); luaL_argcheck(L, 0 < n && n <= SHRT_MAX, 1, "invalid argument index"); newemptycap(L, Carg, n); return 1; } static int lp_backref (lua_State *L) { luaL_checkany(L, 1); newemptycapkey(L, Cbackref, 1); return 1; } /* ** Constant capture */ static int lp_constcapture (lua_State *L) { int i; int n = lua_gettop(L); /* number of values */ if (n == 0) /* no values? */ newleaf(L, TTrue); /* no capture */ else if (n == 1) newemptycapkey(L, Cconst, 1); /* single constant capture */ else { /* create a group capture with all values */ TTree *tree = newtree(L, 1 + 3 * (n - 1) + 2); newktable(L, n); /* create a 'ktable' for new tree */ tree->tag = TCapture; tree->cap = Cgroup; tree->key = 0; tree = sib1(tree); for (i = 1; i <= n - 1; i++) { tree->tag = TSeq; tree->u.ps = 3; /* skip TCapture and its sibling */ auxemptycap(sib1(tree), Cconst); sib1(tree)->key = addtoktable(L, i); tree = sib2(tree); } auxemptycap(tree, Cconst); tree->key = addtoktable(L, i); } return 1; } static int lp_matchtime (lua_State *L) { TTree *tree; luaL_checktype(L, 2, LUA_TFUNCTION); tree = newroot1sib(L, TRunTime); tree->key = addtonewktable(L, 1, 2); return 1; } /* }====================================================== */ /* ** {====================================================== ** Grammar - Tree generation ** ======================================================= */ /* ** push on the stack the index and the pattern for the ** initial rule of grammar at index 'arg' in the stack; ** also add that index into position table. */ static void getfirstrule (lua_State *L, int arg, int postab) { lua_rawgeti(L, arg, 1); /* access first element */ if (lua_isstring(L, -1)) { /* is it the name of initial rule? */ lua_pushvalue(L, -1); /* duplicate it to use as key */ lua_gettable(L, arg); /* get associated rule */ } else { lua_pushinteger(L, 1); /* key for initial rule */ lua_insert(L, -2); /* put it before rule */ } if (!testpattern(L, -1)) { /* initial rule not a pattern? */ if (lua_isnil(L, -1)) luaL_error(L, "grammar has no initial rule"); else luaL_error(L, "initial rule '%s' is not a pattern", lua_tostring(L, -2)); } lua_pushvalue(L, -2); /* push key */ lua_pushinteger(L, 1); /* push rule position (after TGrammar) */ lua_settable(L, postab); /* insert pair at position table */ } /* ** traverse grammar at index 'arg', pushing all its keys and patterns ** into the stack. Create a new table (before all pairs key-pattern) to ** collect all keys and their associated positions in the final tree ** (the "position table"). ** Return the number of rules and (in 'totalsize') the total size ** for the new tree. */ static int collectrules (lua_State *L, int arg, int *totalsize) { int n = 1; /* to count number of rules */ int postab = lua_gettop(L) + 1; /* index of position table */ int size; /* accumulator for total size */ lua_newtable(L); /* create position table */ getfirstrule(L, arg, postab); size = 2 + getsize(L, postab + 2); /* TGrammar + TRule + rule */ lua_pushnil(L); /* prepare to traverse grammar table */ while (lua_next(L, arg) != 0) { if (lua_tonumber(L, -2) == 1 || lp_equal(L, -2, postab + 1)) { /* initial rule? */ lua_pop(L, 1); /* remove value (keep key for lua_next) */ continue; } if (!testpattern(L, -1)) /* value is not a pattern? */ luaL_error(L, "rule '%s' is not a pattern", val2str(L, -2)); luaL_checkstack(L, LUA_MINSTACK, "grammar has too many rules"); lua_pushvalue(L, -2); /* push key (to insert into position table) */ lua_pushinteger(L, size); lua_settable(L, postab); size += 1 + getsize(L, -1); /* update size */ lua_pushvalue(L, -2); /* push key (for next lua_next) */ n++; } *totalsize = size + 1; /* TTrue to finish list of rules */ return n; } static void buildgrammar (lua_State *L, TTree *grammar, int frule, int n) { int i; TTree *nd = sib1(grammar); /* auxiliary pointer to traverse the tree */ for (i = 0; i < n; i++) { /* add each rule into new tree */ int ridx = frule + 2*i + 1; /* index of i-th rule */ int rulesize; TTree *rn = gettree(L, ridx, &rulesize); nd->tag = TRule; nd->key = 0; /* will be fixed when rule is used */ nd->cap = i; /* rule number */ nd->u.ps = rulesize + 1; /* point to next rule */ memcpy(sib1(nd), rn, rulesize * sizeof(TTree)); /* copy rule */ mergektable(L, ridx, sib1(nd)); /* merge its ktable into new one */ nd = sib2(nd); /* move to next rule */ } nd->tag = TTrue; /* finish list of rules */ } /* ** Check whether a tree has potential infinite loops */ static int checkloops (TTree *tree) { tailcall: if (tree->tag == TRep && nullable(sib1(tree))) return 1; else if (tree->tag == TGrammar) return 0; /* sub-grammars already checked */ else { switch (numsiblings[tree->tag]) { case 1: /* return checkloops(sib1(tree)); */ tree = sib1(tree); goto tailcall; case 2: if (checkloops(sib1(tree))) return 1; /* else return checkloops(sib2(tree)); */ tree = sib2(tree); goto tailcall; default: assert(numsiblings[tree->tag] == 0); return 0; } } } /* ** Give appropriate error message for 'verifyrule'. If a rule appears ** twice in 'passed', there is path from it back to itself without ** advancing the subject. */ static int verifyerror (lua_State *L, int *passed, int npassed) { int i, j; for (i = npassed - 1; i >= 0; i--) { /* search for a repetition */ for (j = i - 1; j >= 0; j--) { if (passed[i] == passed[j]) { lua_rawgeti(L, -1, passed[i]); /* get rule's key */ return luaL_error(L, "rule '%s' may be left recursive", val2str(L, -1)); } } } return luaL_error(L, "too many left calls in grammar"); } /* ** Check whether a rule can be left recursive; raise an error in that ** case; otherwise return 1 iff pattern is nullable. ** The return value is used to check sequences, where the second pattern ** is only relevant if the first is nullable. ** Parameter 'nb' works as an accumulator, to allow tail calls in ** choices. ('nb' true makes function returns true.) ** Parameter 'passed' is a list of already visited rules, 'npassed' ** counts the elements in 'passed'. ** Assume ktable at the top of the stack. */ static int verifyrule (lua_State *L, TTree *tree, int *passed, int npassed, int nb) { tailcall: switch (tree->tag) { case TChar: case TSet: case TAny: case TFalse: return nb; /* cannot pass from here */ case TTrue: case TBehind: /* look-behind cannot have calls */ return 1; case TNot: case TAnd: case TRep: /* return verifyrule(L, sib1(tree), passed, npassed, 1); */ tree = sib1(tree); nb = 1; goto tailcall; case TCapture: case TRunTime: /* return verifyrule(L, sib1(tree), passed, npassed, nb); */ tree = sib1(tree); goto tailcall; case TCall: /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ tree = sib2(tree); goto tailcall; case TSeq: /* only check 2nd child if first is nb */ if (!verifyrule(L, sib1(tree), passed, npassed, 0)) return nb; /* else return verifyrule(L, sib2(tree), passed, npassed, nb); */ tree = sib2(tree); goto tailcall; case TChoice: /* must check both children */ nb = verifyrule(L, sib1(tree), passed, npassed, nb); /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ tree = sib2(tree); goto tailcall; case TRule: if (npassed >= MAXRULES) return verifyerror(L, passed, npassed); else { passed[npassed++] = tree->key; /* return verifyrule(L, sib1(tree), passed, npassed); */ tree = sib1(tree); goto tailcall; } case TGrammar: return nullable(tree); /* sub-grammar cannot be left recursive */ default: assert(0); return 0; } } static void verifygrammar (lua_State *L, TTree *grammar) { int passed[MAXRULES]; TTree *rule; /* check left-recursive rules */ for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { if (rule->key == 0) continue; /* unused rule */ verifyrule(L, sib1(rule), passed, 0, 0); } assert(rule->tag == TTrue); /* check infinite loops inside rules */ for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { if (rule->key == 0) continue; /* unused rule */ if (checkloops(sib1(rule))) { lua_rawgeti(L, -1, rule->key); /* get rule's key */ luaL_error(L, "empty loop in rule '%s'", val2str(L, -1)); } } assert(rule->tag == TTrue); } /* ** Give a name for the initial rule if it is not referenced */ static void initialrulename (lua_State *L, TTree *grammar, int frule) { if (sib1(grammar)->key == 0) { /* initial rule is not referenced? */ int n = lua_rawlen(L, -1) + 1; /* index for name */ lua_pushvalue(L, frule); /* rule's name */ lua_rawseti(L, -2, n); /* ktable was on the top of the stack */ sib1(grammar)->key = n; } } static TTree *newgrammar (lua_State *L, int arg) { int treesize; int frule = lua_gettop(L) + 2; /* position of first rule's key */ int n = collectrules(L, arg, &treesize); TTree *g = newtree(L, treesize); luaL_argcheck(L, n <= MAXRULES, arg, "grammar has too many rules"); g->tag = TGrammar; g->u.n = n; lua_newtable(L); /* create 'ktable' */ lua_setuservalue(L, -2); buildgrammar(L, g, frule, n); lua_getuservalue(L, -1); /* get 'ktable' for new tree */ finalfix(L, frule - 1, g, sib1(g)); initialrulename(L, g, frule); verifygrammar(L, g); lua_pop(L, 1); /* remove 'ktable' */ lua_insert(L, -(n * 2 + 2)); /* move new table to proper position */ lua_pop(L, n * 2 + 1); /* remove position table + rule pairs */ return g; /* new table at the top of the stack */ } /* }====================================================== */ static Instruction *prepcompile (lua_State *L, Pattern *p, int idx) { lua_getuservalue(L, idx); /* push 'ktable' (may be used by 'finalfix') */ finalfix(L, 0, NULL, p->tree); lua_pop(L, 1); /* remove 'ktable' */ return compile(L, p); } static int lp_printtree (lua_State *L) { TTree *tree = getpatt(L, 1, NULL); int c = lua_toboolean(L, 2); if (c) { lua_getuservalue(L, 1); /* push 'ktable' (may be used by 'finalfix') */ finalfix(L, 0, NULL, tree); lua_pop(L, 1); /* remove 'ktable' */ } printktable(L, 1); printtree(tree, 0); return 0; } static int lp_printcode (lua_State *L) { Pattern *p = getpattern(L, 1); printktable(L, 1); if (p->code == NULL) /* not compiled yet? */ prepcompile(L, p, 1); printpatt(p->code, p->codesize); return 0; } /* ** Get the initial position for the match, interpreting negative ** values from the end of the subject */ static size_t initposition (lua_State *L, size_t len) { lua_Integer ii = luaL_optinteger(L, 3, 1); if (ii > 0) { /* positive index? */ if ((size_t)ii <= len) /* inside the string? */ return (size_t)ii - 1; /* return it (corrected to 0-base) */ else return len; /* crop at the end */ } else { /* negative index */ if ((size_t)(-ii) <= len) /* inside the string? */ return len - ((size_t)(-ii)); /* return position from the end */ else return 0; /* crop at the beginning */ } } /* ** Main match function */ static int lp_match (lua_State *L) { Capture capture[INITCAPSIZE]; const char *r; size_t l; Pattern *p = (getpatt(L, 1, NULL), getpattern(L, 1)); Instruction *code = (p->code != NULL) ? p->code : prepcompile(L, p, 1); const char *s = luaL_checklstring(L, SUBJIDX, &l); size_t i = initposition(L, l); int ptop = lua_gettop(L); lua_pushnil(L); /* initialize subscache */ lua_pushlightuserdata(L, capture); /* initialize caplistidx */ lua_getuservalue(L, 1); /* initialize penvidx */ r = match(L, s, s + i, s + l, code, capture, ptop); if (r == NULL) { lua_pushnil(L); return 1; } return getcaptures(L, s, r, ptop); } /* ** {====================================================== ** Library creation and functions not related to matching ** ======================================================= */ /* maximum limit for stack size */ #define MAXLIM (INT_MAX / 100) static int lp_setmax (lua_State *L) { lua_Integer lim = luaL_checkinteger(L, 1); luaL_argcheck(L, 0 < lim && lim <= MAXLIM, 1, "out of range"); lua_settop(L, 1); lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); return 0; } static int lp_version (lua_State *L) { lua_pushstring(L, VERSION); return 1; } static int lp_type (lua_State *L) { if (testpattern(L, 1)) lua_pushliteral(L, "pattern"); else lua_pushnil(L); return 1; } int lp_gc (lua_State *L) { Pattern *p = getpattern(L, 1); realloccode(L, p, 0); /* delete code block */ return 0; } static void createcat (lua_State *L, const char *catname, int (catf) (int)) { TTree *t = newcharset(L); int i; for (i = 0; i <= UCHAR_MAX; i++) if (catf(i)) setchar(treebuffer(t), i); lua_setfield(L, -2, catname); } static int lp_locale (lua_State *L) { if (lua_isnoneornil(L, 1)) { lua_settop(L, 0); lua_createtable(L, 0, 12); } else { luaL_checktype(L, 1, LUA_TTABLE); lua_settop(L, 1); } createcat(L, "alnum", isalnum); createcat(L, "alpha", isalpha); createcat(L, "cntrl", iscntrl); createcat(L, "digit", isdigit); createcat(L, "graph", isgraph); createcat(L, "lower", islower); createcat(L, "print", isprint); createcat(L, "punct", ispunct); createcat(L, "space", isspace); createcat(L, "upper", isupper); createcat(L, "xdigit", isxdigit); return 1; } static struct luaL_Reg pattreg[] = { {"ptree", lp_printtree}, {"pcode", lp_printcode}, {"match", lp_match}, {"B", lp_behind}, {"V", lp_V}, {"C", lp_simplecapture}, {"Cc", lp_constcapture}, {"Cmt", lp_matchtime}, {"Cb", lp_backref}, {"Carg", lp_argcapture}, {"Cp", lp_poscapture}, {"Cs", lp_substcapture}, {"Ct", lp_tablecapture}, {"Cf", lp_foldcapture}, {"Cg", lp_groupcapture}, {"P", lp_P}, {"S", lp_set}, {"R", lp_range}, {"locale", lp_locale}, {"version", lp_version}, {"setmaxstack", lp_setmax}, {"type", lp_type}, {NULL, NULL} }; static struct luaL_Reg metareg[] = { {"__mul", lp_seq}, {"__add", lp_choice}, {"__pow", lp_star}, {"__gc", lp_gc}, {"__len", lp_and}, {"__div", lp_divcapture}, {"__unm", lp_not}, {"__sub", lp_sub}, {NULL, NULL} }; int luaopen_lpeg (lua_State *L); int luaopen_lpeg (lua_State *L) { luaL_newmetatable(L, PATTERN_T); lua_pushnumber(L, MAXBACK); /* initialize maximum backtracking */ lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); luaL_setfuncs(L, metareg, 0); luaL_newlib(L, pattreg); lua_pushvalue(L, -1); lua_setfield(L, -3, "__index"); return 1; } /* }====================================================== */