ref: 1ad2d84575ea270cd150f6ed29a98b14464ffa44
dir: /lopcodes.h/
/* ** $Id: lopcodes.h $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ #ifndef lopcodes_h #define lopcodes_h #include "llimits.h" /*=========================================================================== We assume that instructions are unsigned 32-bit integers. All instructions have an opcode in the first 7 bits. Instructions can have the following formats: 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 iABC C(8) | B(8) |k| A(8) | Op(7) | iABx Bx(17) | A(8) | Op(7) | iAsBx sBx (signed)(17) | A(8) | Op(7) | iAx Ax(25) | Op(7) | isJ sJ(25) | Op(7) | A signed argument is represented in excess K: the represented value is the written unsigned value minus K, where K is half the maximum for the corresponding unsigned argument. ===========================================================================*/ enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ /* ** size and position of opcode arguments. */ #define SIZE_C 8 #define SIZE_B 8 #define SIZE_Bx (SIZE_C + SIZE_B + 1) #define SIZE_A 8 #define SIZE_Ax (SIZE_Bx + SIZE_A) #define SIZE_sJ (SIZE_Bx + SIZE_A) #define SIZE_OP 7 #define POS_OP 0 #define POS_A (POS_OP + SIZE_OP) #define POS_k (POS_A + SIZE_A) #define POS_B (POS_k + 1) #define POS_C (POS_B + SIZE_B) #define POS_Bx POS_k #define POS_Ax POS_A #define POS_sJ POS_A /* ** limits for opcode arguments. ** we use (signed) 'int' to manipulate most arguments, ** so they must fit in ints. */ /* Check whether type 'int' has at least 'b' bits ('b' < 32) */ #define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1) #if L_INTHASBITS(SIZE_Bx) #define MAXARG_Bx ((1<<SIZE_Bx)-1) #else #define MAXARG_Bx MAX_INT #endif #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ #if L_INTHASBITS(SIZE_Ax) #define MAXARG_Ax ((1<<SIZE_Ax)-1) #else #define MAXARG_Ax MAX_INT #endif #if L_INTHASBITS(SIZE_sJ) #define MAXARG_sJ ((1 << SIZE_sJ) - 1) #else #define MAXARG_sJ MAX_INT #endif #define OFFSET_sJ (MAXARG_sJ >> 1) #define MAXARG_A ((1<<SIZE_A)-1) #define MAXARG_B ((1<<SIZE_B)-1) #define MAXARG_C ((1<<SIZE_C)-1) #define OFFSET_sC (MAXARG_C >> 1) #define int2sC(i) ((i) + OFFSET_sC) #define sC2int(i) ((i) - OFFSET_sC) /* creates a mask with 'n' 1 bits at position 'p' */ #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) /* creates a mask with 'n' 0 bits at position 'p' */ #define MASK0(n,p) (~MASK1(n,p)) /* ** the following macros help to manipulate instructions */ #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) #define GETARG_A(i) getarg(i, POS_A, SIZE_A) #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) #define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) #define GETARG_sB(i) sC2int(GETARG_B(i)) #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) #define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) #define GETARG_sC(i) sC2int(GETARG_C(i)) #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) #define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k))))) #define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1)) #define SETARG_k(i,v) setarg(i, v, POS_k, 1) #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) #define GETARG_sBx(i) \ check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) #define GETARG_sJ(i) \ check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) #define SETARG_sJ(i,j) \ setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, b)<<POS_B) \ | (cast(Instruction, c)<<POS_C) \ | (cast(Instruction, k)<<POS_k)) #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, bc)<<POS_Bx)) #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_Ax)) #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ | (cast(Instruction, j) << POS_sJ) \ | (cast(Instruction, k) << POS_k)) #if !defined(MAXINDEXRK) /* (for debugging only) */ #define MAXINDEXRK MAXARG_B #endif /* ** invalid register that fits in 8 bits */ #define NO_REG MAXARG_A /* ** R[x] - register ** K[x] - constant (in constant table) ** RK(x) == if k(i) then K[x] else R[x] */ /* ** grep "ORDER OP" if you change these enums */ typedef enum { /*---------------------------------------------------------------------- name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R[A] := R[B] */ OP_LOADI,/* A sBx R[A] := sBx */ OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */ OP_LOADK,/* A Bx R[A] := K[Bx] */ OP_LOADKX,/* A R[A] := K[extra arg] */ OP_LOADFALSE,/* A R[A] := false */ OP_LFALSESKIP,/*A R[A] := false; pc++ */ OP_LOADTRUE,/* A R[A] := true */ OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */ OP_GETUPVAL,/* A B R[A] := UpValue[B] */ OP_SETUPVAL,/* A B UpValue[B] := R[A] */ OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:string] */ OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */ OP_GETI,/* A B C R[A] := R[B][C] */ OP_GETFIELD,/* A B C R[A] := R[B][K[C]:string] */ OP_SETTABUP,/* A B C UpValue[A][K[B]:string] := RK(C) */ OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */ OP_SETI,/* A B C R[A][B] := RK(C) */ OP_SETFIELD,/* A B C R[A][K[B]:string] := RK(C) */ OP_NEWTABLE,/* A B C k R[A] := {} */ OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */ OP_ADDI,/* A B sC R[A] := R[B] + sC */ OP_ADDK,/* A B C R[A] := R[B] + K[C] */ OP_SUBK,/* A B C R[A] := R[B] - K[C] */ OP_MULK,/* A B C R[A] := R[B] * K[C] */ OP_MODK,/* A B C R[A] := R[B] % K[C] */ OP_POWK,/* A B C R[A] := R[B] ^ K[C] */ OP_DIVK,/* A B C R[A] := R[B] / K[C] */ OP_IDIVK,/* A B C R[A] := R[B] // K[C] */ OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */ OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */ OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */ OP_SHRI,/* A B sC R[A] := R[B] >> sC */ OP_SHLI,/* A B sC R[A] := sC << R[B] */ OP_ADD,/* A B C R[A] := R[B] + R[C] */ OP_SUB,/* A B C R[A] := R[B] - R[C] */ OP_MUL,/* A B C R[A] := R[B] * R[C] */ OP_MOD,/* A B C R[A] := R[B] % R[C] */ OP_POW,/* A B C R[A] := R[B] ^ R[C] */ OP_DIV,/* A B C R[A] := R[B] / R[C] */ OP_IDIV,/* A B C R[A] := R[B] // R[C] */ OP_BAND,/* A B C R[A] := R[B] & R[C] */ OP_BOR,/* A B C R[A] := R[B] | R[C] */ OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ OP_SHL,/* A B C R[A] := R[B] << R[C] */ OP_SHR,/* A B C R[A] := R[B] >> R[C] */ OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] */ OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ OP_UNM,/* A B R[A] := -R[B] */ OP_BNOT,/* A B R[A] := ~R[B] */ OP_NOT,/* A B R[A] := not R[B] */ OP_LEN,/* A B R[A] := #R[B] (length operator) */ OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ OP_CLOSE,/* A close all upvalues >= R[A] */ OP_TBC,/* A mark variable A "to be closed" */ OP_JMP,/* sJ pc += sJ */ OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ OP_TEST,/* A k if (not R[A] == k) then pc++ */ OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] */ OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ OP_RETURN0,/* return */ OP_RETURN1,/* A return R[A] */ OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ OP_FORPREP,/* A Bx <check values and prepare counters>; if not to run then pc+=Bx+1; */ OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */ OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ OP_VARARGPREP,/*A (adjust vararg parameters) */ OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ } OpCode; #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) /*=========================================================================== Notes: (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then 'top' is set to last_result+1, so next open instruction (OP_CALL, OP_RETURN*, OP_SETLIST) may use 'top'. (*) In OP_VARARG, if (C == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to 'top'. (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always OP_EXTRAARG. (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the bits of C). (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a power of 2) plus 1, or zero for size zero. If not k, the array size is C. Otherwise, the array size is EXTRAARG _ C. (*) For comparisons, k specifies what condition the test should accept (true or false). (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped (the constant is the first operand). (*) All 'skips' (pc++) assume that next instruction is a jump. (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the function builds upvalues, which may need to be closed. C > 0 means the function is vararg, so that its 'func' must be corrected before returning; in this case, (C - 1) is its number of fixed parameters. (*) In comparisons with an immediate operand, C signals whether the original operand was a float. (It must be corrected in case of metamethods.) ===========================================================================*/ /* ** masks for instruction properties. The format is: ** bits 0-2: op mode ** bit 3: instruction set register A ** bit 4: operator is a test (next instruction must be a jump) ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) ** bit 7: instruction is an MM instruction (call a metamethod) */ LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) #define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) /* "out top" (set top for next instruction) */ #define isOT(i) \ ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ GET_OPCODE(i) == OP_TAILCALL) /* "in top" (uses top from previous instruction) */ #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) #define opmode(mm,ot,it,t,a,m) \ (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m)) /* number of list items to accumulate before a SETLIST instruction */ #define LFIELDS_PER_FLUSH 50 #endif